Tag Archives: Yoke Khin Yap

You gotta shake, shake, shake those nanomaterials out of the water

A team at Michigan Technological University (Michigan Tech) has developed a simple technique for clearing nanoparticles from water according to a Dec. 10, 2015 news item on Nanotechnology Now,

Nano implies small—and that’s great for use in medical devices, beauty products and smartphones—but it’s also a problem. The tiny nanoparticles, nanowires, nanotubes and other nanomaterials that make up our technology eventually find their way into water. The Environmental Protection Agency says more 1,300 commercial products use some kind of nanomaterial. And we just don’t know the full impact on health and the environment.

A Dec. 10, 2015 Michigan Tech news release, which originated the news item, describes the concept and the research in more detail,

“Look at plastic,” says Yoke Khin Yap, a professor of physics at Michigan Technological University. “These materials changed the world over the past decades—but can we clean up all the plastic in the ocean? We struggle to clean up meter-scale plastics, so what happens when we need to clean on the nano-scale?”

The method sounds like a salad dressing recipe: take water, sprinkle in nanomaterials, add oil and shake.

Water and oil don’t mix, of course, but shaking them together is what makes salad dressing so great. Only instead of emulsifying and capturing bits of shitake or basil in tiny olive oil bubbles, this mixture grabs nanomaterials.

Dongyan Zhang, a research professor of physics at Michigan Tech, led the experiments, which covered tests on carbon nanotubes, graphene, boron nitride nanotubes, boron nitride nanosheets and zinc oxide nanowires. Those are used in everything from carbon fiber golf clubs to sunscreen.

“These materials are very, very tiny, and that means if you try to remove them and clean them out of contaminated water, that it’s quite difficult,” Zhang says, adding that techniques like filter paper or meshes often don’t work.

What makes shaking work is the shape of one- and two-dimensional nanomaterials. As the oil and water separate after some rigorous shaking, the wires, tubes and sheets settle at the bottom of the oil, just above the water. The oils trap them. However, zero-dimensional nanomaterials, such as nanospheres do not get trapped.

The researchers, according to the news release, are attempting to anticipate the potential contamination of our water supply by nanomaterials and provide a solution before it happens,

We don’t have to wait until the final vote is in on whether nanomaterials have a positive or negative impact on people’s health and environmental health. With the simplicity of this technique, and how prolific nanomaterials are becoming, removing nanomaterials makes sense. Also, finding ways to effectively remove nanomaterials sooner rather than later could improve the technology’s market potential.

“Ideally for a new technology to be successfully implemented, it needs to be shown that the technology does not cause adverse effects to the environment,” Yap, Zhang and their co-authors write. “Therefore, unless the potential risks of introducing nanomaterials into the environment are properly addressed, it will hinder the industrialization of products incorporating nanotechnology.”

Purifying water and greening nanotechnology could be as simple as shaking a vial of water and oil.

Here’s a video about the research supplied by Michigan Tech,

Here’s a link to and a citation for the paper,

A Simple and Universal Technique To Extract One- and Two-Dimensional Nanomaterials from Contaminated Water by Bishnu Tiwari, Dongyan Zhang, Dustin Winslow, Chee Huei Lee, Boyi Hao, and Yoke Khin Yap. ACS Appl. Mater. Interfaces, 2015, 7 (47), pp 26108–26116 DOI: 10.1021/acsami.5b07542 Publication Date (Web): November 9, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Nanodiamond grow-ops possible now nanodiamonds can be made in ambient conditions

Living in a area where marijuana grow-ops are a serious issue and something to be considered when you buy your condo, house, etc. (dangerous people showing up at odd times and structural issues are amongst two of the most feared problems), an Oct. 22, 2013 news item on Azonano featuring nanodiamonds grown at almost room-level temperatures caught my attention,

Instead of having to use tons of crushing force and volcanic heat to forge diamonds, researchers at Case Western Reserve University [Case] have developed a way to cheaply make nanodiamonds on a lab bench at atmospheric pressure and near room temperature.

The nanodiamonds are formed directly from a gas and require no surface to grow on.

The discovery holds promise for many uses in technology and industry, such as coating plastics with ultrafine diamond powder and making flexible electronics, implants, drug-delivery devices and more products that take advantage of diamond’s exceptional properties.

Their investigation is published today in the scientific journal Nature Communications. The findings build on a tradition of diamond research at Case Western Reserve.

The Oct. 21, 2013 Case University press release (also on EurekAlert), which originated the news item, explaining why this discovery is so exciting and describing the technique for creating nanodiamonds without “crushing force and volcanic heat” in more detail,

Beyond its applications, the discovery may offer some insight into our universe: an explanation of how nanodiamonds seen in space and found in meteorites may be formed.

“This is not a complex process: ethanol vapor at room temperature and pressure is converted to diamond,” said Mohan Sankaran, associate professor of chemical engineering at Case Western Reserve and leader of the project. “We flow the gas through a plasma, add hydrogen and out come diamond nanoparticles. We can put this together and make them in almost any lab.”

The process for making these small “forever stones” won’t melt plastic so it is well suited for certain high-tech applications. Diamond, renowned for being hard, has excellent optical properties and the highest velocity of sound and thermal conductivity of any material.

Unlike the other form of carbon, graphite, diamond is a semiconductor, similar to silicon, which is the dominant material in the electronics industry, and gallium arsenide, which is used in lasers and other optical devices.

While the process is simple, finding the right concentrations and flows—what the researchers call the “sweet spot”—took time.

The other researchers involved were postdoctoral researcher Ajay Kumar, PhD student Pin Ann Lin, and undergraduate student Albert Xue, of Case Western Reserve; and physics professor Yoke Khin Yap and graduate student Boyi Hao, of Michigan Technological University.

Sankaran and John Angus, professor emeritus of chemical engineering, came up with the idea of growing nanodiamonds with no heat or pressure about eight years ago. Angus’ research in the 1960s and 1970s led him and others to devise a way to grow diamond films at low pressure and high temperature, a process known as chemical vapor deposition that is now used to make coatings on computer disks and razor blades. Sankaran’s specialty, meanwhile, is making nanoparticles using cool microplasmas.

It usually requires high pressures and high temperatures to convert graphite to diamond or a combination of hydrogen gas and a heated substrate to grow diamond rather than graphite.

“But at the nanoscale, surface energy makes diamond more stable than graphite,” Sankaran explained. “We thought if we could nucleate carbon clusters in the gas phase that were less than 5 nanometers, they would be diamond instead of graphite even at normal pressure and temperature.”

After several ups and downs with the effort, the process came together when Kumar joined Sankaran’s lab. The engineers produced diamond much like they’d produce carbon soot.

They first create a plasma, which is a state of matter similar to a gas but a portion is becoming charged, or ionized. A spark is an example of a plasma, but it’s hot and uncontrollable.

To get to cooler and safer temperatures, they ionized argon gas as it was pumped out of a tube a hair-width in diameter, creating a microplasma. They pumped ethanol—the source of carbon—through the microplasma, where, similar to burning a fuel, carbon breaks free from other molecules in the gas, and yields particles of 2 to 3 nanometers, small enough that they turn into diamond.

In less than a microsecond, they add hydrogen. The element removes carbon that hasn’t turned to diamond while simultaneously stabilizing the diamond particle surface.

The diamond formed is not the large perfect crystals used to make jewelry, but is a powder of diamond particles. Sankaran and Kumar are now consistently making high-quality diamonds averaging 2 nanometers in diameter.

The researchers spent about a year of testing to verify they were producing diamonds and that the process could be replicated, Kumar said. The team did different tests themselves and brought in Yap’s lab to analyze the nanoparticles by Raman spectroscopy.

Currently, nanodiamonds are made by detonating an explosive in a reactor vessel to provide heat and pressure. The diamond particles must then be removed and purified from contaminating elements massed around them. The process is quick and cheap but the nanodiamonds aggregate and are of varying size and purity.

The new research offers promising implications. Nanodiamonds, for instance, are being tested to carry drugs to tumors. Because diamond is not recognized as an invader by the immune system, it does not evoke resistance, the main reason why chemotherapy fails.

Sankaran said his nanodiamonds may offer an alternative to diamonds made by detonation methods because they are purer and smaller.

The group’s process produces three kinds of diamonds: about half are cubic, the same structure as gem diamonds, a small percentage are a form suspected of having hydrogen trapped inside and about half are lonsdaleite, a hexagonal form found in interstellar dust but rarely found on Earth.

A recent paper in the journal Physical Review Letters suggests that when interstellar dust collides, such high pressure is involved that the graphitic carbon turns into londsdaleite nanodiamonds.

Sankaran and Kumar contend that an alternative with no high pressure requirement, such as their method, should be considered, too.

“Maybe we’re making diamond in the way diamond is sometimes made in outer space,” Sankaran proposed. “Ethanol and plasmas exist in outer space, and our nanodiamonds are similar in size and structure to those found in space.”

The group is now investigating whether it can fine-tune the process to control which form of diamond is made, analyzing the structures and determining if each has different properties. Lonsdaleite, for instance, is harder than cubic diamond.

The researchers have made a kind of nanodiamond spray paint. “We can do this in a single step, by spraying the nanodiamonds as they are produced out of the plasma and purified with hydrogen, to coat a surface,” Kumar said.

“Will they be able to scale up? That’s always a crap shoot,” Angus said. “But I think it can be done, and at very high rates and cheaply. Ultimately, it may take some years to get there, but there is no theoretical reason it can’t be done.”

Here’s an image from the researchers illustrating the technique,

Caption: (Clockwise) Microplasma dissociates ethanol vapor, carbon particles are collected and dispersed in solution, and electron microscope image reveals nanosized diamond particles. Credit: Case Western Reserve University

Caption: (Clockwise) Microplasma dissociates ethanol vapor, carbon particles are collected and dispersed in solution, and electron microscope image reveals nanosized diamond particles.
Credit: Case Western Reserve University

Here’s a link to and a citation for the research paper,

Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour by Ajay Kumar, Pin Ann Lin, Albert Xue, Boyi Hao, Yoke Khin Yap, & R. Mohan Sankaran. Nature Communications 4, Article number: 2618 doi:10.1038/ncomms3618  Published 21 October 2013

This article is behind a paywall,