Tag Archives: women

Equality doesn’t necessarily lead to greater women’s STEM (science, technology, engineering, and mathematics) participation?

It seems counter-intuitive but societies where women have achieved greater equality see less participation by women in STEM (science, technology, engineering and mathematics) than countries where women are treated differently. This rather stunning research was released on February 14, 2018 (yes, Valentine’s Day).

Women, equality, STEM

Both universities involved in this research have made news/press releases available. First, there’s the February 14, 2018 Leeds Beckett University (UK) press release,

Countries with greater gender equality see a smaller proportion of women taking degrees in science, technology, engineering and mathematics (STEM), a new study by Leeds Beckett has found.

Dubbed the ‘gender equality paradox’, the research found that countries such as Albania and Algeria have a greater percentage of women amongst their STEM graduates than countries lauded for their high levels of gender equality, such as Finland, Norway or Sweden.

The researchers, from Leeds Beckett’s School of Social Sciences and the University of Missouri, believe this might be because countries with less gender equality often have little welfare support, making the choice of a relatively highly-paid STEM career more attractive.

The study, published in Psychological Science, also looked at what might motivate girls and boys to choose to study STEM subjects, including overall ability, interest or enjoyment in the subject and whether science subjects were a personal academic strength.

Using data on 475,000 adolescents across 67 countries or regions, the researchers found that while boys’ and girls’ achievement in STEM subjects was broadly similar, science was more likely to be boys’ best subject.

Girls, even when their ability in science equalled or excelled that of boys, were often likely to be better overall in reading comprehension, which relates to higher ability in non-STEM subjects.

Girls also tended to register a lower interest in science subjects. These differences were near-universal across all the countries and regions studied.

This could explain some of the gender disparity in STEM participation, according to Leeds Beckett Professor in Psychology Gijsbert Stoet.

“The further you get in secondary and then higher education, the more subjects you need to drop until you end with just one.

“We are inclined to choose what we are best at and also enjoy. This makes sense and matches common school advice.

“So, even though girls can match boys in terms of how well they do at science and mathematics in school, if those aren’t their best subjects and they are less interested in them, then they’re likely to choose to study something else.”

The researchers also looked at how many girls might be expected to choose further study in STEM based on these criteria.

They took the number of girls in each country who had the necessary ability in STEM and for whom it was also their best subject and compared this to the number of women graduating in STEM.

They found there was a disparity in all countries, but with the gap once again larger in more gender equal countries.

In the UK, 29 per cent of STEM graduates are female, whereas 48 per cent of UK girls might be expected to take those subjects based on science ability alone. This drops to 39 per cent when both science ability and interest in the subject are taken into account.

Countries with higher gender equality tend also to be welfare states, providing a high level of social security for their citizens.

Professor Stoet said: “STEM careers are generally secure and well-paid but the risks of not following such a path can vary.

“In more affluent countries where any choice of career feels relatively safe, women may feel able to make choices based on non-economic factors.

“Conversely, in countries with fewer economic opportunities, or where employment might be precarious, a well-paid and relatively secure STEM career can be more attractive to women.”

Despite extensive efforts to increase participation of women in STEM, levels have remained broadly stable for decades, but these findings could help target interventions to make them more effective, say the researchers.

“It’s important to take into account that girls are choosing not to study STEM for what they feel are valid reasons, so campaigns that target all girls may be a waste of energy and resources,” said Professor Stoet.

“If governments want to increase women’s participation in STEM, a more effective strategy might be to target the girls who are clearly being ‘lost’ from the STEM pathway: those for whom science and maths are their best subjects and who enjoy it but still don’t choose it.

“If we can understand their motivations, then interventions can be designed to help them change their minds.”

Then, there’s the February 14, 2018 University of Missouri news release, some of which will be repetitive,

The underrepresentation of girls and women in science, technology, engineering and mathematics (STEM) fields occurs globally. Although women currently are well represented in life sciences, they continue to be underrepresented in inorganic sciences, such as computer science and physics. Now, researchers from the University of Missouri and Leeds Beckett University in the United Kingdom have found that as societies become wealthier and more gender equal, women are less likely to obtain degrees in STEM. The researchers call this a “gender-equality paradox.” Researchers also discovered a near-universal sex difference in academic strengths and weaknesses that contributes to the STEM gap. Findings from the study could help refine education efforts and policies geared toward encouraging girls and women with strengths in science or math to participate in STEM fields.

The researchers found that, throughout the world, boys’ academic strengths tend to be in science or mathematics, while girls’ strengths are in reading. Students who have personal strengths in science or math are more likely to enter STEM fields, whereas students with reading as a personal strength are more likely to enter non-STEM fields, according to David Geary, Curators Professor of Psychological Sciences in the MU College of Arts and Science. These sex differences in academic strengths, as well as interest in science, may explain why the sex differences in STEM fields has been stable for decades, and why current approaches to address them have failed.

“We analyzed data on 475,000 adolescents across 67 countries or regions and found that while boys’ and girls’ achievements in STEM subjects were broadly similar in all countries, science was more likely to be boys’ best subject,” Geary said. “Girls, even when their abilities in science equaled or excelled that of boys, often were likely to be better overall in reading comprehension, which relates to higher ability in non-STEM subjects. As a result, these girls tended to seek out other professions unrelated to STEM fields.”

Surprisingly, this trend was larger for girls and women living in countries with greater gender equality. The authors call this a “gender-equality paradox,” because countries lauded for their high levels of gender equality, such as Finland, Norway or Sweden, have relatively few women among their STEM graduates. In contrast, more socially conservative countries such as Turkey or Algeria have a much larger percentage of women among their STEM graduates.

“In countries with greater gender equality, women are actively encouraged to participate in STEM; yet, they lose more girls because of personal academic strengths,” Geary said. “In more liberal and wealthy countries, personal preferences are more strongly expressed. One consequence is that sex differences in academic strengths and interests become larger and have a stronger influence college and career choices than in more conservative and less wealthy countries, creating the gender-equality paradox.”

The combination of personal academic strengths in reading, lower interest in science, and broader financial security explains why so few women choose a STEM career in highly developed nations.

“STEM careers are generally secure and well-paid but the risks of not following such a path can vary,” said Gijsbert Stoet, Professor in Psychology at Leeds Beckett University. “In more affluent countries where any choice of career feels relatively safe, women may feel able to make choices based on non-economic factors. Conversely, in countries with fewer economic opportunities, or where employment might be precarious, a well-paid and relatively secure STEM career can be more attractive to women.”

Findings from this study could help target interventions to make them more effective, say the researchers. Policymakers should reconsider failing national policies focusing on decreasing the gender imbalance in STEM, the researchers add.

The University of Missouri also produced a brief video featuring Professor David Geary discussing the work,

Here’s a link to and a citation for the paper,

The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education by Gijsbert Stoet, David C. Geary. Psychological Studies https://doi.org/10.1177/0956797617741719 First Published February 14, 2018 Research Article

This paper is behind a paywall.

Gender equality and STEM: a deeper dive

Olga Khazan in a February 18, 2018 article for The Atlantic provides additional insight (Note: Links have been removed),

Though their numbers are growing, only 27 percent of all students taking the AP Computer Science exam in the United States are female. The gender gap only grows worse from there: Just 18 percent of American computer-science college degrees go to women. This is in the United States, where many college men proudly describe themselves as “male feminists” and girls are taught they can be anything they want to be.

Meanwhile, in Algeria, 41 percent of college graduates in the fields of science, technology, engineering, and math—or “STEM,” as its known—are female. There, employment discrimination against women is rife and women are often pressured to make amends with their abusive husbands.

According to a report I covered a few years ago, Jordan, Qatar, and the United Arab Emirates were the only three countries in which boys are significantly less likely to feel comfortable working on math problems than girls are. In all of the other nations surveyed, girls were more likely to say they feel “helpless while performing a math problem.”

… this line of research, if it’s replicated, might hold useful takeaways for people who do want to see more Western women entering STEM fields. In this study, the percentage of girls who did excel in science or math was still larger than the number of women who were graduating with STEM degrees. That means there’s something in even the most liberal societies that’s nudging women away from math and science, even when those are their best subjects. The women-in-STEM advocates could, for starters, focus their efforts on those would-be STEM stars.

Final thoughts

This work upends notions (mine anyway) about equality and STEM with regard to women’s participation in countries usually described as ‘developed’ as opposed to ‘developing’. I am thankful to have my ideas shaken up and being forced to review my assumptions about STEM participation and equality of opportunity.

John Timmer in a February 19, 2018 posting on the Ars Technica blog offers a critique of the research and its conclusions,

… The countries where the science-degree gender gap is smaller tend to be less socially secure. The researchers suggest that the economic security provided by fields like engineering may have a stronger draw in these countries, pulling more women into the field.

They attempt to use a statistical pathway analysis to see if the data is consistent with this being the case, but the results are inconclusive. It may be right, but there would be at least one other strong factor that they have not identified involved.

Timmer’s piece is well worth reading.

For some reason the discussion about a lack of social safety nets and precarious conditions leading women to greater STEM participation reminds me of a truism about the arts. Constraints can force you into greater creativity. Although balance is necessary as you don’t want to destroy what you’re trying to encourage. In this case, it seems that comfortable lifestyles can lead women to pursue that which comes more easily whereas women trying to make a better life in difficult circumstance will pursue a more challenging path.

Simon Fraser University (Vancouver, Canada) and its president’s (Andrew Petter) dream colloquium: women in technology

I’m a little late with this event news (sadly,. I only received the information yesterday, Sept. 20, 2017) but even with two event dates already past (happily, videos for the two events have been posted), there are still several “Women in Technology” events to attend or view live according to the Simon Fraser University (SFU) President’s Dream Colloquium: Women in Technology; Attaining, Retaining, and Promoting Diverse Talent’s webpage text by Wan Yee Lok,

Women in Technology: Attracting, Retaining and Promoting Diverse Talent is a seven-part public [emphasis mine] lecture series beginning on Sept. 13. Key experts from around the world will identify challenges to gender equity and discover solutions for improving recruitment, retention and leadership options for women.

Diversity and inclusion are critical to high-tech corporate success. Yet statistics reveal that less than 25 per cent of those working in the science, technology, engineering and math sectors (STEM) are women, and that they earn seven-and-a-half per cent less than men.

“There is a crucial need to achieve gender equality in the tech sector, especially at a time when it is growing faster than ever,” says colloquium organizer Lesley Shannon, an SFU engineering science professor. She holds the Natural Sciences and Engineering Research Council (NSERC) Chair for Women in Science and Engineering for the B.C. and Yukon region.

“We hope the colloquium will help people engage in a multidisciplinary dialogue about the value of creating more space in technology for women and other under-represented groups.”

Six of the lectures are free, except for Cathy O’Neil’s lecture on Oct. 26.

The President’s Dream Colloquium schedule is as follows:

Sept. 13: SFU KEY presents: We the Data
Juliette Powell, founder, Turing AI and WeTheData.org, author of 33 Million People in the Room

Sept. 14: Diversity 101: The Case for Diversity in Technology
Maria Klawe, president, Harvey Mudd College

Sept. 21: Women in Media and Advertising
Shari Graydon, catalyst, Informed Opinions

Oct. 12: Social Psychological Phenomena
Steven Spencer, the Robert K. and Dale J. Weary Chair in Social Psychology, Ohio State University

Oct. 26: Gender and Bias in Algorithmic Design
Cathy O’Neil, author, Weapons of Math Destruction [tickets are $5 for students; $15 for the rest of us; go here to buy tickets, click on green button in the upper right, below the banner; the event will be held at SFU’s Harbour Centre Vancouver location]

Nov 9: Gendered Language
Danielle Gaucher, associate professor, Department of Psychology, University of Winnipeg

Nov. 23: Women as Leaders and Innovators
Jo Miller, founder, Be Leaderly

Lectures will be webcast live and available on the President’s Dream Colloquium website, www.sfu.ca/womenintech.

SFU engineering science professor Lesley Shannon is the colloquium organizer as well as the Natural Sciences and Engineering Research Council (NSERC) Chair for Women in Science and Engineering for the B.C. and Yukon region.

 

As a part of the colloquium, students can enroll in a graduate course covering a broad range of topics related to diversity in the technology sector. Shannon says the course will focus on women and their role in technology as well as issues that affect other under‐represented groups.

“I hope the course will establish a foundation for future managers, supervisors, sponsors, mentors and others wanting to pursue leadership roles to work towards creating a level playing field in technology and other industries,” says Shannon.

The colloquium course (SAR 897) is still accepting students. Visit go.sfu.ca to enroll.

A reminder after the last few paragraphs of the event text, you don’t actually have to be a student to attend the lectures although for anyone who doesn’t want to make the trek up the hill (SFU is located on a hill in Burnaby, BC) for the majority of the events, there is the livestream video. For those who can’t make the scheduled times, given that both the Sept. 13 and Sept. 14, 2017 event videos have been posted, they are being pretty quick about uploading the videos afterwards.

I have mentioned Cathy O’Neil here a couple of times, more substantively in a Feb. 28, 2017 posting about a major’ big data’ collaboration between the province of BC and the state of Washington (for Cathy O’Neil, scroll down to the subsection titled: Algorithms and big data) and briefly at the end in a May 24, 2017 posting that was chiefly concerned with bias in algorithms.

Café Scientifique (Vancouver, Canada) May 30, 2017 talk: Jerilyn Prior redux

I’m not sure ‘redux’ is exactly the right term but I’m going to declare it ‘close enough’. This upcoming talk was originally scheduled for March 2016 (my March 29, 2016 posting) but cancelled when the venerable The Railway Club abruptly closed its doors after 84 years of operation.

Our next café will happen on TUESDAY MAY 30TH, 7:30PM in the back room
at YAGGER'S DOWNTOWN (433 W Pender). Our speaker for the evening
will be DR. JERILYNN PRIOR, a is Professor of Endocrinology and
Metabolism at the University of British Columbia, founder and scientific
director of the Centre for Menstrual Cycle and Ovulation Research
(CeMCOR), director of the BC Center of the Canadian Multicenter
Osteoporosis Study (CaMOS), and a past president of the Society for
Menstrual Cycle Research.  The title of her talk is:

IS PERIMENOPAUSE ESTROGEN DEFICIENCY?
SORTING ENGRAINED MISINFORMATION ABOUT WOMEN’S MIDLIFE REPRODUCTIVE
TRANSITION

43 years old with teenagers a full-time executive director of a not for
profit is not sleeping, she wakes soaked a couple of times a night, not
every night but especially around the time her period comes. As it does
frequently—it is heavy, even flooding. Her sexual interest is
virtually gone and she feels dry when she tries.

Her family doctor offered her The Pill. When she took it she got very
sore breasts, ankle swelling and high blood pressure. Her brain feels
fuzzy, she’s getting migraines, gaining weight and just can’t cope.
. . .
What’s going on? Does she need estrogen “replacement”?  If yes,
why when she’s still getting flow? Does The Pill work for other women?
_WHAT DO WE KNOW ABOUT THE WHAT, WHY, HOW LONG AND HOW TO HELP
SYMPTOMATIC PERIMENOPAUSAL WOMEN?_

We hope to see you there!

As I noted in March 2016, this seems more like a description for a workshop on perimenopause  and consequently of more interest for doctors and perimenopausal women than the audience that Café Scientifique usually draws. Of course, I  could be completely wrong.

Nanotechnology and Pakistan

I don’t often get information about nanotechnology in Pakistan so this March 6, 2017 news article by Mrya Imran on the TheNews.com website provides some welcome insight,

Pakistan has the right level of expert human resource and scientific activity in the field of nanotechnology. A focused national strategy and sustainable funding can make Pakistan one of the leaders in this sector.

These views were expressed by Professor of Physics in University of Illinois and Founder and President of NanoSi Advanced Technology, Inc. Dr Munir H. Nayfeh.  Dr Nayfeh, along with Executive Director, Centre for Nanoscale Science and Technology, and Research Faculty, Department of Agricultural and Biological Engineering, University of Illinois, Dr. Irfan Ahmad and Associate Professor and Director of Medical Physics Programme, Pritzker School of Medicine, University of Chicago, Dr. Bulent Aydogan were invited by COMSATS Institute of Information Technology (CIIT) to deliver lectures on nanotechnology research and entrepreneurship with special focus on cancer nanomedicine.

The objective of the visit was to motivate and mentor faculty and students at COMSATS and also to provide feedback to campus administration and the Federal Ministry of Science and Technology on strategic initiatives to help develop the next generation of science and engineering workforce in Pakistan.

A story of success for the Muslim youth from areas affected by conflict and war, Dr Nayfeh, a Palestinian by origin, was brought up in a conflict area by a mother who did not know how to read and write. For him, the environment was actually a motivator to work hard and study. “My mother was uneducated but she always wanted her children to get the highest degree possible and both my parents supported us in whatever way possible to achieve our dreams,” he recalled.

Comparing Pakistan with other developing countries in scientific research enterprise, he said that despite lack of resources, he has observed some decent amount of research outcome from the existing setups. About their visits to different labs, he said that they found faculty members and researchers in need of for more and more funds. “I don’t blame them as I am also looking for more and more fund even in America. This is a positive sign which shows that these set ups are alive and want to do more.”

Dr. Nayfeh is greatly impressed with the number of women researchers and students in Pakistan. “In Tunisia and Algeria, there were decent number of women in this field but Pakistan has the most and there are more publications coming out of Pakistan as compared to other developing countries.”

If you have the time, I suggest you read the article in its entirety.

US report on Women, minorities, and people with disabilities in science and engineerin

A Jan. 31, 2017 news item on ScienceDaily announces a new report from the US National Science Foundation’s (NSF) National Center for Science and Engineering Statistics (NCSES),

The National Center for Science and Engineering Statistics (NCSES) today [Jan. 31, 2017,] announced the release of the 2017 Women, Minorities, and Persons with Disabilities in Science and Engineering (WMPD) report, the federal government’s most comprehensive look at the participation of these three demographic groups in science and engineering education and employment.

The report shows the degree to which women, people with disabilities and minorities from three racial and ethnic groups — black, Hispanic and American Indian or Alaska Native — are underrepresented in science and engineering (S&E). Women have reached parity with men in educational attainment but not in S&E employment. Underrepresented minorities account for disproportionately smaller percentages in both S&E education and employment

Congress mandated the biennial report in the Science and Engineering Equal Opportunities Act as part of the National Science Foundation’s (NSF) mission to encourage and strengthen the participation of underrepresented groups in S&E.

A Jan. 31, 2017 NSF news release (also on EurekAlert), which originated the news item, provides information about why the report is issued every two years and provides highlights from the 2017 report,

“An important part of fulfilling our mission to further the progress of science is producing current, accurate information about the U.S. STEM workforce,” said NSF Director France Córdova. “This report is a valuable resource to the science and engineering policy community.”

NSF maintains a portfolio of programs aimed at broadening participation in S&E, including ADVANCE: Increasing the Participation and Advancement of Women in Academic Science and Engineering Careers; LSAMP: the Louis Stokes Alliances for Minority Participation; and NSF INCLUDES, which focuses on building networks that can scale up proven approaches to broadening participation.

The digest provides highlights and analysis in five topic areas: enrollment, field of degree, occupation, employment status and early career doctorate holders. That last topic area includes analysis of pilot study data from the Early Career Doctorates Survey, a new NCSES product. NCSES also maintains expansive WMPD data tables, updated periodically as new data become available, which present the latest S&E education and workforce data available from NCSES and other agencies. The tables provide the public access to detailed, field-by-field information that includes both percentages and the actual numbers of people involved in S&E.

“WMPD is more than just a single report or presentation,” said NCSES Director John Gawalt. “It is a vast and unique information resource, carefully curated and maintained, that allows anyone (from the general public to highly trained researchers) ready access to data that facilitate and support their own exploration and analyses.”

Key findings from the new digest include:

  • The types of schools where students enroll vary among racial and ethnic groups. Hispanics, American Indians or Alaska Natives and Native Hawaiians or Other Pacific Islanders are more likely to enroll in community colleges. Blacks and Native Hawaiian or Other Pacific Islanders are more likely to enroll in private, for profit schools.
  • Since the late 1990s, women have earned about half of S&E bachelor’s degrees. But their representation varies widely by field, ranging from 70 percent in psychology to 18 percent in computer sciences.
  • At every level — bachelor’s, master’s and doctorate — underrepresented minority women earn a higher proportion of degrees than their male counterparts. White women, in contrast earn a smaller proportion of degrees than their male counterparts.
  • Despite two decades of progress, a wide gap in educational attainment remains between underrepresented minorities and whites and Asians, two groups that have higher representation in S&E education than they do in the U.S. population.
  • White men constitute about one-third of the overall U.S. population; they comprise half of the S&E workforce. Blacks, Hispanics and people with disabilities are underrepresented in the S&E workforce.
  • Women’s participation in the workforce varies greatly by field of occupation.
  • In 2015, scientists and engineers had a lower unemployment rate compared to the general U.S. population (3.3 percent versus 5.8 percent), although the rate varied among groups. For example, it was 2.8 percent among white women in S&E but 6.0 percent for underrepresented minority women.

For more information, including access to the digest and data tables, see the updated WMPD website.

Caption: In 2015, women and some minority groups were represented less in science and engineering (S&E) occupations than they were in the US general population.. Credit: NSF

Ministry’s new women’s shirt: a technical marvel

It seems there’s another entry into the textile business, a women’s dress shirt made of a technical textile. A Sept. 13, 2016 article by Elizabeth Segran for Fast Company describes this ‘miracle’ piece of apparel,

There are few items of clothing professional women love more than a well-draped silk shirt. They’re the equivalent of men’s well-tailored Oxford shirts: classic, elegant, and versatile enough to look appropriate in almost any business context. But they’re also difficult to maintain: Silk wrinkles easily, doesn’t absorb perspiration, and needs to be dry cleaned.

Boston-based fashion brand Ministry (formerly Ministry of Supply) has heard our lament. …

Ministry gathered …  feedback and spent two years creating a high-performance women’s work shirt as part of its debut womenswear collection, launching today [Sept. 13, 2016]. Until now, the five-year-old company has been focused on creating menswear made with cutting-edge new textiles, but cofounder Gihan Amarasiriwardena explains that when they were developing the womenswear collection, they didn’t just remake their men’s garments in women’s sizes.

Here’s an image of the shirt in black,

[downloaded from http://ministry.co/collections/womens]

[downloaded from http://ministry.co/collections/womens]

Segran’s article mostly extolls its benefits but there is a little technical information,

Their brand-new, aptly named Easier Than Silk Shirt looks and feels like silk, but is actually made from a Japanese technical fabric (i.e., a textile engineered to perform functions, like protecting the wearer from extremely high temperatures). It drapes nicely, wicks moisture, is wrinkle-resistant, and can be thrown in a regular washer and dryer. I tested the shirt on a typical Monday. This meant getting dressed at 7 a.m., taking my baby to a health checkup—where she proceeded to drool on me—wiping myself off for a lunch interview, then heading to a coffee shop to write for several hours before going to a book launch party. By the time I got home that evening and looked in the mirror, the shirt was somehow crease-free and there were no moisture blotches in sight.

When Ministry claims to “engineer a shirt,” it does not mean this in a metaphorical sense. The by [sic] three MIT students, Amarasiriwardena, Aman Advani, and Kit Hickey; the former two were trained as engineers. Every aspect of Ministry’s design process incorporates scientific thinking, from introducing NASA temperature-regulating textile technology into dress shirts to using equipment to test each garment before it hits the market. The Ministry headquarters in Boston is full of machines, including one that pulls at fabric to see how well it is able to recover from being stretched, and computer systems that offer 3D modeling of the human form.

I wonder if Teijin (first mentioned here in a July 19, 2010 posting about their now defunct ‘morphotex’ [based on the nanostructures on a Morpho butterfly’s wing] fabric) is the Japanese company producing Ministry’s technical textile. Ministry’s company website is less focused on the technology than on the retail aspect of their business so if the technical information is there, it’s not immediately obvious.

Beatrix Potter and her science on her 150th birthday

July 28, 2016 was the 150th anniversary of Beatrix Potter‘s birthday. Known by many through her children’s books, she has left an indelible mark on many of us. Hop-skip-jump.com has a description of an extraordinary woman, from their Beatrix Potter 150 years page,

An artist, storyteller, botanist, environmentalist, farmer and impeccable businesswoman, Potter was a visionary and a trailblazer. Single-mindedly determined and ambitious she overcame professional rejection, academic humiliation, and personal heartbreak, going on to earn her fortune and a formidable reputation.

A July 27, 2016 posting by Alex Jackson on the Guardian science blogs provides more information about Potter’s science (Note: Links have been removed),

Influenced by family holidays in Scotland, Potter was fascinated by the natural world from a young age. Encouraged to follow her interests, she explored the outdoors with sketchbook and camera, honing her skills as an artist, by drawing and sketching her school room pets: mice, rabbits and hedgehogs. Led first by her imagination, she developed a broad interest in the natural sciences: particularly archaeology, entomology and mycology, producing accurate watercolour drawings of unusual fossils, fungi, and archaeological artefacts.

Potter’s uncle, Sir Henry Enfield Roscoe FRS, an eminent nineteenth-century chemist, recognised her artistic talent and encouraged her scientific interests. By the 1890s, Potter’s skills in mycology drew Roscoe’s attention when he learned she had successfully germinated spores of a class of fungi, and had ideas on how they reproduced. He used his scientific connections with botanists at Kew’s Royal Botanic Gardens to gain a student card for his niece and to introduce her to Kew botanists interested in mycology.

Although Potter had good reason to think that her success might break some new ground, the botanists at Kew were sceptical. One Kew scientist, George Massee, however, was sufficiently interested in Potter’s drawings, encouraging her to continue experimenting. Although the director of Kew, William Thistleton-Dyer refused to give Potter’s theories or her drawings much attention both because she was an amateur and a female, Roscoe encouraged his niece to write up her investigations and offer her drawings in a paper to the Linnean Society.

In 1897, Potter put forward her paper, which Massee presented to the Linnean Society, since women could not be members or attend a meeting. Her paper, On the Germination of the Spores of the Agaricineae, was not given much notice and she quickly withdrew it, recognising that her samples were likely contaminated. Sadly, her paper has since been lost, so we can only speculate on what Potter actually concluded.

Until quite recently, Potter’s accomplishments and her experiments in natural science went unrecognised. Upon her death in 1943, Potter left hundreds of her mycological drawings and paintings to the Armitt Museum and Library in Ambleside, where she and her husband had been active members. Today, they are valued not only for their beauty and precision, but also for the assistance they provide modern mycologists in identifying a variety of fungi.

In 1997, the Linnean Society issued a posthumous apology to Potter, noting the sexism displayed in the handling of her research and its policy toward the contributions of women.

A rarely seen very early Beatrix Potter drawing, A Dream of Toasted Cheese was drawn to celebrate the publication of Henry Roscoe’s chemistry textbook in 1899. Illustration: Beatrix Potter/reproduced courtesy of the Lord Clwyd collection (image by way of The Guardian newspaper)

A rarely seen very early Beatrix Potter drawing, A Dream of Toasted Cheese was drawn to celebrate the publication of Henry Roscoe’s chemistry textbook in 1899. Illustration: Beatrix Potter/reproduced courtesy of the Lord Clwyd collection (image by way of The Guardian newspaper)

I’m sure you recognized the bunsen burner. From the James posting (Note: A link has been removed),

London-born, Henry Roscoe, whose family roots were in Liverpool, studied at University College London, before moving to Heidelberg, Germany, where he worked under Robert Bunsen, inventor of the new-fangled apparatus that inspired Potter’s drawing. Together, using magnesium as a light source, Roscoe and Bunsen reputedly carried out the first flashlight photography in 1864. Their research laid the foundations of comparative photochemistry.

These excerpts do not give full justice to James’ piece which I encourage you to read in its entirety.

Should you be going to the UK and inclined to follow up further, there’s a listing of 2016 events being held to honour Potter on the UK National Trust’s Celebrating Beatrix Potter’s anniversary in the Lake District webpage.

Happy International Women’s Day March 8, 2016!

The UK’s Medical Research Council’s Clinical Science Centre and  Imperial College have found an interesting way to celebrate   International Women’s Day 2016 according to a March 8, 2016 posting by Stuart Clark for the Guardian (Note: Links have been removed),

Tonight [March 8, 2016] at the Royal Society, London, around a dozen women will be presented with Suffrage Science awards. Organised by the Medical Research Council’s Clinical Science Centre, Imperial College, they honour women’s contributions to science and are timing to coincide with International Women’s Day.

One of today’s awardees is Pippa Goldschmidt. She is being honoured for her work in science communication. With a PhD in astronomy, …

Her latest project is editing the short story collection I Am Because You Are. These stories all take their inspiration from Albert Einstein’s General Theory of Relativity, which is currently celebrating its 100th anniversary.

What can fiction bring to science?

Science is too often a closed book for many people, they study it at school and are bored by it, or find it difficult or irrelevant to their lives. But fiction has this incredible ability to reflect and examine all aspects of the real world, and writing fiction about science is a great way of opening it up to new audiences, and helping to demystify it.

Science is also heavily reliant on literary concepts, such as metaphors, to get its points across; we often hear the phrases ‘the Universe is like an expanding balloon’, or ‘DNA is like an alphabet’. So I think fiction and science have more in common with each other than may first appear.

Should you be able to attend, I’d be delighted to hear more about the event.

Next, I have a March 8, 2016 article by Lauren J. Young on Inverse.com (Note: Links have been removed),

Women have achieved a lot throughout history. That’s why today, on March 8, thousands of events are taking place in more than 40 countries across the world to celebrate International Women’s Day. This year’s theme is Planet 50-50 by 2030: Step it up for Gender Equality, alluding to the United Nations’ Sustainable Development Goals — a 15-year plan for growth and development in all countries including gender equality and education for all.

International Women’s Day dates back to February 28, 1909, when the Socialist Party of America observed it for the first time in the United States, and two years later, the leader of the Women’s Office for Germany’s Social Democratic Party, Clara Zetkin, expanded the idea internationally. It gained support by the United Nations in 1975, which strengthened the movement.

International Women’s Day is also a day to celebrate science: The United Nations created an interactive timeline documenting some of the most significant contributions made by women. Here are the three:

In Ancient Greece, Agnodice was one of the first female gynecologists. She risked her life to practice medicine even though women who were caught were sentenced to death.

You can find the UN timeline here.

Finally, the UN has a separate International Day of Women and Girls in Science celebrated on Feb. 11 (presumably of each year).

April 2015 (US) National Math festival; inside story on math tournaments; US tv programme: The Great Math Mystery; and the SET Award (tech women in the movies and on tv)

I have three math items for this posting and one women in technology item, here they are in an almost date order.

X+Y

A British movie titled X+Y provides a fictionalized view of a team member on the British squad competing in an International Mathematics Olympiad.The Guardian’s science blog network hosted a March 11, 2015 review by Adam P. Goucher who also provides an insider’s view (Note: Links have been removed),

As a competition it is brutal and intense.

I speak from experience; I was in the UK team in 2011.

So it was with great expectation that I went to see X+Y, a star-studded British film about the travails of a British IMO hopeful who is struggling against the challenges of romance, Asperger’s and really tough maths.

Obviously, there were a few oversimplifications and departures from reality necessary for a coherent storyline. There were other problems too, but we’ll get to them later.

In order to get chosen for the UK IMO team, you must sit the first round test of the British Mathematical Olympiad (BMO1). About 1200 candidates take this test around the country.

I sat BMO1 on a cold December day at my sixth form, Netherthorpe School in Chesterfield. Apart from the invigilator and me, the room was completely empty, although the surroundings became irrelevant as soon as I was captivated by the problems. The test comprises six questions over the course of three and a half hours. As is the case with all Olympiad problems, there are often many distinct ways to solve them, and correct complete solutions are maximally rewarded irrespective of the elegance or complexity of the proof.

The highest twenty scorers are invited to another training camp at Trinity College, Cambridge, and the top six are selected to represent the UK at an annual competition in Romania.

In Romania, there was much maths, but we also enjoyed a snowball fight against the Italian delegation and sampled the delights of Romanian rum-endowed chocolate. Since I was teetotal at this point in time, the rum content was sufficient to alter my perception in such a way that I decided to attack a problem using Cartesian coordinates (considered by many to be barbaric and masochistic). Luckily my recklessness paid off, enabling me to scrape a much-coveted gold medal by the narrowest of margins.

The connection between the UK and Eastern Europe is rather complicated to explain, being intimately entangled with the history of the IMO. The inaugural Olympiad was held in Romania in 1959, with the competition being only open to countries under the Soviet bloc. A Hungarian mathematician, Béla Bollobás, competed in the first three Olympiads, seizing a perfect score on the third. After his PhD, Bollobás moved to Trinity College, Cambridge, to continue his research, where he fertilised Cambridge with his contributions in probabilistic and extremal combinatorics (becoming a Fellow of the Royal Society in the process). Consequently, there is a close relationship between Hungarian and Cantabrigian mathematics.

Rafe Spall’s character was very convincing, and his eccentricities injected some much-needed humour into the film. Similarly, Asa Butterfield’s portrayal of a “typical mathmo” was realistic. On the other hand, certain characters such as Richard (the team leader) were unnatural and exaggerated. In particular, I was disappointed that all of the competitors were portrayed as being borderline-autistic, when in reality there is a much more diverse mixture of individuals.

X+Y is also a love story, and one based on a true story covered in Morgan Matthews’ earlier work, the documentary Beautiful Young Minds. This followed the 2006 IMO, in China, where one of the members of the UK team fell in love and married the receptionist of the hotel the team were staying at. They have since separated, although his enamourment with China persisted – he switched from studying Mathematics to Chinese Studies.

It is common for relationships to develop during maths Olympiads. Indeed after a member of our team enjoyed a ménage-a-trois at an IMO in the 1980s, the committee increased the security and prohibited boys and girls from entering each others’ rooms.

The film was given a general release March 13, 2015 in the UK and is on the festival circuit elsewhere. Whether or not you can get to see the film, I recommend Goucher’s engaging review/memoir.

The Great Math Mystery and the SET award for the Portrayal of a Female in Technology

David Bruggeman in a March 13, 2015 post on his Pasco Phronesis blog describes the upcoming première of a maths installment in the NOVA series presented on the US PBS (Public Broadcasting Service), Note: Links have been removed,

… PBS has announced a new math special.  Mario Livio will host a NOVA special called The Great Math Mystery, premiering April 15.  Livio is an astrophysicist, science and math writer, and fan of science/culture mashups.  The mystery of the title is whether math(s) is invented or was discovered.

You can find out more about The Great Math Mystery here.

David also mentions this,

The Entertainment Industries Council is seeking votes for its first SET Award for Portrayal of a Female in Technology. … Voting on the award is via a Google form, so you will need a Google account to participate.  The nominees appear to be most of the women playing characters with technical jobs in television programs or recent films.  They are:

  • Annedroids on Amazon
  • Arrow: “Felicity Smoak” played by Emily Bett Rickards
  • Bones: “Angela Montenegro” played by Michaela Conlin

Here’s a video describing the competition and the competitors,

More details about the competition are available in David’s March 13, 2015 post or here or here. The deadline for voting is April 6, 2015. Here’s one more link, this one’s to the SET Awards website.

(US) National Math Festival

H/t to David Bruggeman again. This time it’s a Feb. 6, 2015 post on his Pasco Phronesis blog which announces (Note: Links have been removed),

On April 18 [2015], the Smithsonian Institution will host the first National Math Festival in Washington, D.C.  It will be the culmination of a weekend of events in the city to recognize outstanding math research, educators and books.

On April 16 there will be a morning breakfast briefing on Capitol Hill to discuss mathematics education.  It will be followed by a policy seminar in the Library of Congress and an evening gala to support basic research in mathematics and science.

You can find out more about the 2015 National Math Festival here (from the homepage),

On Saturday, April 18th, experience mathematics like never before, when the first-of-its-kind National Math Festival comes to Washington, D.C. As the country’s first national festival dedicated to discovering the delight and power of mathematics, this free and public celebration will feature dozens of activities for every age—from hands-on magic and Houdini-like getaways to lectures with some of the most influential mathematicians of our time.

The National Math Festival is organized by the Mathematical Sciences Research Institute (MSRI) and the Institute for Advanced Study (IAS) in cooperation with the Smithsonian Institution.

There you have it.

International Women’s Day March 8, 2015: Pioneering Women of Physics, Science goes to the Movies, and Transistor

In honour of International Women’s Day 2015, here are four items about women and science. The first features Canada’s Perimeter Institute (PI) and a tribute to pioneering women in physics, from a Feb. 26, 2015 PI news release,

They discovered pulsars, found the first evidence of dark matter, pioneered mathematics, radioactivity, nuclear fission, elasticity, and computer programming, and have even stopped light.

Jocelyn Bell Burnell

Rosalind Franklin

Hedy Lamarr

Wu Chien ShiungIt’s a fascinating group of women and these four provide a taste only.

The second item about women in science is also from the Perimeter Institute, which is hosting an ‘Inspiring Future Women in Science’ conference on Friday, May 6, 2015. From the PI program page,

Are you interested in turning your love of science into a career?  Perimeter Institute is inviting female high school students to participate in an inspirational half day conference on Friday March 6, 2015.  The goal is to bring together like minded young women with a strong interest in science and expose them to the rewards, challenges and possibilities of a career in science.

kEYNOTE ADDRESSES

Rima Brek – Rima is a Ubisoft veteran of 16 years and a founding team member of the Toronto studio. There, she was responsible for kick-starting the technology team and helping ship the critically-acclaimed Tom Clancy’s Splinter Cell Blacklist. She is a sought-after advisor whose guidance and leadership have directly helped Ubisoft Toronto grow to over 300 game developers in just five years.

Dianna Cowern – Dianna is a science communicator and educator. She received her degree in physics from MIT and completed a post-baccalaureate fellowship in astrophysics at Harvard. She then worked on mobile applications as a software engineer at General Electric before beginning a position at the University of California, San Diego as a physics outreach coordinator. She is the primary content creator for her educational YouTube channel, Physics Girl.

Roslyn Bern – As president of the Leacross Foundation, Roslyn Bern has been creating opportunities for women and girls throughout Canada. She has worked on initiatives for over 20 years, as an educator, a business woman, and as a philanthropist. She has focused on developing scholarships and bursaries for girls in under-represented career fields. She has been instrumental on sending teenage girls to the Arctic and Antarctic with Students on Ice, and created a partnership with colleges and corporations to certify STEM women in Electrical engineering. …

By the time this piece is posted it will be too late to attend this year’s event but interested parties could plan for next year in Waterloo, Ontario, Canada.

The third item concerns an initiative from the Public Radio Exchange, PRX. Called Transistor; a STEM [science, technology, engineering, and mathematics] audio project. From the series page,

Transistor is a transformative STEM podcast, taking the electricity of a story and channeling it to listeners. Three scientist hosts — a biologist, an astrophysicist, and a neuroscientist — report on conundrums, curiosities, and current events in and beyond their fields. Sprinkled among their episodes are the winners of the STEM Story Project, a competition we held for unique science radio.

Much as the transistor radio was a new technical leap, this Transistor features new women voices and sounds from new science producers.

PRX presents Transistor, applying our storytelling and podcast experience to science. The Sloan Foundation powers Transistor with funding and support. And listeners complete the circuit.

The Feb. 18, 2015 PRX news release offers more details about the hosts and their first podcasts,

PRX is thrilled to announce the launch of a new weekly podcast series Transistor (official press release). Three scientist hosts — a biologist, an astrophysicist, and a neuroscientist — report on conundrums, curiosities, and current events in and beyond their fields. Sprinkled among their episodes are the winners of the PRX STEM Story Project, a competition we held for unique science radio.

Just as the transistor radio was a new technical leap, this Transistor features new women voices and their science perspectives. We’ve launched with four episodes from our three scientist hosts:

  • Dr. Michelle Thaller, an astrophysicist at NASA’s Goddard Space Flight Center, who studies binary stars and the life cycles of the stars.
    • We Are Stardust: We’re closer than ever before to discovering if we’re not alone in the universe. Astrophysicist Michelle Thaller visits the NASA lab that discovered that comets contain some of the very same chemical elements that we contain. Then, Michelle talks to a Vatican planetary scientist about how science and religion can meet on the topic of life beyond Earth.
  • Dr. Christina Agapakis, a biologist and writer based in Los Angeles. Her research focuses on the intersection of microbiology and design, exploring the symbiosis among microbes and biology, technology, and culture.
    • Food, Meet Fungus: The microbiome — the trillions of bacteria, fungi, and viruses that live in and on our body — is hot right now. We explore what we do know in the face of so much hope and hype, starting with food.
  • Dr. Wendy Suzuki, a Professor of Neural Science and Psychology in the Center for Neural Science at New York University, whose research focuses on understanding how our brains form and retain new long-term memories and the effects of aerobic exercise on memory. Her book Healthy Brain, Happy Life will be published by Harper Collins in the Spring of 2015.
    • Totally Cerebral: Untangling the Mystery of Memory: Neuroscientist Wendy Suzuki introduces us to scientists who have uncovered some of the deepest secrets about our brains. She begins by talking with experimental psychologist Brenda Milner [interviewed in her office at McGill University, Montréal, Quebéc], who in the 1950s, completely changed our understanding of the parts of the brain important for forming new long-term memories.
    • Totally Cerebral: The Man Without a Memory: Imagine never being able to form a new long term memory after the age of 27. Welcome to the life of the famous amnesic patient “HM”. Neuroscientist Suzanne Corkin studied HM for almost half a century, and gives us a glimpse of what daily life was like for him, and his tremendous contribution to our understanding of how our memories work.

Each scientist is working with a talented independent producer: Lauren Ober, Julie Burstein, and Kerry Donahue.

Subscribe to the show through iTunes or RSS, or you can stream it on PRX.org.

I listened to all four of the introductory programs which ranged in running time from about 16 mins. to 37 mins. All three hosts are obviously excited about sharing their science stories and I look forward to hearing more from them.

The last item comes from David Bruggeman’s Feb. 20, 2015 post on his Pasco Phronesis blog (Note: A link has been removed),

Science Goes to the Movies is a new program produced by the City University of New York and sponsored by the Alfred P. Sloan Foundation. … The hosts are Faith Salie, a journalist and host you might have heard before as a panelist on Wait Wait…Don’t Tell Me, and Dr. Heather Berlin, a neuroscientist whose research focuses on brain-body relationships and psychological disorders.  (In what makes for a small world, Berlin is married to Canadian rap troubadour Baba Brinkman.) …

Science Goes to the Movies can be found here where you’ll also find a video of the first episode,

Hallucinations and black holes vie for the 2015 Oscar. Co-hosts Faith Salie and Dr. Heather Berlin are joined by AMNH astrophysicist Dr. Emily Rice for a look at the science in three of the top films of the year, Birdman, The Theory of Everything, and Interstellar.

Episode 102 featuring Into the Woods and the Imitation Game will première on March 20, 2015,

Science Goes to the Movies looks at The Imitation Game and Into the Woods. With special guest cryptologist Rosario Gennaro, we discuss pattern recognition in the work of both Alan Turing and Stephen Sondheim.

Science Goes to the Movies is made possible by generous support from the Alfred P. Sloan Foundation.

Kudos to the Alfred P. Sloan foundation for funding two exciting ventures: Transistors and Science Goes to the Movies.

Getting back to where I started: Happy International Women’s Day 2015!