Tag Archives: wrinkles

Graphene ribbons in solution bending and twisting like DNA

An Aug. 15, 2016 news item on ScienceDaily announces research into graphene nanoribbons and their DNA (deoxyribonucleic acid)-like properties,

Graphene nanoribbons (GNRs) bend and twist easily in solution, making them adaptable for biological uses like DNA analysis, drug delivery and biomimetic applications, according to scientists at Rice University.

Knowing the details of how GNRs behave in a solution will help make them suitable for wide use in biomimetics, according to Rice physicist Ching-Hwa Kiang, whose lab employed its unique capabilities to probe nanoscale materials like cells and proteins in wet environments. Biomimetic materials are those that imitate the forms and properties of natural materials.

An Aug. 15, 2016 Rice University (Texas, US) news release (also on EurekAlert), which originated the news item, describes the ribbons and the research in more detail,

Graphene nanoribbons can be thousands of times longer than they are wide. They can be produced in bulk by chemically “unzipping” carbon nanotubes, a process invented by Rice chemist and co-author James Tour and his lab.

Their size means they can operate on the scale of biological components like proteins and DNA, Kiang said. “We study the mechanical properties of all different kinds of materials, from proteins to cells, but a little different from the way other people do,” she said. “We like to see how materials behave in solution, because that’s where biological things are.” Kiang is a pioneer in developing methods to probe the energy states of proteins as they fold and unfold.

She said Tour suggested her lab have a look at the mechanical properties of GNRs. “It’s a little extra work to study these things in solution rather than dry, but that’s our specialty,” she said.

Nanoribbons are known for adding strength but not weight to solid-state composites, like bicycle frames and tennis rackets, and forming an electrically active matrix. A recent Rice project infused them into an efficient de-icer coating for aircraft.

But in a squishier environment, their ability to conform to surfaces, carry current and strengthen composites could also be valuable.

“It turns out that graphene behaves reasonably well, somewhat similar to other biological materials. But the interesting part is that it behaves differently in a solution than it does in air,” she said. The researchers found that like DNA and proteins, nanoribbons in solution naturally form folds and loops, but can also form helicoids, wrinkles and spirals.

Kiang, Wijeratne [Sithara Wijeratne, Rice graduate now a postdoctoral researcher at Harvard University] and Jingqiang Li, a co-author and student in the Kiang lab, used atomic force microscopy to test their properties. Atomic force microscopy can not only gather high-resolution images but also take sensitive force measurements of nanomaterials by pulling on them. The researchers probed GNRs and their precursors, graphene oxide nanoribbons.

The researchers discovered that all nanoribbons become rigid under stress, but their rigidity increases as oxide molecules are removed to turn graphene oxide nanoribbons into GNRs. They suggested this ability to tune their rigidity should help with the design and fabrication of GNR-biomimetic interfaces.

“Graphene and graphene oxide materials can be functionalized (or modified) to integrate with various biological systems, such as DNA, protein and even cells,” Kiang said. “These have been realized in biological devices, biomolecule detection and molecular medicine. The sensitivity of graphene bio-devices can be improved by using narrow graphene materials like nanoribbons.”

Wijeratne noted graphene nanoribbons are already being tested for use in DNA sequencing, in which strands of DNA are pulled through a nanopore in an electrified material. The base components of DNA affect the electric field, which can be read to identify the bases.

The researchers saw nanoribbons’ biocompatibility as potentially useful for sensors that could travel through the body and report on what they find, not unlike the Tour lab’s nanoreporters that retrieve information from oil wells.

Further studies will focus on the effect of the nanoribbons’ width, which range from 10 to 100 nanometers, on their properties.

Here’s a link to and a citation for the paper,

Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution by Sithara S. Wijeratne, Evgeni S. Penev, Wei Lu, Jingqiang Li, Amanda L. Duque, Boris I. Yakobson, James M. Tour, & Ching-Hwa Kiang. Scientific Reports 6, Article number: 31174 (2016)  doi:10.1038/srep31174 Published online: 09 August 2016

This paper is open access.

Robots judge a beauty contest

I have a lot of respect for good PR gimmicks and a beauty contest judged by robots (or more accurately, artificial intelligence) is a provocative idea wrapped up in a good public relations (PR) gimmick. A July 12, 2016 In Silico Medicine press release on EurekAlert reveals more,

Beauty.AI 2.0, a platform,” a platform, where human beauty is evaluated by a jury of robots and algorithm developers compete on novel applications of machine intelligence to perception is supported by Ernst and Young.

“We were very impressed by E&Y’s recent advertising campaign with a robot hand holding a beautiful butterfly and a slogan “How human is your algorithm?” and immediately invited them to participate. This slogan captures the very essence of our contest, which is constantly exploring new ideas in machine perception of humans”, said Anastasia Georgievskaya, Managing Scientist at Youth Laboratories, the organizer of Beauty.AI.

Beauty.AI contest is supported by the many innovative companies from the US, Europe, and Asia with some of the top cosmetics companies participating in collaborative research projects. Imagene Labs, one of the leaders in linking facial and biological information from Singapore operating across Asia, is a gold sponsor and research partner of the contest.

There are many approaches to evaluating human beauty. Features like symmetry, pigmentation, pimples, wrinkles may play a role and similarity to actors, models and celebrities may be used in the calculation of the overall score. However, other innovative approaches have been proposed. A robot developed by Insilico Medicine compares the chronological age with the age predicted by a deep neural network. Another team is training an artificially-intelligent system to identify features that contribute to the popularity of the people on dating sites.

“We look forward to collaborating with the Youth Laboratories team to create new AI algorithms. These will eventually allow consumers to objectively evaluate how well their wellness interventions – such as diet, exercise, skincare and supplements – are working. Based on the results they can then fine tune their approach to further improve their well-being and age better”, said Jia-Yi Har, Vice President of Imagene Labs.

The contest is open to anyone with a modern smartphone running either Android or iOS operating system, and Beauty.AI 2.0 app can be downloaded for free from either Google or Apple markets. Programmers and companies can participate by submitting their algorithm to the organizers through the Beauty.AI website.

“The beauty of Beauty.AI pageants is that algorithms are much more impartial than humans, and we are trying to prevent any racial bias and run the contest in multiple age categories. Most of the popular beauty contests discriminate by age, gender, marital status, body weight and race. Algorithms are much less partial”, said Alex Shevtsov, CEO of Youth Laboratories.

Very interesting take on beauty and bias. I wonder if they’re building change into their algorithms. After all, standards for beauty don’t remain static, they change over time.

Unfortunately, that question isn’t asked in Wency Leung’s July 4, 2016 article on the robot beauty contest for the Globe and Mail but she does provides more details about the contest and insight into the world of international cosmetics companies and their use of technology,

Teaching computers about aesthetics involves designing sophisticated algorithms to recognize and measure features like wrinkles, face proportions, blemishes and skin colour. And the beauty industry is rapidly embracing these high-tech tools to respond to consumers’ demand for products that suit their individual tastes and attributes.

Companies like Sephora and Avon, for instance, are using face simulation technology to provide apps that allow customers to virtually try on and shop for lipsticks and eye shadows using their mobile devices. Skincare producers are using similar technologies to track and predict the effects of serums and creams on various skin types. And brands like L’Oréal’s Lancôme are using facial analysis to read consumers’ skin tones to create personalized foundations.

“The more we’re able to use these tools like augmented reality [and] artificial intelligence to provide new consumer experiences, the more we can move to customizing and personalizing products for every consumer around the world, no matter what their skin tone is, no matter where they live, no matter who they are,” says Guive Balooch, global vice-president of L’Oréal’s technology incubator.

Balooch was tasked with starting up the company’s tech research hub four years ago, with a mandate to predict and invent solutions to how consumers would choose and use products in the future. Among its innovations, his team has come up with the Makeup Genius app, a virtual mirror that allows customers to try on products on a mobile screen, and a device called My UV Patch, a sticker sensor that users wear on their skin, which informs them through an app how much UV exposure they get.

These tools may seem easy enough to use, but their simplicity belies the work that goes on behind the scenes. To create the Makeup Genius app, for example, Balooch says the developers sought expertise from the animation industry to enable users to see themselves move onscreen in real time. The developers also brought in hundreds of consumers with different skin tones to test real products in the lab, and they tested the app on some 100,000 images in more than 40 lighting conditions, to ensure the colours of makeup products appeared the same in real life as they did onscreen, Balooch says.

The article is well worth reading in its entirety.

For the seriously curious, you can find Beauty AI here, In Silico Medicine here, and Imagene Labs here. I cannot find a website for Youth Laboratories featuring Anastasia Georgievskaya.

I last wrote about In Silico Medicine in a May 31, 2016 post about deep learning, wrinkles, and aging.

Nanotechnology delivery system for skin disease therapies

A Feb. 29, 2016 news item on ScienceDaily announces a new development concerning free radicals that may be helpful with skin diseases and pathologies,

Researchers at The Hebrew University of Jerusalem have developed a nanotechnology-based delivery system containing a protective cellular pathway inducer that activates the body’s natural defense against free radicals efficiently, a development that could control a variety of skin pathologies and disorders.

A Feb. 29, 2016 Hebrew University of Jerusalem press release on EurekAlert, which originated the news item, expands on the theme,

The human skin is constantly exposed to various pollutants, UV rays, radiation and other stressors that exist in our day-to-day environment. When they filter into the body they can create Reactive Oxygen Species (ROS) – oxygen molecules known as Free Radicals, which are able to damage and destroy cells, including lipids, proteins and DNA.

In the skin – the largest organ of the body – an excess of ROS can lead to various skin conditions, including inflammatory diseases, pigmenting disorders, wrinkles and some types of skin cancer, and can also affect internal organs. This damage is known as Oxidative Stress.

The body is naturally equipped with defense mechanisms to counter oxidative stress. It has anti-oxidants and, more importantly, anti-oxidant enzymes that attack the ROS before they cause damage.

In a review article published in the journal Cosmetics, a PhD student from The Hebrew University of Jerusalem, working in collaboration with researchers at the Technion – Israel Institute of Technology, suggested an innovative way to invigorate the body to produce antioxidant enzymes, while maintaining skin cell redox balance – a gentle equilibrium between Reactive Oxygen Species and their detoxification.

“The approach of using the body’s own defense system is very effective. We showed that activation of the body’s defense system with the aid of a unique delivery system is feasible, and may leverage dermal cure,” said Hebrew University researcher Maya Ben-Yehuda Greenwald.

Ben-Yehuda Greenwald showed that applying nano-size droplets of microemulsion liquids containing a cellular protective pathway inducer into the skin activates the natural skin defense systems.

“Currently, there are many scientific studies supporting the activation of the body’s defense mechanisms. However, none of these studies has demonstrated the use of a nanotechnology-based delivery system to do so,” Ben-Yehuda Greenwald said.

Production of antioxidant enzymes in the body is signaled in the DNA by activation of Nrf2 – a powerful protein that exists in every cell in our body. This Nrf2 cellular-protective signaling pathway is a major intersection of many other signaling pathways affecting each other and determining cell functionality and fate. Nrf2 is capable of coordinating the cellular response to internal as well as external stressors by tight regulation of phase-II protective enzymes, such as the antioxidant enzymes.

Ben-Yehuda Greenwald has also discovered a new family of compounds capable of activating the Nrf2 pathway. Moreover, by incorporating them into the unique delivery system she has developed, she managed to efficiently stimulate the activation of the Nrf2 pathway and mimic the activity of the body’s’ natural way of coping with a variety of stress conditions.

“The formula we have created could be used in topical medication for treating skin conditions. Our formula could be used both as preventive means and for treatment of various skin conditions, such as infections, over-exposure to UV irradiation, inflammatory conditions, and also internal disease,” she said.

While the researchers focused on the skin, the formulation could prove to be effective in enhancing the body’s natural protection against the damaging effects of ROS in other parts of the body, such as inflammation in cardiovascular diseases, heart attack, cancer, multiple sclerosis and Alzheimer’s.

Here’s an image provided by Ben-Yehuda Greenwald illustrating the team’s work,

Caption: These are the consequences of skin exposure to stressors. Credit: Maya Ben-Yehuda Greenwald

Caption: These are the consequences of skin exposure to stressors. Credit: Maya Ben-Yehuda Greenwald

Here’s a link to and a citation for the paper,

Skin Redox Balance Maintenance: The Need for an Nrf2-Activator Delivery System by Maya Ben-Yehuda Greenwald, Shmuel Ben-Sasson, Havazelet Bianco-Peled, and Ron Kohen. Cosmetics 2016, 3(1), 1; doi:10.3390/cosmetics3010001 Published: 15 January 2016

This paper appears to be open access.

Dimpling can be more than cute, morphable surfaces (smorphs) from MIT (Massachusetts Institute of Technology)

A morphable surface developed by an MIT team can change surface texture — from smooth to dimply, and back again — through changes in pressure. When the inside pressure is reduced, the flexible material shrinks, and the stiffer outer layer wrinkles. Increasing pressure returns the surface to a smooth state.

A June 24, 2014 news item on Nanowerk features a story about the origins of the dimpled golf ball, aerodynamics, and some very pink material (Note: A link has been removed),

There is a story about how the modern golf ball, with its dimpled surface, came to be: In the mid-1800s, it is said, new golf balls were smooth, but became dimpled over time as impacts left permanent dents. Smooth new balls were typically used for tournament play, but in one match, a player ran short, had to use an old, dented one, and realized that he could drive this dimpled ball much further than a smooth one.

Whether that story is true or not, testing over the years has proved that a golf ball’s irregular surface really does dramatically increase the distance it travels, because it can cut the drag caused by air resistance in half. Now researchers at MIT are aiming to harness that same effect to reduce drag on a variety of surfaces — including domes that sometimes crumple in high winds, or perhaps even vehicles.

Detailed studies of aerodynamics have shown that while a ball with a dimpled surface has half the drag of a smooth one at lower speeds, at higher speeds that advantage reverses. So the ideal would be a surface whose smoothness can be altered, literally, on the fly — and that’s what the MIT team has developed.

The new work is described in a paper in the journal Advanced Materials (“Smart Morphable Surfaces for Aerodynamic Drag Control”) by MIT’s Pedro Reis and former MIT postdocs Denis Terwagne (now at the Université Libre de Bruxelles in Belgium) and Miha Brojan (now at the University of Ljubljana in Slovenia).

esearchers made this sphere to test their concept of morphable surfaces. Made of soft polymer with a hollow center, and a thin coating of a stiffer polymer, the sphere becomes dimpled when the air is pumped out of the hollow center, causing it to shrink. (Photo courtesy of the MIT researchers)

Researchers made this sphere to test their concept of morphable surfaces. Made of soft polymer with a hollow center, and a thin coating of a stiffer polymer, the sphere becomes dimpled when the air is pumped out of the hollow center, causing it to shrink. (Photo courtesy of the MIT researchers)

A June 24, 2014 MIT (Massachusetts Institute of Technology) news release (also on EurekAlert) by David Chandler, which originated the news item, provides more detail about the work,

The ability to change the surface in real time comes from the use of a multilayer material with a stiff skin and a soft interior — the same basic configuration that causes smooth plums to dry into wrinkly prunes. To mimic that process, Reis and his team made a hollow ball of soft material with a stiff skin — with both layers made of rubberlike materials — then extracted air from the hollow interior to make the ball shrink and its surface wrinkle.

“Numerous studies of wrinkling have been done on flat surfaces,” says Reis, an assistant professor of mechanical engineering and civil and environmental engineering. “Less is known about what happens when you curve the surface. How does that affect the whole wrinkling process?”

The answer, it turns out, is that at a certain degree of shrinkage, the surface can produce a dimpled pattern that’s very similar to that of a golf ball — and with the same aerodynamic properties.

The aerodynamic properties of dimpled balls can be a bit counterintuitive: One might expect that a ball with a smooth surface would sail through the air more easily than one with an irregular surface. The reason for the opposite result has to do with the nature of a small layer of the air next to the surface of the ball. The irregular surface, it turns out, holds the airflow close to the ball’s surface longer, delaying the separation of this boundary layer. This reduces the size of the wake — the zone of turbulence behind the ball — which is the primary cause of drag for blunt objects.

When the researchers saw the wrinkled outcomes of their initial tests with their multilayer spheres, “We realized that these samples look just like golf balls,” Reis says. “We systematically tested them in a wind tunnel, and we saw a reduction in drag very similar to that of golf balls.”

Because the surface texture can be controlled by adjusting the balls’ interior pressure, the degree of drag reduction can be controlled at will. “We can generate that surface topography, or erase it,” Reis says. “That reversibility is why this is pretty interesting; you can switch the drag-reducing effect on and off, and tune it.”

As a result of that variability, the team refers to these as “smart morphable surfaces” — or “smorphs,” for short. The pun is intentional, Reis says: The paper’s lead author — Terwagne, a Belgian comics fan — pointed out that one characteristic of Smurfs cartoon characters is that no matter how old they get, they never develop wrinkles.

Terwagne says that making the morphable surfaces for lab testing required a great deal of trial-and-error — work that ultimately yielded a simple and efficient fabrication process. “This beautiful simplicity to achieve a complex functionality is often used by nature,” he says, “and really inspired me to investigate further.”

Many researchers have studied various kinds of wrinkled surfaces, with possible applications in areas such as adhesion, or even unusual optical properties. “But we are the first to use wrinkling for aerodynamic properties,” Reis says.

The drag reduction of a textured surface has already expanded beyond golf balls: The soccer ball being used at this year’s World Cup, for example, uses a similar effect; so do some track suits worn by competitive runners. For many purposes, such as in golf and soccer, constant dimpling is adequate, Reis says.

But in other uses, the ability to alter a surface could prove useful: For example, many radar antennas are housed in spherical domes, which can collapse catastrophically in very high winds. A dome that could alter its surface to reduce drag when strong winds are expected might avert such failures, Reis suggests. Another application could be the exterior of automobiles, where the ability to adjust the texture of panels to minimize drag at different speeds could increase fuel efficiency, he says.

Delightful is not the first adjective that jumps to my mind when describing this work but I’m not an engineer (from the news release),

John Rogers, a professor of materials research and engineering at the University of Illinois at Urbana-Champaign who was not involved in this work, says, “It represents a delightful example of how controlled processes of mechanical buckling can be used to create three-dimensional structures with interesting aerodynamic properties. The type of dynamic tuning of sophisticated surface morphologies made possible by this approach would be difficult or impossible to achieve in any other way.”

Here’s a link to and a citation for the paper,

Smart Morphable Surfaces for Aerodynamic Drag Control by Denis Terwagne, Miha Brojan, and Pedro M. Reis. Advanced Materials DOI: 10.1002/adma.201401403 Article first published online: 23 JUN 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

When wrinkles are good for us

I like the video animation that the scientists at the Massachusetts Institute of Technology (MIT) have provided so much (particularly the raisins), I’m going to start with it,

The August 1, 2012 MIT news release on EurekAlert provides some additional detail,

This basic method, they say, could be harnessed for a wide variety of useful structures: microfluidic systems for biological research, sensing and diagnostics; new photonic devices that can control light waves; controllable adhesive surfaces; antireflective coatings; and antifouling surfaces that prevent microbial buildup.

A paper describing this new process, co-authored by MIT postdocs Jie Yin and Jose Luis Yagüe, former student Damien Eggenspieler SM ’10, and professors Mary Boyce and Karen Gleason, is being published in the journal Advanced Materials.

The process uses two layers of material. The bottom layer, or substrate, is a silicon-based polymer that can be stretched, like canvas mounted on a stretcher frame. Then, a second layer of polymeric material is deposited through an initiated chemical vapor deposition (iCVD) process in which the material is heated in a vacuum so that it vaporizes, and then lands on the stretched surface and bonds tightly to it. Then — and this is the key to the new process — the stretching is released first in one direction, and then in the other, rather than all at once.

When the tension is released all at once, the result is a jumbled, chaotic pattern of wrinkles, like the surface of a raisin. But the controlled, stepwise release system developed by the MIT team creates a perfectly orderly herringbone pattern.

The David Chandler Aug.  1, 2012 article (written for MIT) which originated the news release notes,

Many techniques have been used to create surfaces with such tiny patterns, whose dimensions can range from nanometers (billionths of a meter) to tens of micrometers (millionths of a meter). But most such methods require complex fabrication processes, or can only be used for very tiny areas.

The new method is both very simple (consisting of just two or three steps) and can be used to make patterned surfaces of larger sizes, the team says. “You don’t need an external template” to create the pattern, says Yin, the paper’s lead author.


John Hutchinson, a professor of engineering and of applied mechanics at Harvard University who was not involved in this research, says, “Wrinkling phenomena are highly nonlinear and answers to questions concerning pattern formation have been slow to emerge.” He says the MIT team’s work “is an important step forward in this active area of research that bridges the chemical and mechanical engineering communities. The advance rests on theoretical insights combined with experimental demonstration and numerical simulation — it covers all the bases.”

The work was funded by the King Fahd University of Petroleum and Minerals in Saudi Arabia.

It’s nice to see wrinkles being appreciated.

A nanotechnology wrinkle

A cosmetics ad (more about that in a minute) came back to memory this morning as I read Michael Berger’s Nanowerk Spotlight article (Using nanotechnology to unlock a fountain of bull) about a Thomson Reuters report on nanotechnology and the cosmetics industry. From the article,

Two days ago we ran a press release from Thomson Reuters about a brief report they compiled on patent data relating to nanotechnology in the cosmetics industry. …

It already begins with the sensational title: Can Nanotech Unlock The Fountain of Youth? (pdf). That certainly catches the eye of the layperson. What exactly face creams, shampoos and sunscreens have to do with the “fountain of youth” remains unexplained. Oh, and they do make a reference to ‘remote concepts’ like nanorobotics. So let your imagination run wild! Little NanoStretchinators (trademark pending Nanowerk) that remove wrinkles from underneath the skin maybe? Or the fully automated Follicle-NanoSeeder that restores the shining body of the male scalp?

After poking a little more fun at the report, Berger hones in on distortions such as this,

Not a word about potential risks, or health and environmental concerns. But when you look at these three quoted studies you get a different message. The initiative by the EPA they are referring to actually “will determine whether these materials present a potential environmental hazard or exposure over their life cycles, and how these materials, when used in products, may be modified or managed to avoid or mitigate potential human health or ecological impacts.”

Berger goes on to provide more eye opening references and comments. As for the ad I’d seen, it’s been a few months since I first saw it in one of my local daily newspapers but I clipped it since it featured this copy:

Euoko’s Eye Contour Nanolift
Like millions of very tiny plastic surgeons

Seems like a nanobot reference, doesn’t it?

It caught me eye because these days, it’s not often (almost never) that you see a cosmetics company overtly touting a nanotechnology product.  L’Oréal doesn’t mention ‘nanosomes’ after years of using the term in its marketing campaigns for its Revitalift ads (no nanosomes on the company’s Canadian website when I checked it this morning, July 15, 2010). If you’re interested in “millions of tiny plastic surgeons”, you can pay $320 CAD for 15 ml online here. Sadly, the website makes no mention of the plastic surgeons but there is this,

The cocktail for the post-injection, post-laser, post-surgery, post-peel era. Millions of lifting nanoparticles work with South American native rose moss and Asiatic pennywort to sustain instant and long-term surface smoothness. Lupine lipopeptides from France maximize optical properties of the skin to accentuate radiance. [emphasis mine]

On other wrinkling nanotechnology news, a news item on Nanowerk features this,

As a sign of aging or in a suit, wrinkles are almost never welcome, but two papers in the current issue of Physical Review Letters (“Smooth Cascade of Wrinkles at the Edge of a Floating Elastic Film” and “Draping Films: A Wrinkle to Fold Transition”) offer some perspective on what determines their size and shape in soft materials.

The experiments offer complimentary insights into how defects, such as an edge or a fold, influence the presence of wrinkles and could prove helpful in understanding the formation of wrinkles in biological tissue.

I’m curious as to funding details for this work being done by two different teams of physicists at the University of Massachusetts but I haven’t been able to track details. I was not able to access the research articles themselves and that’s usually where you can find those details.