Tag Archives: Ye Tian

An artificial graphene throat

A July 24, 2019 American Chemical Society (ACS) news release (received via email and also on EurekAlert) describes a ‘tattoo-like- artificial throat derived from graphene,

Most people take speech for granted, but it’s actually a complex process that involves both motions of the mouth and vibrations of folded tissues, called vocal cords, within the throat. If the vocal cords sustain injuries or other lesions, a person can lose the ability to speak. Now, researchers reporting in ACS Nano have developed a wearable artificial throat that, when attached to the neck like a temporary tattoo, can transform throat movements into sounds.

Scientists have developed detectors that measure movements on human skin, such as pulse or heartbeat. However, the devices typically can’t convert these motions into sounds. Recently, He Tian, Yi Yang, Tian-Ling Ren and colleagues developed a prototype artificial throat with both capabilities, but because the device needed to be taped to the skin, it wasn’t comfortable enough to wear for long periods of time. So the researchers wanted to develop a thinner, skin-like artificial throat that would adhere to the neck like a temporary tattoo.

To make their artificial throat, the researchers laser-scribed graphene on a thin sheet of polyvinyl alcohol film. The flexible device measured 0.6 by 1.2 inches, or about double the size of a person’s thumbnail. The researchers used water to attach the film to the skin over a volunteer’s throat and connected it with electrodes to a small armband that contained a circuit board, microcomputer, power amplifier and decoder. When the volunteer noiselessly imitated the throat motions of speech, the instrument converted these movements into emitted sounds, such as the words “OK” and “No.” The researchers say that, in the future, mute people could be trained to generate signals with their throats that the device would translate into speech.

Caption: A wearable artificial graphene throat, abbreviated here as ‘WAGT,’ can transform human throat movements into different sounds with training of the wearer. Credit: Adapted from ACS Nano 2019, 10.1021/acsnano.9b03218

Here’s a link to and a citation for the paper,

A Wearable Skinlike Ultra-Sensitive Artificial Graphene Throat by Yuhong Wei, Yancong Qiao, Guangya Jiang, Yunfan Wang, Fangwei Wang, Mingrui Li, Yunfei Zhao, Ye Tian, Guangyang Gou, Songyao Tan He, Tian, Yi Yang, Tian-Ling Ren. ACS Nano2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/acsnano.9b03218 Publication Date: July 3, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

DNA (deoxyribonucleic acid) scaffolding for nonbiological construction

DNA (deoxyribonucleic acid) is being exploited in ways that would have seemed unimaginable to me when I was in high school. Earlier today (June 3, 2015), I ran a piece about DNA and data storage as imagined in an art/science project (DNA (deoxyribonucleic acid), music, and data storage) and now I have this work from the US Department of Energy’s (DOE) Brookhaven National Laboratory, from a June 1, 2015 news item on Nanowerk,

You’re probably familiar with the role of DNA as the blueprint for making every protein on the planet and passing genetic information from one generation to the next. But researchers at Brookhaven Lab’s Center for Functional Nanomaterials have shown that the twisted ladder molecule made of complementary matching strands can also perform a number of decidedly non-biological construction jobs: serving as a scaffold and programmable “glue” for linking up nanoparticles. This work has resulted in a variety of nanoparticle assemblies, including composite structures with switchable phases whose optical, magnetic, or other properties might be put to use in dynamic energy-harvesting or responsive optical materials. Three recent studies showcase different strategies for using synthetic strands of this versatile building material to link and arrange different types of nanoparticles in predictable ways.

The researchers have provided an image of the DNA building blocks,

Controlling the self-assembly of nanoparticles into superlattices is an important approach to build functional materials. The Brookhaven team used nanosized building blocks—cubes or octahedrons—decorated with DNA tethers to coordinate the assembly of spherical nanoparticles coated with complementary DNA strands.

Controlling the self-assembly of nanoparticles into superlattices is an important approach to build functional materials. The Brookhaven team used nanosized building blocks—cubes or octahedrons—decorated with DNA tethers to coordinate the assembly of spherical nanoparticles coated with complementary DNA strands.

A June 1, 2015 article (which originated the news item) in DOE Pulse Number 440 goes on to highlight three recent DNA papers published by researchers at Brookhaven National Laboratory,

The first [leads to a news release], published in Nature Communications, describes how scientists used the shape of nanoscale building blocks decorated with single strands of DNA to orchestrate the arrangement of spheres decorated with complementary strands (where bases on the two strands pair up according to the rules of DNA binding, A to T, G to C). For example, nano-cubes coated with DNA tethers on all six sides formed regular arrays of cubes surrounded by six nano-spheres. The attractive force of the DNA “glue” keeps these two dissimilar objects from self-separating to give scientists a reliable way to assemble composite materials in which the synergistic properties of different types of nanoparticles might be put to use.

In another study [leads to a news release], published in Nature Nanotechnology, the team used ropelike configurations of the DNA double helix to form a rigid geometrical framework, and added dangling pieces of single-stranded DNA to glue nanoparticles in place on the vertices of the scaffold. Controlling the code of the dangling strands and adding complementary strands to the nanoparticles gives scientists precision control over particle placement. These arrays of nanoparticles with predictable geometric configurations are somewhat analogous to molecules made of atoms, and can even be linked end-to-end to form polymer-like chains, or arrayed as flat sheets. Using this approach, the scientists can potentially orchestrate the arrangements of different types of nanoparticles to design materials that regulate energy flow, rotate light, or deliver biomolecules.

“We may be able to design materials that mimic nature’s machinery to harvest solar energy, or manipulate light for telecommunications applications, or design novel catalysts for speeding up a variety of chemical reactions,” said Oleg Gang, the Brookhaven physicist who leads this work on DNA-mediated nano-assembly.

Perhaps most exciting is a study [leads to a news release] published in Nature Materials in which the scientists added “reprogramming” strands of DNA after assembly to rearrange and change the phase of nanoparticle arrays. This is a change at the nanoscale that in some ways resembles an atomic phase change—like the shift in the atomic crystal lattice of carbon that transforms graphite into diamond—potentially producing a material with completely new properties from the same already assembled nanoparticle array. Inputting different types of attractive and repulsive reprogramming DNA strands, scientists could selectively trigger the transformation to the different resulting structures.

“The ability to dynamically switch the phase of an entire superlattice array will allow the creation of reprogrammable and switchable materials wherein multiple, different functions can be activated on demand,” Gang said.

Here are links to and citation for all three papers,

Superlattices assembled through shape-induced directional binding by Fang Lu, Kevin G. Yager, Yugang Zhang, Huolin Xin, & Oleg Gang. Nature Communications 6, Article number: 6912 doi:10.1038/ncomms7912 Published 23 April 2015

Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames by Ye Tian, Tong Wang, Wenyan Liu, Huolin L. Xin, Huilin Li, Yonggang Ke, William M. Shih, & Oleg Gang. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.105 Published online 25 May 2015

Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions by Yugang Zhang, Suchetan Pal, Babji Srinivasan, Thi Vo, Sanat Kumar & Oleg Gang. Nature Materials (2015) doi:10.1038/nmat4296 Published online 25 May 2015

The first study is open access, the second is behind a paywall but there is a free preview via ReadCube Acces, and the third is behind a paywall.

Distinguishing between left-handed and right-handed molecules with nanocubes

Learning to distinguish your left from your right isn’t all that easy for children. It’s also remarkably easy to lose the ability (temporarily) to make that distinction if you start experimenting with certain kinds of brain repatterning. However, the distinctions are important not only in daily life but in biology too according to a June 26, 2013 news item on Nanowerk,

In chemical reactions, left and right can make a big difference. A “left-handed” molecule of a particular chemical composition could be an effective drug, while its mirror-image “right-handed” counterpart could be completely inactive. That’s because, in biology, “left” and “right” molecular designs are crucial: Living organisms are made only from left-handed amino acids. So telling the two apart is important—but difficult.

Now, a team of scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and Ohio University has developed a new, simpler way to discern molecular handedness, known as chirality.

The June 26, 2013 Brookhaven National Laboratory news release, which originated the news item, describes the new technique for distinguishing left- from right-handed molecules,

They used gold-and-silver cubic nanoparticles to amplify the difference in left- and right-handed molecules’ response to a particular kind of light. The study, described in the journal NanoLetters, provides the basis for a new way to probe the effects of handedness in molecular interactions with unprecedented sensitivity.

The scientists knew that left- and right-handed chiral molecules would interact differently with “circularly polarized” light—where the direction of the electrical field rotates around the axis of the beam. This idea is similar to the way polarized sunglasses filter out reflected glare unlike ordinary lenses.

Other scientists have detected this difference, called “circular dichroism,” in organic molecules’ spectroscopic “fingerprints”—detailed maps of the wavelengths of light absorbed or reflected by the sample. But for most chiral biomolecules and many organic molecules, this “CD” signal is in the ultraviolet range of the electromagnetic spectrum, and the signal is often weak. The tests thus require significant amounts of material at impractically high concentrations.

The team was encouraged they might find a way to enhance the signal by recent experiments showing that coupling certain molecules with metallic nanoparticles could greatly increase their response to light. Theoretical work even suggested that these so-called plasmonic particles—which induce a collective oscillation of the material’s conductive electrons, leading to stronger absorption of a particular wavelength—could bump the signal into the visible light portion of the spectroscopic fingerprint, where it would be easier to measure.

The group experimented with different shapes and compositions of nanoparticles, and found that cubes with a gold center surrounded by a silver shell are not only able to show a chiral optical signal in the near-visible range, but even more striking, were effective signal amplifiers. For their test biomolecule, they used synthetic strands of DNA—a molecule they were familiar with using as “glue” for sticking nanoparticles together.

When DNA was attached to the silver-coated nanocubes, the signal was approximately 100 times stronger than it was for free DNA in the solution. That is, the cubic nanoparticles allowed the scientists to detect the optical signal from the chiral molecules (making them “visible”) at 100 times lower concentrations.

The observed amplification of the circular dichroism signal is a consequence of the interaction between the plasmonic particles and the “exciton,” or energy absorbing, electrons within the DNA-nanocube complex, the scientists explained.

“This research could serve as a promising platform for ultrasensitive sensing of chiral molecules and their transformations in synthetic, biomedical, and pharmaceutical applications,” Lu [Fang Lu, the first author on the paper] said.

“In addition,” said Gang [Oleg Gang, a researcher at Brookhaven’s Center for Functional Nanomaterials and lead author on the paper], “our approach offers a way to fabricate, via self-assembly, discrete plasmonic nano-objects with a chiral optical response from structurally non-chiral nano-components. These chiral plasmonic objects could greatly enhance the design of metamaterials and nano-optics for applications in energy harvesting and optical telecommunications.”

I last mentioned chirality in the context of work being done with controlling the chirality of carbon nanotubes at Finland’s Aalto University in an April 30 , 2013 posting.

Here’s a link to and a citation for the paper published by the Brookhaven National Laboratory and Ohio University,

Discrete Nanocubes as Plasmonic Reporters of Molecular Chirality by Fang Lu, Ye Tian, Mingzhao Liu, Dong Su, Hui Zhang, Alexander O. Govorov, and Oleg Gang. Nano Lett., Article ASAP
DOI: 10.1021/nl401107g Publication Date (Web): June 18, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.