Tag Archives: Yiwen Li

The ultimate natural sunscreen

For those of us in the northern hemisphere, sunscreen season is on the horizon. While the “ultimate natural sunscreen” researchers from the University of California at San Diego (UCSD) have developed is a long way from the marketplace, this is encouraging news (from a May 17, 2017 news item on Nanowerk),

Chemists, materials scientists and nanoengineers at UC San Diego have created what may be the ultimate natural sunscreen.

In a paper published in the American Chemical Society journal ACS Central Science, they report the development of nanoparticles that mimic the behavior of natural melanosomes, melanin-producing cell structures that protect our skin, eyes and other tissues from the harmful effects of ultraviolet radiation.

“Basically, we succeeded in making a synthetic version of the nanoparticles that our skin uses to produce and store melanin and demonstrated in experiments in skin cells that they mimic the behavior of natural melanosomes,” said Nathan Gianneschi, a professor of chemistry and biochemistry, materials science and engineering and nanoengineering at UC San Diego, who headed the team of researchers. The achievement has practical applications.

A May 17, 2017 UCSD news release, which originated the news item, delves into the research,

“Defects in melanin production in humans can cause diseases such as vitiligo and albinism that lack effective treatments,” Gianneschi added.

Vitiligo develops when the immune system wrongly attempts to clear normal melanocytes from the skin, effectively stopping the production of melanocytes. Albinism is due to genetic defects that lead to either the absence or a chemical defect in tyrosinase, a copper-containing enzyme involved in the production of melanin. Both of these diseases lack effective treatments and result in a significant risk of skin cancer for patients.

“The widespread prevalence of these melanin-related diseases and an increasing interest in the performance of various polymeric materials related to melanin prompted us to look for novel synthetic routes for preparing melanin-like materials,” Gianneschi said.

UC San Diego Ultimate natural sunscreenThe scientists found that the synthetic nanoparticles were taken up in tissue culture by keratinocytes, the predominant cell type found in the epidermis, the outer layer of skin. Photo by Yuran Huang and Ying Jones/UC San Diego

Melanin particles are produced naturally in many different sizes and shapes by animals—for iridescent feathers in birds or the pigmented eyes and skin of some reptiles. But scientists have discovered that extracting melanins from natural sources is a difficult and potentially more complex process than producing them synthetically.

Gianneschi and his team discovered two years ago that synthetic melanin-like nanoparticles could be developed in a precisely controllable manner to mimic the performance of natural melanins used in bird feathers.

“We hypothesized that synthetic melanin-like nanoparticles would mimic naturally occurring melanosomes and be taken up by keratinocytes, the predominant cell type found in the epidermis, the outer layer of skin,” said Gianneschi.

In healthy humans, melanin is delivered to keratinocytes in the skin after being excreted as melanosomes from melanocytes.

The UC San Diego scientists prepared melanin-like nanoparticles through the spontaneous oxidation of dopamine—developing biocompatible, synthetic analogues of naturally occurring melanosomes. Then they studied their update, transport, distribution and ultraviolet radiation-protective capabilities in human keratinocytes in tissue culture.

The researchers found that these synthetic nanoparticles were not only taken up and distributed normally, like natural melanosomes, within the keratinocytes, they protected the skin cells from DNA damage due to ultraviolet radiation.

“Considering limitations in the treatment of melanin-defective related diseases and the biocompatibility of these synthetic melanin-like nanoparticles in terms of uptake and degradation, these systems have potential as artificial melanosomes for the development of novel therapies, possibly supplementing the biological functions of natural melanins,” the researchers said in their paper.

The other co-authors of the study were Yuran Huang and Ziying Hu of UC San Diego’s Materials Science and Engineering Program, Yiwen Li and Maria Proetto of the Department of Chemistry and Biochemistry; Xiujun Yue of the Department of Nanoengineering; and Ying Jones of the Electron Microscopy Core Facility.

The UC San Diego Office of Innovation and Commercialization has filed a patent application on the use of polydopamine-based artificial melanins as an intracellular UV-shield. Companies interested in commercializing this invention should contact Skip Cynar at invent@ucsd.edu

Here’s a link to and a citation fro the paper,

Mimicking Melanosomes: Polydopamine Nanoparticles as Artificial Microparasols by
Yuran Huang, Yiwen Li, Ziying Hu, Xiujun Yue, Maria T. Proetto, Ying Jones, and Nathan C. Gianneschi. ACS Cent. Sci., Article ASAP DOI: 10.1021/acscentsci.6b00230 Publication Date (Web): May 18, 2017

Copyright © 2017 American Chemical Society

This is an open access paper,

Iridescent bird feathers inspire synthetic melanin for structural color/colour

I’m hoping one day they’ll be able to create textiles that rely on structure rather than pigment or dye for colour so my clothing will no longer fade with repeated washings and exposure to sunlight. There was one such textile, morphotex (named for the Blue Morpho butterfly, no longer produced by Japanese manufacturer Teijin but you can see a photo of the fabric which was fashioned into a dress by Australian designer Donna Sgro in my July 19, 2010 posting.

This particular project at the University of California at San Diego (UCSD), sadly, is not textile-oriented, but has resulted in a film according to a May 13, 2015 news item on ScienceDaily,

Inspired by the way iridescent bird feathers play with light, scientists have created thin films of material in a wide range of pure colors — from red to green — with hues determined by physical structure rather than pigments.

Structural color arises from the interaction of light with materials that have patterns on a minute scale, which bend and reflect light to amplify some wavelengths and dampen others. Melanosomes, tiny packets of melanin found in the feathers, skin and fur of many animals, can produce structural color when packed into solid layers, as they are in the feathers of some birds.

“We synthesized and assembled nanoparticles of a synthetic version of melanin to mimic the natural structures found in bird feathers,” said Nathan Gianneschi, a professor of chemistry and biochemistry at the University of California, San Diego. “We want to understand how nature uses materials like this, then to develop function that goes beyond what is possible in nature.”

A May 13, 2015 UCSD news release by Susan Brown (also on EurekAlert), which originated the news item, describes the inspiration and the work in more detail,

Gianneschi’s work focuses on nanoparticles that can sense and respond to the environment. He proposed the project after hearing Matthew Shawkey, a biology professor at the University of Akron, describe his work on the structural color in bird feathers at a conference. Gianneschi, Shawkey and colleagues at both universities report the fruits of the resulting collaboration in the journal ACS Nano, posted online May 12 [2015].

To mimic natural melanosomes, Yiwen Li, a postdoctoral fellow in Gianneschi’s lab, chemically linked a similar molecule, dopamine, into meshes. The linked, or polydopamine, balled up into spherical particles of near uniform size. Ming Xiao, a graduate student who works with Shawkey and polymer science professor Ali Dhinojwala at the University of Akron, dried different concentrations of the particles to form thin films of tightly packed polydopamine particles.

The films reflect pure colors of light; red, orange, yellow and green, with hue determined by the thickness of the polydopamine layer and how tightly the particles packed, which relates to their size, analysis by Shawkey’s group determined.

The colors are exceptionally uniform across the films, according to precise measurements by Dimitri Deheyn, a research scientist at UC San Diego’s Scripps Institution of Oceanography who studies how a wide variety of organisms use light and color to communicate. “This spatial mapping of spectra also tells you about color changes associated with changes in the size or depth of the particles,” Deheyn said.

The qualities of the material contribute to its potential application. Pure hue is a valuable trait in colorimetric sensors. And unlike pigment-based paints or dyes, structural color won’t fade. Polydopamine, like melanin, absorbs UV light, so coatings made from polydopamine could protect materials as well. Dopamine is also a biological molecule used to transmit information in our brains, for example, and therefore biodegradable.

“What has kept me fascinated for 15 years is the idea that one can generate colors across the rainbow through slight (nanometer scale) changes in structure,” said Shawkey whose interests range from the physical mechanisms that produce colors to how the structures grow in living organisms. “This idea of biomimicry can help solve practical problems but also enables us to test the mechanistic and developmental hypotheses we’ve proposed,” he said.

Natural melanosomes found in bird feathers vary in size and particularly shape, forming rods and spheres that can be solid or hollow. The next step is to vary the shapes of nanoparticles of polydopamine to mimic that variety to experimentally test how size and shape influence the particle’s interactions with light, and therefore the color of the material. Ultimately, the team hopes to generate a palette of biocompatible, structural color.

Here’s a link to and a citation for the paper,

Bio-Inspired Structural Colors Produced via Self-Assembly of Synthetic Melanin Nanoparticles by Ming Xiao, Yiwen Li, Michael C. Allen, Dimitri D. Deheyn, Xiujun Yue, Jiuzhou Zhao, Nathan C. Gianneschi, Matthew D. Shawkey, and Ali Dhinojwala. ACS Nano, Article ASAP DOI: 10.1021/acsnano.5b01298 Publication Date (Web): May 4, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

For anyone who’d like to explore structural colour further, there’s this Feb. 7, 2013 posting which features excerpts from and a link to an excellent article by Cristina Luiggi for The Scientist.