Tag Archives: York University

SIGGRAPH (Special Interest Group on Computer GRAPHics and Interactive Techniques) and their art gallery from Aug. 12 – 16, 2018 (making the world synthetic) in Vancouver (Canada)

While my main interest is the group’s temporary art gallery, I am providing a brief explanatory introduction and a couple of previews for SIGGRAPH 2018.

Introduction

For anyone unfamiliar with the Special Interest Group on Computer GRAPHics and Interactive Techniques (SIGGRAPH) and its conferences, from the SIGGRAPH Wikipedia entry Note: Links have been removed),

Some highlights of the conference are its Animation Theater and Electronic Theater presentations, where recently created CG films are played. There is a large exhibition floor, where several hundred companies set up elaborate booths and compete for attention and recruits. Most of the companies are in the engineering, graphics, motion picture, or video game industries. There are also many booths for schools which specialize in computer graphics or interactivity.

Dozens of research papers are presented each year, and SIGGRAPH is widely considered the most prestigious forum for the publication of computer graphics research.[1] The recent paper acceptance rate for SIGGRAPH has been less than 26%.[2] The submitted papers are peer-reviewed in a single-blind process.[3] There has been some criticism about the preference of SIGGRAPH paper reviewers for novel results rather than useful incremental progress.[4][5] …

This is the third SIGGRAPH Vancouver has hosted; the others were in 2011 and 2014.  The theme for the 2018 iteration is ‘Generations’; here’s more about it from an Aug. 2, 2018 article by Terry Flores for Variety,

While its focus is firmly forward thinking, SIGGRAPH 2018, the computer graphics, animation, virtual reality, games, digital art, mixed reality, and emerging technologies conference, is also tipping its hat to the past thanks to its theme this year: Generations. The conference runs Aug. 12-16 in Vancouver, B.C.

“In the literal people sense, pioneers in the computer graphics industry are standing shoulder to shoulder with researchers, practitioners and the future of the industry — young people — mentoring them, dabbling across multiple disciplines to innovate, relate, and grow,” says SIGGRAPH 2018 conference chair Roy C. Anthony, VP of creative development and operations at software and technology firm Ventuz. “This is really what SIGGRAPH has always been about. Generations really seemed like a very appropriate way of looking back and remembering where we all came from and how far we’ve come.”

SIGGRAPH 2018 has a number of treats in store for attendees, including the debut of Disney’s first VR film, the short “Cycles”; production sessions on the making of “Blade Runner 2049,” “Game of Thrones,” “Incredibles 2” and “Avengers: Infinity War”; as well as sneak peeks of Disney’s upcoming “Ralph Breaks the Internet: Wreck-It Ralph 2” and Laika’s “Missing Link.”

That list of ‘treats’ in the last paragraph makes the conference seem more like an iteration of a ‘comic-con’ than a technology conference.

Previews

I have four items about work that will be presented at SIGGRAPH 2018, First up, something about ‘redirected walking’ from a June 18, 2018 Association for Computing Machinery news release on EurekAlert,

CHICAGO–In the burgeoning world of virtual reality (VR) technology, it remains a challenge to provide users with a realistic perception of infinite space and natural walking capabilities in the virtual environment. A team of computer scientists has introduced a new approach to address this problem by leveraging a natural human phenomenon: eye blinks.

All humans are functionally blind for about 10 percent of the time under normal circumstances due to eye blinks and saccades, a rapid movement of the eye between two points or objects. Eye blinks are a common and natural cause of so-called “change blindness,” which indicates the inability for humans to notice changes to visual scenes. Zeroing in on eye blinks and change blindness, the team has devised a novel computational system that effectively redirects the user in the virtual environment during these natural instances, all with undetectable camera movements to deliver orientation redirection.

“Previous RDW [redirected walking] techniques apply rotations continuously while the user is walking. But the amount of unnoticeable rotations is limited,” notes Eike Langbehn, lead author of the research and doctoral candidate at the University of Hamburg. “That’s why an orthogonal approach is needed–we add some additional rotations when the user is not focused on the visuals. When we learned that humans are functionally blind for some time due to blinks, we thought, ‘Why don’t we do the redirection during eye blinks?'”

Human eye blinks occur approximately 10 to 20 times per minute, about every 4 to 19 seconds. Leveraging this window of opportunity–where humans are unable to detect major motion changes while in a virtual environment–the researchers devised an approach to synchronize a computer graphics rendering system with this visual process, and introduce any useful motion changes in virtual scenes to enhance users’ overall VR experience.

The researchers’ experiments revealed that imperceptible camera rotations of 2 to 5 degrees and translations of 4 to 9 cm of the user’s viewpoint are possible during a blink without users even noticing. They tracked test participants’ eye blinks by an eye tracker in a VR head-mounted display. In a confirmatory study, the team validated that participants could not reliably detect in which of two eye blinks their viewpoint was manipulated while walking a VR curved path. The tests relied on unconscious natural eye blinking, but the researchers say redirection during blinking could be carried out consciously. Since users can consciously blink multiple times a day without much effort, eye blinks provide great potential to be used as an intentional trigger in their approach.

The team will present their work at SIGGRAPH 2018, held 12-16 August in Vancouver, British Columbia. The annual conference and exhibition showcases the world’s leading professionals, academics, and creative minds at the forefront of computer graphics and interactive techniques.

“RDW is a big challenge since current techniques still need too much space to enable unlimited walking in VR,” notes Langbehn. “Our work might contribute to a reduction of space since we found out that unnoticeable rotations of up to five degrees are possible during blinks. This means we can improve the performance of RDW by approximately 50 percent.”

The team’s results could be used in combination with other VR research, such as novel steering algorithms, improved path prediction, and rotations during saccades, to name a few. Down the road, such techniques could some day enable consumer VR users to virtually walk beyond their living room.

Langbehn collaborated on the work with Frank Steinicke of University of Hamburg, Markus Lappe of University of Muenster, Gregory F. Welch of University of Central Florida, and Gerd Bruder, also of University of Central Florida. For the full paper and video, visit the team’s project page.

###

About ACM, ACM SIGGRAPH, and SIGGRAPH 2018

ACM, the Association for Computing Machinery, is the world’s largest educational and scientific computing society, uniting educators, researchers, and professionals to inspire dialogue, share resources, and address the field’s challenges. ACM SIGGRAPH is a special interest group within ACM that serves as an interdisciplinary community for members in research, technology, and applications in computer graphics and interactive techniques. SIGGRAPH is the world’s leading annual interdisciplinary educational experience showcasing the latest in computer graphics and interactive techniques. SIGGRAPH 2018, marking the 45th annual conference hosted by ACM SIGGRAPH, will take place from 12-16 August at the Vancouver Convention Centre in Vancouver, B.C.

They have provided an image illustrating what they mean (I don’t find it especially informative),

Caption: The viewing behavior of a virtual reality user, including fixations (in green) and saccades (in red). A blink fully suppresses visual perception. Credit: Eike Langbehn

Next up (2), there’s Disney Corporation’s first virtual reality (VR) short, from a July 19, 2018  Association for Computing Machinery news release on EurekAlert,

Walt Disney Animation Studios will debut its first ever virtual reality short film at SIGGRAPH 2018, and the hope is viewers will walk away feeling connected to the characters as equally as they will with the VR technology involved in making the film.

Cycles, an experimental film directed by Jeff Gipson, centers around the true meaning of creating a home and the life it holds inside its walls. The idea for the film is personal, inspired by Gipson’s childhood spending time with his grandparents and creating memories in their home, and later, having to move them to an assisted living residence.

“Every house has a story unique to the people, the characters who live there,” says Gipson. “We wanted to create a story in this single place and be able to have the viewer witness life happening around them. It is an emotionally driven film, expressing the real ups and downs, the happy and sad moments in life.”

For Cycles, Gipson also drew from his past life as an architect, having spent several years designing skate parks, and from his passion for action sports, including freestyle BMX. In Los Angeles, where Gipson lives, it is not unusual to find homes with an empty swimming pool reserved for skating or freestyle biking. Part of the pitch for Cycles came out of Gipson’s experience riding in these empty pools and being curious about the homes attached to them, the families who lived there, and the memories they made.

SIGGRAPH attendees will have the opportunity to experience Cycles at the Immersive Pavilion, a new space for this year’s conference. The Pavilion is devoted exclusively to virtual, augmented, and mixed reality and will contain: the VR Theater, a storytelling extravaganza that is part of the Computer Animation Festival; the Vrcade, a space for VR, AR, and MR games or experiences; and the well-known Village, for showcasing large-scale projects. SIGGRAPH 2018, held 12-16 August in Vancouver, British Columbia, is an annual gathering that showcases the world’s leading professionals, academics, and creative minds at the forefront of computer graphics and interactive techniques.

The production team completed Cycles in four months with about 50 collaborators as part of a professional development program at the studio. A key difference in VR filmmaking includes getting creative with how to translate a story to the VR “screen.” Pre-visualizing the narrative, for one, was a challenge. Rather than traditional storyboarding, Gipson and his team instead used a mix of Quill VR painting techniques and motion capture to “storyboard” Cycles, incorporating painters and artists to generate sculptures or 3D models of characters early on and draw scenes for the VR space. The creators also got innovative with the use of light and color saturation in scenes to help guide the user’s eyes during the film.

“What’s cool for VR is that we are really on the edge of trying to figure out what it is and how to tell stories in this new medium,” says Gipson. “In VR, you can look anywhere and really be transported to a different world, experience it from different angles, and see every detail. We want people watching to feel alive and feel emotion, and give them a true cinematic experience.”

This is Gipson’s VR directorial debut. He joined Walt Disney Animation Studios in 2013, serving as a lighting artist on Disney favorites like Frozen, Zootopia, and Moana. Of getting to direct the studio’s first VR short, he says, “VR is an amazing technology and a lot of times the technology is what is really celebrated. We hope more and more people begin to see the emotional weight of VR films, and with Cycles in particular, we hope they will feel the emotions we aimed to convey with our story.”

Apparently this is a still from the ‘short’,

Caption: Disney Animation Studios will present ‘Cycles’ , its first virtual reality (VR) short, at ACM SIGGRAPH 2018. Credit: Disney Animation Studios

There’s also something (3) from Google as described in a July 26, 2018 Association of Computing Machinery news release on EurekAlert,

Google has unveiled a new virtual reality (VR) immersive experience based on a novel system that captures and renders high-quality, realistic images from the real world using light fields. Created by a team of leading researchers at Google, Welcome to Light Fields is the tech giant’s splash into the nascent arena of light fields VR experiences, an exciting corner of VR video technology gaining traction for its promise to deliver extremely high-quality imagery and experiences in the virtual world.

Google released Welcome to Light Fields earlier this year as a free app on Steam VR for HTC Vive, Oculus Rift, and Windows Mixed Reality headsets. The creators will demonstrate the VR experience at SIGGRAPH 2018, in the Immersive Pavilion, a new space for this year’s conference. The Pavilion is devoted exclusively to virtual, augmented, and mixed reality and will contain: the Vrcade, a space for VR, AR, and MR games or experiences; the VR Theater, a storytelling extravaganza that is part of the Computer Animation Festival; and the well-known Village, for showcasing large-scale projects. SIGGRAPH 2018, held 12-16 August in Vancouver, British Columbia, is an annual gathering that showcases the world’s leading professionals, academics, and creative minds at the forefront of computer graphics and interactive techniques.

Destinations in Welcome to Light Fields include NASA’s Space Shuttle Discovery, delivering to viewers an astronaut’s view inside the flight deck, which has never been open to the public; the pristine teak and mahogany interiors of the Gamble House, an architectural treasure in Pasadena, CA; and the glorious St. Stephen’s Church in Granada Hills, CA, home to a stunning wall of more than 14,000 pieces of glimmering stained glass.

“I love that light fields in VR can teleport you to exotic places in the real world, and truly make you believe you are there,” says Ryan Overbeck, software engineer at Google who co-led the project. “To me, this is magic.”

To bring this experience to life, Overbeck worked with a team that included Paul Debevec, senior staff engineer at Google, who managed the project and led the hardware piece with engineers Xueming Yu, Jay Busch, and Graham Fyffe. With Overbeck, Daniel Erickson and Daniel Evangelakos focused on the software end. The researchers designed a comprehensive system for capturing and rendering high-quality, spherical light field still images from footage captured in the real world. They developed two easy-to-use light field camera rigs, based on the GoPro Hero4action sports camera, that efficiently capture thousands of images on the surface of a sphere. Those images were then passed through a cloud-based light-field-processing pipeline.

Among other things, explains Overbeck, “The processing pipeline uses computer vision to place the images in 3D and generate depth maps, and we use a modified version of our vp9 video codec

to compress the light field data down to a manageable size.” To render a light field dataset, he notes, the team used a rendering algorithm that blends between the thousands of light field images in real-time.

The team relied on Google’s talented pool of engineers in computer vision, graphics, video compression, and machine learning to overcome the unique challenges posed in light fields technology. They also collaborated closely with the WebM team (who make the vp9 video codec) to develop the high-quality light field compression format incorporated into their system, and leaned heavily on the expertise of the Jump VR team to help pose the images and generate depth maps. (Jump is Google’s professional VR system for achieving 3D-360 video production at scale.)

Indeed, with Welcome to Light Fields, the Google team is demonstrating the potential and promise of light field VR technology, showcasing the technology’s ability to provide a truly immersive experience with a level of unmatched realism. Though light fields technology has been researched and explored in computer graphics for more than 30 years, practical systems for actually delivering high-quality light field experiences has not yet been possible.

Part of the team’s motivation behind creating this VR light field experience is to invigorate the nascent field.

“Welcome to Light Fields proves that it is now possible to make a compelling light field VR viewer that runs on consumer-grade hardware, and we hope that this knowledge will encourage others to get involved with building light field technology and media,” says Overbeck. “We understand that in order to eventually make compelling consumer products based on light fields, we need a thriving light field ecosystem. We need open light field codecs, we need artists creating beautiful light field imagery, and we need people using VR in order to engage with light fields.”

I don’t really understand why this image, which looks like something belongs on advertising material, would be chosen to accompany a news release on a science-based distribution outlet,

Caption: A team of leading researchers at Google, will unveil the new immersive virtual reality (VR) experience “Welcome to Lightfields” at ACM SIGGRAPH 2018. Credit: Image courtesy of Google/Overbeck

Finally (4), ‘synthesizing realistic sounds’ is announced in an Aug. 6, 2018 Stanford University (US) news release (also on EurekAlert) by Taylor Kubota,

Advances in computer-generated imagery have brought vivid, realistic animations to life, but the sounds associated with what we see simulated on screen, such as two objects colliding, are often recordings. Now researchers at Stanford University have developed a system that automatically renders accurate sounds for a wide variety of animated phenomena.

“There’s been a Holy Grail in computing of being able to simulate reality for humans. We can animate scenes and render them visually with physics and computer graphics, but, as for sounds, they are usually made up,” said Doug James, professor of computer science at Stanford University. “Currently there exists no way to generate realistic synchronized sounds for complex animated content, such as splashing water or colliding objects, automatically. This fills that void.”

The researchers will present their work on this sound synthesis system as part of ACM SIGGRAPH 2018, the leading conference on computer graphics and interactive techniques. In addition to enlivening movies and virtual reality worlds, this system could also help engineering companies prototype how products would sound before being physically produced, and hopefully encourage designs that are quieter and less irritating, the researchers said.

“I’ve spent years trying to solve partial differential equations – which govern how sound propagates – by hand,” said Jui-Hsien Wang, a graduate student in James’ lab and in the Institute for Computational and Mathematical Engineering (ICME), and lead author of the paper. “This is actually a place where you don’t just solve the equation but you can actually hear it once you’ve done it. That’s really exciting to me and it’s fun.”

Predicting sound

Informed by geometry and physical motion, the system figures out the vibrations of each object and how, like a loudspeaker, those vibrations excite sound waves. It computes the pressure waves cast off by rapidly moving and vibrating surfaces but does not replicate room acoustics. So, although it does not recreate the echoes in a grand cathedral, it can resolve detailed sounds from scenarios like a crashing cymbal, an upside-down bowl spinning to a stop, a glass filling up with water or a virtual character talking into a megaphone.

Most sounds associated with animations rely on pre-recorded clips, which require vast manual effort to synchronize with the action on-screen. These clips are also restricted to noises that exist – they can’t predict anything new. Other systems that produce and predict sounds as accurate as those of James and his team work only in special cases, or assume the geometry doesn’t deform very much. They also require a long pre-computation phase for each separate object.

“Ours is essentially just a render button with minimal pre-processing that treats all objects together in one acoustic wave simulation,” said Ante Qu, a graduate student in James’ lab and co-author of the paper.

The simulated sound that results from this method is highly detailed. It takes into account the sound waves produced by each object in an animation but also predicts how those waves bend, bounce or deaden based on their interactions with other objects and sound waves in the scene.

Challenges ahead

In its current form, the group’s process takes a while to create the finished product. But, now that they have proven this technique’s potential, they can focus on performance optimizations, such as implementing their method on parallel GPU hardware, that should make it drastically faster.

And, even in its current state, the results are worth the wait.

“The first water sounds we generated with the system were among the best ones we had simulated – and water is a huge challenge in computer-generated sound,” said James. “We thought we might get a little improvement, but it is dramatically better than previous approaches even right out of the box. It was really striking.”

Although the group’s work has faithfully rendered sounds of various objects spinning, falling and banging into each other, more complex objects and interactions – like the reverberating tones of a Stradivarius violin – remain difficult to model realistically. That, the group said, will have to wait for a future solution.

Timothy Langlois of Adobe Research is a co-author of this paper. This research was funded by the National Science Foundation and Adobe Research. James is also a professor, by courtesy, of music and a member of Stanford Bio-X.

Researchers Timothy Langlois, Doug L. James, Ante Qu and Jui-Hsien Wang have created a video featuring highlights of animations with sounds synthesized using the Stanford researchers’ new system.,

The researchers have also provided this image,

By computing pressure waves cast off by rapidly moving and vibrating surfaces – such as a cymbal – a new sound synthesis system developed by Stanford researchers can automatically render realistic sound for computer animations. (Image credit: Timothy Langlois, Doug L. James, Ante Qu and Jui-Hsien Wang)

It does seem like we’re synthesizing the world around us, eh?

The SIGGRAPH 2018 art gallery

Here’s what SIGGRAPH had to say about its 2018 art gallery in Vancouver and the themes for the conference and the gallery (from a May 18, 2018 Associating for Computing Machinery news release on globalnewswire.com (also on this 2018 SIGGRAPH webpage),

SIGGRAPH 2018, the world’s leading showcase of digital art created using computer graphics and interactive techniques, will present a special Art Gallery, entitled “Origins,” and historic Art Papers in Vancouver, B.C. The 45th SIGGRAPH conference will take place 12–16 August at the Vancouver Convention Centre. The programs will also honor the generations of creators that have come before through a special, 50th anniversary edition of the Leonard journal. To register for the conference, visit S2018.SIGGRAPH.ORG.

The SIGGRAPH 2018 ART GALLERY is a curated exhibition, conceived as a dialogical space that enables the viewer to reflect on man’s diverse cultural values and rituals through contemporary creative practices. Building upon an exciting and eclectic selection of creative practices mediated through technologies that represent the sophistication of our times, the SIGGRAPH 2018 Art Gallery will embrace the narratives of the indigenous communities based near Vancouver and throughout Canada as a source of inspiration. The exhibition will feature contemporary media artworks, art pieces by indigenous communities, and other traces of technologically mediated Ludic practices.

Andrés Burbano, SIGGRAPH 2018 Art Gallery chair and professor at Universidad de los Andes, said, “The Art Gallery aims to articulate myth and technology, science and art, the deep past and the computational present, and will coalesce around a theme of ‘Origins.’ Media and technological creative expressions will explore principles such as the origins of the cosmos, the origins of life, the origins of human presence, the origins of the occupation of territories in the Americas, and the origins of people living in the vast territories of the Arctic.”

He continued, “The venue [in Vancouver] hopes to rekindle the original spark that ignited the collaborative spirit of the SIGGRAPH community of engineers, scientists, and artists, who came together to create the very first conference in the early 1970s.”

Highlights from the 2018 Art Gallery include:

Transformation Mask (Canada) [Technology Based]
Shawn Hunt, independent; and Microsoft Garage: Andy Klein, Robert Butterworth, Jonathan Cobb, Jeremy Kersey, Stacey Mulcahy, Brendan O’Rourke, Brent Silk, and Julia Taylor-Hell, Microsoft Vancouver

TRANSFORMATION MASK is an interactive installation that features the Microsoft HoloLens. It utilizes electronics and mechanical engineering to express a physical and digital transformation. Participants are immersed in spatial sounds and holographic visuals.

Somnium (U.S.) [Science Based]
Marko Peljhan, Danny Bazo, and Karl Yerkes, University of California, Santa Barbara

Somnium is a cybernetic installation that provides visitors with the ability to sensorily, cognitively, and emotionally contemplate and experience exoplanetary discoveries, their macro and micro dimensions, and the potential for life in our Galaxy. Some might call it “space telescope.”

Ernest Edmonds Retrospective – Art Systems 1968-2018 (United Kingdom) [History Based]
Ernest Edmonds, De Montfort University

Celebrating one of the pioneers of computer graphics-based art since the early 1970s, this Ernest Edmonds career retrospective will showcase snapshots of Edmonds’ work as it developed over the years. With one piece from each decade, the retrospective will also demonstrate how vital the Leonardo journal has been throughout the 50-year journey.

In addition to the works above, the Art Gallery will feature pieces from notable female artists Ozge Samanci, Ruth West, and Nicole L’Hullier. For more information about the Edmonds retrospective, read THIS POST ON THE ACM SIGGRAPH BLOG.

The SIGGRAPH 2018 ART PAPERS program is designed to feature research from artists, scientists, theorists, technologists, historians, and more in one of four categories: project description, theory/criticism, methods, or history. The chosen work was selected by an international jury of scholars, artists, and immersive technology developers.

To celebrate the 50th anniversary of LEONARDO (MIT Press), and 10 years of its annual SIGGRAPH issue, SIGGRAPH 2018 is pleased to announce a special anniversary edition of the journal, which will feature the 2018 art papers. For 50 years, Leonardo has been the definitive publication for artist-academics. To learn more about the relationship between SIGGRAPH and the journal, listen to THIS EPISODE OF THE SIGGRAPH SPOTLIGHT PODCAST.

“In order to encourage a wider range of topics, we introduced a new submission type, short papers. This enabled us to accept more content than in previous years. Additionally, for the first time, we will introduce sessions that integrate the Art Gallery artist talks with Art Papers talks, promoting richer connections between these two creative communities,” said Angus Forbes, SIGGRAPH 2018 Art Papers chair and professor at University of California, Santa Cruz.

Art Papers highlights include:

Alienating the Familiar with CGI: A Recipe for Making a Full CGI Art House Animated Feature [Long]
Alex Counsell and Paul Charisse, University of Portsmouth

This paper explores the process of making and funding an art house feature film using full CGI in a marketplace where this has never been attempted. It explores cutting-edge technology and production approaches, as well as routes to successful fundraising.

Augmented Fauna and Glass Mutations: A Dialogue Between Material and Technique in Glassblowing and 3D Printing [Long]
Tobias Klein, City University of Hong Kong

The two presented artworks, “Augmented Fauna” and “Glass Mutations,” were created during an artist residence at the PILCHUCK GLASS SCHOOL. They are examples of the qualities and methods established through a synthesis between digital workflows and traditional craft processes and thus formulate the notion of digital craftsmanship.

Inhabitat: An Imaginary Ecosystem in a Children’s Science Museum [Short]
Graham Wakefield, York University, and Haru Hyunkyung Ji, OCAD University

“Inhabitat” is a mixed reality artwork in which participants become part of an imaginary ecology through three simultaneous perspectives of scale and agency; three distinct ways to see with other eyes. This imaginary world was exhibited at a children’s science museum for five months, using an interactive projection-augmented sculpture, a large screen and speaker array, and a virtual reality head-mounted display.

What’s the what?

My father used to say that and I always assumed it meant summarize the high points, if you need to, and get to the point—fast. In that spirit, I am both fascinated and mildly appalled. The virtual, mixed, and augmented reality technologies, as well as, the others being featured at SIGGRAPH 2018 are wondrous in many ways but it seems we are coming ever closer to a world where we no longer interact with nature or other humans directly. (see my August 10, 2018 posting about the ‘extinction of experience’ for research that encourages more direct interaction with nature) I realize that SIGGRAPH is intended as a primarily technical experience but I think a little more content questioning these technologies and their applications (social implications) might be in order. That’s often the artist’s role but I can’t see anything in the art gallery descriptions that hint at any sort of fundamental critique.

Ingenuity Lab (a nanotechnology initiative), the University of Alberta, and Carlo Montemagno—what is happening in Canadian universities? (1 of 2)

I was not expecting to come back to the Carlo Montemagno ‘affair’ after my March 5, 2018 posting but it seems this story about a nanotechnology laboratory (Ingenuity Lab) in Alberta and the lab’s leader, Dr. Carlo Montemagno and his hurried departure for a position at Southern Illinois University (SIU) as Chancellor in summer 2017 has legs. It also hints at some issue within Canadian higher education.

Set up

I noted at the time of my posting, that no one in Illinois seemed to be aware that Montemagno had obtained employment for his daughter and son-in-law at the University of Alberta just as he did at SIU when he later moved there. I also noted the pay cut Montemagno took when he moved to Illinois. Both of these facts have since come to light in Illinois and are mentioned in an April 10, 2018 article by Anna Spoerre for SIU’s student paper, the Daily Egyptian.

Before moving onto the latest, I was hoping they’d be able to salvage something from the wreckage in Alberta (from my March 5, 2018 posting),

As for the Ingenuity Lab, perhaps we’ll hear more about their Carbon transformation programme later this year (2018). Unfortunately, the current webpage does not have substantive updates. There are some videos but they seem more like wistful thinking than real life projects.

If they are cleaning up a mess and this looks like it might be the case, I hope they’re successful and can move forward with their projects. [emphases mine] I would like to hear more about the Ingenuity Lab in the future.

Tragedy and comedy

Sadly, it seems the Ingenuity Lab is in the process of being mothballed (from Spoerre’s April 10, 2018 article),

Nine months after Carlo Montemagno left a position as director of Ingenuity Lab to assume the chancellorship at SIU’s Carbondale campus, some members of the Alberta community are still picking up the pieces of what they call a failed project brought to life and then abandoned by its director.

Ingenuity Lab was established in 2012 by the government of Alberta in partnership with the University of Alberta and Alberta Innovates to conduct nanotechnology research related to health, environment, energy and agriculture.

Though a reason was not explicitly given, funding for the lab will be cut this year [2018; emphasis mine] following a review of the lab’s operations.

In June 2017, a review of Ingenuity Lab was authorized. [emphasis mine] The process wrapped up in September [2017] as part of a review of all Alberta Innovates funded programs, said Robert Semeniul, the new media specialist at Alberta Innovates.

Montemagno announced his relocation to SIU shortly after the review got under way. [emphasis mine] Meanwhile, an interim director — Murray Gray — was appointed by the university to redirect the initiative, Semeniul said.

“I was looking for an institutional leadership position that presented new challenges and opportunities — where there was work to be done and I could make a difference,” Montemagno said of leaving Alberta for Illinois. “I also missed interacting and working directly with students.”

“This was supposed to generate incredible amounts of economic activity,” said a former researcher at the former National Institute for Nanotechnology who had experience in the lab. “After awhile — three or four years — people were astonished at the lack of anything coming out of this lab, out of this giant pile of money that was being spent.”

Montemagno said through ground-breaking research the lab attracted external grant funding, including $9 million the last year he ran the lab. [As far as I can tell, as per an Ingenuity Lab news release mentioned in my March 5, 2018 posting, there was a $1.7M from Natural Resources Canada. It was the only grant announced when I was looking in March 2018. Where did the $9M come from?]

The final review has not been made public. Gray did not respond to requests for comment.

Keeping family close

In early April [2018] in Edmonton the remnants of the Ingenuity Lab were gradually erased from the Nanotechnology Research Center on the University of Alberta’s campus.

A nametag pinned to a cubicle wall there displayed the name Kyle Minor, Montemagno’s nephew, and graduate student and project leader in his uncle’s lab.

Minor was one of three family members Montemagno employed at Ingenuity Lab. [emphasis mine] Montemagno’s daughter, Melissa Germain, and son-in-law, Jeffrey Germain, (both of whom are now employed at SIU) were also given jobs at the lab in Canada. The possibility of the Germains’ employment was mentioned in Montemagno’s hiring contract in Alberta.

“I can see why the people who hired [Montemagno] liked him, because he has a charismatic presence and he says the right things to the people he is speaking to,” a previous research associate at the lab said.

Montemagno was brought to the university of Alberta in 2012 with an annual salary of $500,000, almost $400,000 in U.S. currency at Tuesday’s exchange rate. He also received a $1,000,000 interest-free housing loan, according to his employment paperwork. [emphasis mine]

“Your intention to employ, through funding available under the NEBSL Accelerator initiative, your son-in-law and daughter in positions commensurate with their education and experience is acknowledged,” Montemagno’s contract read.

The contract, which purported to follow the University’s “Employment Policy” and “Managing Conflict of Interest in Employment Procedure” was signed by David Lynch, Alberta’s [sic] dean of engineering at the time of the hire. Lynch did not respond to requests for comment.

According to emails obtained through public information requests, there was a personal agreement between Lynch and Montemagno that the expenses for the immigration costs for him and his family would also be covered. [emphasis mine]

“On occasion, the recruitment of specialized faculty members includes a provision for the hiring of a family member into a position commensurate with their education and experience, and subject to our recruitment policy, [emphasis mine]” said Kiann McNeill, spokesman for the University of Alberta.

In addition to what seems to be an extraordinarily high salary ($500,000 + per year) and hiring his family (three of them per the Daily Egyptian’s Anna Spoerre as opposed to the two mentioned in my March 2018 post) to work in his lab, Montemagno got a $1M interest-free loan (this is not entirely correct, the CBC article, which follows, downgrades that number as you’ll see in the 2nd excerpt) and had his and his family’s immigration expenses covered. Is this standard hiring practice in the academic field? Given the failure to get a response from an individual (David Lynch, the University of Alberta’s then dean of engineering) who would have been involved, the answer would seem to be ‘no’.

Please do read the rest of Spoerre’s article and, if you have a little more time,  the comments. It should be noted that there seem to be a couple of problems with details. The one noted here is the issue around the loan and, in the article, she states that the National Institute of Nanotechnology has been renamed to Nanotechnology Research Center. After changing ‘center’ to ‘centre’ in my search term, I found this site, which bears yet another name, NRC-UAlberta Nanotechnology Initiative. Should I ever find out what is going with Canada’s national nanotechnology institution, it will be the subject of another posting. [ETA June 20, 2018: I was finally able to untangle the mess (see my June 20, 2018 posting). Spoerre is unlikely to have been following the ‘National Institute of Nanotechnology story’ as I have and missed the ‘downsizing/rebranding exercise’ that had taken place. Also, that particular detail was largely irrelevant to her story.]

The Canadian Broadcasting Corporation (CBC) also covered the situation in an April 10, 2018 online article by Charles Rusnell and Jennie Russell,

The University of Alberta recruited star American nanotechnology researcher [emphasis mine] Carlo Montemagno in 2012 by agreeing to his condition that it hire his daughter and son-in-law to work in his laboratory — in addition to his $500,000 a year salary.

Documents obtained through freedom of information by CBC News show the university offered jobs to Jeff and Melissa Germain, for which the couple were not required to formally apply.

In addition to leading the Ingenuity Lab at the U of A, he also served as director of the biomaterials program for the Canada Research Council’s National Institute for Nanotechnology and was its research chair in intelligent nanosystems.

The university recruited Montemagno from the University of Cincinnati, where he was the founding dean of the College of Engineering and Applied Sciences.

An internal U of A document shows Montemagno sought the nepotism hires in Alberta because he wanted to continue the same arrangement he had at the University of Cincinnati.

It is the same deal he again negotiated when he left Alberta in 2017 to become chancellor of Southern Illinois University – Carbondale (SIU).

In January [2018], the university’s student newspaper, The Daily Egyptian, revealed SIU hired the Germains into jobs which were not advertised. Those hirings are now the subject of a state investigation.

Here’s where it gets interesting (from CBC’s April 10, 2018 online article),

The internal University of Alberta documents reveal:

  • The university appears to have allowed Montemagno to help write son-in-law Jeff Germain’s job description [emphasis mine] as laboratory manager. An early draft of the job description shows a master’s degree as a minimum educational requirement. It was later downgraded to a bachelor’s degree. Germain has a bachelor’s degree in biology but had significant experience as a lab manager.
  • The university agreed to pay Jeff Germain a “market supplement” of more than $25,000 [emphasis mine]. Added to his base salary of nearly $95,000, that raised his total yearly salary to $120,000 a year, not including benefits. Germain was later promoted to director of operations for the Ingenuity Lab.
  • The engineering faculty also hired Montemagno’s daughter, Melissa Germain, as a “laboratory technician” in chemical and materials engineering, the same area as her husband. For 24 hours a week, her starting salary was nearly $3,500 a month. [emphases mine]While officially employed as a lab tech, Melissa Germain’s LinkedIn profile states she worked as a copy editor. She was later promoted to a full-time position as communications director and paid nearly $6,000 a month. According to her LinkedIn account, she has a bachelor’s degree in geology. [emphases mine]
  • ​The university also initially offered Montemagno an interest-free $1.4-million loan to buy a house. That provision was later changed to an interest-free $100,000 loan [emphases mine] and the reimbursement of any mortgage or line of credit interest fees used for a downpayment, provided the cost of the house was not more than $1.4 million. The loan had to be repaid as soon as Montemagno sold his house in Ohio or by June 30, 2017, whichever came first.

(sigh of relief) At least, it wasn’t a $1M loan. One other thought, was the loan repaid? Also, I checked (see here [accessed April 18, 2018]) for the standard salary scale for communications specialists in Canada and Melissa Germain’s roughly $72,000/year is on the high end of the scale, $73,000 being at the top. Presumably, you’d need a lot of experience and, hopefully, some training for the top salary.

Ethics, anyone?

CBC soldiered on and found an ethics expert (perhaps the University of Alberta needs someone?), from (from CBC’s April 10, 2018 online article),

Hiring spouses who are themselves academics is not uncommon in higher education, said Richard Leblanc, an expert in ethics and governance at York University in Toronto. But Leblanc said hiring a child and their spouse is “very, very strange. Very anomalous.”

“You want merit-based hiring and merit-based student applications, and not on the basis of favouritism or conflicts of interest,” he said.

“You want completely even-handed treatment of staff, of faculty, and of students. And something like this could reveal a culture of, in fact, inequitable treatment, which could be very damaging for a university.”

Leblanc also said the university should not be offering loans.

“Unless you are a financial institution — which the university is not, the university has public taxpayer money and the public trust — so offering an interest-free loan for anybody, any faculty member, is highly anomalous, for obvious reasons,” Leblanc said.

“I mean, that’s not what the university does and it is a conflict of interest because you don’t have the ability to let that person go. You are sort of beholden to that person and it is just not a proper use of scarce funding and taxpayer resources, to offer an interest-free loan. It is very strange.”

But the university’s new dean of engineering, Fraser Forbes, strongly defended the hirings, insisting there was no nepotism involved. [emphases mine]

Just in case some of us might not agree with Forbes, he notes this, (from CBC’s April 10, 2018 online article),

Forbes said the Germains were not paid with university operating funds. Instead, Forbes said they were paid with funds provided to the university by the province and federal government for nanotechnology research. [emphases mine]

I feel ever so much better.

The Province of Alberta did have something to say about this, eventually (from CBC’s April 10, 2018 online article),

The University of Alberta said Wednesday [April 11, 2018] it will review its conflict of interest policy in light of news that a former employee six years ago had requested family members be hired in a process that was not rigorously documented.

Last month [March 2018], Alberta Advanced Education Minister Marlin Schmidt [emphasis mine] sharply criticized University of Alberta president David Turpin’s $824,000 total compensation in the context of a four-per-cent budget cut, and increases in tuition for international students and student-residence rates.

Schmidt refused an interview request from CBC News for this story. His press secretary said Schmidt had no time in his schedule over several days to accommodate a 10-minute interview.

But at a media availability Tuesday [April 10, 2018] on new rules to limit salaries of university and college presidents, Schmidt was asked about Montemagno’s deal to hire his daughter and son-in-law.

“No, nepotism has no place in any public agency,” Schmidt said.

It’s good to know Schmidt’s stance on this and perhaps there will be some action taken over what seems to be a blatant failure to curb nepotism at the now largely defunct (no website but they still have a Facebook and Twitter presence) Ingenuity Lab.

Since the April 10, 2018 online article, the University of Alberta has pleaded guilty in the court of public opinion and admitted to the conflicts of interest in the Montemagno affair, from an April 11, 2018 article by Juris Garvey for the Edmonton Journal,

While the university was in no way “contractually obligated” to hire family members, it may have done so against its own conflict of interest policy. [emphasis mine]

Deputy provost Wendy Rogers said Wednesday there is nothing unusual about post-secondary institutes hiring people from the same family. But their policies say family members are not allowed to be involved in the hiring of other family, develop job descriptions, supervise them or make recommendations for their pay.

Emails show university staff recommended Montemagno write the position description for the job intended for Jeffrey Germain, and an organizational chart shows Jeffrey Germain reported directly to Montemagno for the first two years.

Of greatest concern, however, is that the university acknowledged there was “no record of an advertisement for the position … nor records of the hiring process” for Jeffrey Germain.

“We cannot confirm whether or not the appropriate procedure governing conflict of interest was initially followed,” the university said in a statement posted to its website Tuesday [April 10,2018].

Had we received a complaint about this at any time while Dr. Montemagno was employed here, it would have been fully investigated.” [emphasis mine]

Yes, I can imagine the number of people stepping forward to make a complaint. They were certainly eager to be interviewed for Spoerre’s April 10, 2018 article,

The former research associate was one of 11 people interviewed in Edmonton for this story who spoke on condition of anonymity out of fear of harming their careers.

Part 2

Emergence in Toronto and Ottawa and brains in Vancouver (Canada): three April 2018 events

April 2018 is shaping up to be quite the month where art/sci events are concerned. I just published a March 27, 2018 posting titled ‘Curiosity collides with the quantum and with the Science Writers and Communicators of Canada in Vancouver (Canada)‘ and I’ve now received news about more happenings in Toronto and Ottawa.  Plus, there’s a science-themed meeting organized by ARPICO (Society of Italian Researchers &; Professionals in Western Canada) featuring brains and brain imaging in Vancouver.

Toronto’s and Ottawa’s Emergence

There’s an art/sci exhibit opening, from a March 27, 2018 Art/Sci Salon announcement (received via email),

You are invited!

FaceBook event:

The Oakwood Village Library and Arts Centre event:

341 Oakwood Avenue, Toronto, ON  M6E 2W1

I check the library webpage listed in the above and found this artist’s statement,

Artist / Scientist Statement [Stephen Morris]

I am interested in self-organized, emergent patterns and textures. I make images of patterns both from the natural world and of experiments in my laboratory in the Department of Physics at the University of Toronto. Patterns naturally attract casual attention but are also the subject of serious scientific research. Some things just evolve all by themselves into strikingly regular shapes and textures. Why? These shapes emerge spontaneously from a dynamic process of growing, folding, cracking, wrinkling, branching, flowing and other kinds of morphological development. My photos are informed by the scientific aesthetic of nonlinear physics, and celebrate the subtle interplay of order and complexity in emergent patterns. They are a kind of “Scientific Folk Art” of the science of Emergence.

While the official opening is April 5, 2018, the event itself runs from April 1 – 30, 2018.

Next, there’s another March 27, 2018 announcement (received via email) from the Art/Sci Salon but this one concerns a series of talks about ’emergence’, Note: Some of the event information was a little difficult to decipher so I’ve added a note to the relevant section).

What is Emergent Form?

Nature teems with self-organized forms that seem to spring spontaneously from the smooth background of things, by mechanisms that are not always apparent. Think of rippled sand on a beach or regular stripes in the clouds.  Plants, insects and animals exhibit spirals and spots and stripes in an exuberant riot of colours.  Fluid flows in amazingly regular swirls and eddies.  The emergence of form is ubiquitous, and presents a challenge and an inspiration to both artists and scientists. In mathematics, patterns appear as solutions of the nonlinear partial differential equations in the continuum limit of classical physics, chemistry and biology. In the arts and humanities, “emergent form” addresses the entangled ways in which humans, plants animals, microorganisms inevitably co-exist in the universe; the way that human intervention and natural transformation can generate new landscapes and new forms of life.

With Emergent Form, we want to question the idea of a fixed world.

For us, Emergent Form is not just a series of natural and human phenomena too complicated to understand, measure or predict, but also a concept to help us identify ways in which we can come to term with, and embrace their complexity as a source of inspiration.

Join us in Toronto and Ottawa for a series of interdisciplinary discussions, performances and exhibitions on Emergent Form on Apr 10, 11, 12 (Toronto) and Apr. 14 [2018] (Ottawa).

This series is the result of a collaboration among several parties. Each event of the series is different and has its dedicated RSVP 

Tue. Apr 10 The Fields Institute, 222 College Street

Emergent form: an interdisciplinary concept 6:00-8:00 pm Pier Luigi Capucci, Accademia di Belle Arti Urbino. Founder and director, Noemalab*, Charles Sowers, Independent artist and exhibit designer, the Exploratorium, Stephen Morris, Professor of of Physics University of Toronto, Ron Wild, smART Maps

CLICK HERE FOR MORE AND TO RSVP

Wed. Apr 11 The Fields Institute6:00-8:00 pm

Anatomy of an Interconnected SystemA Performative Lecture with Margherita Pevere, Aalto University, Helsinki

CLICK HERE FOR MORE AND TO RSVP

Thu. Apr 12 (Note: I believe that from 5 – 6 pm, you’re invited to see Pevere’s exhibit and then proceed to Luella Massey Studio Theatre for performances)

5:00 pm  Cabinets in the Koffler Student Centre [I believe this is at the University of Toronto] Anatomy of an Interconnected System An exhibition by Margherita Pevere

6:00 pm Luella Massey Studio Theatre, 4 Glen Morris Ave., Toronto biopoetriX – conFiGURing AI

6:00-8:00 pm Performance: 

6:00pm Performance “Corpus Nil. A Ritual of Birth for a Modified Body” conceived and performed by Marco Donnarumma

6.30pm LAB dance: Blitz media posters on labs in the arts, sciences and engineering

7.10pm Panel: Performing AI, hybrid media and humans in/as technologyMarco Donnarumma, Doug van Nort (Dispersion Lab, York U.), Jane Tingley (Stratford User Research & Gameful Experiences Lab –SURGE-, U of Waterloo), Angela Schoellig (Dynamic Systems Lab, U of T)

Panel animators: Antje Budde (Digital Dramaturgy Lab) and Roberta Buiani (ArtSci Salon)

8.15pm Reception at the Italian Cultural Institute, 496 Huron St, Toronto

CLICK HERE FOR MORE AND TO RSVP

Ottawa. Sat. Apr. 14 National Arts Centre, 1 Elgin Street11:00 am-1:00 pm

Emergent Form and complex phenomenaA creative panel discussion and surprise demonstrationsWith Pier Luigi Capucci, Margherita Pevere, Marco Donnarumma, Stephen Morris

CLICK HERE FOR MORE AND TO RSVP

This event would not be possible without the support of The Fields Institute for Research in Mathematical Science, The Italian Embassy, the Centre for Drama, Theatre and Performance Studies at the University of Toronto, the Digital Dramaturgy Lab, and the Istituto Italiano di Cultura. Many thanks to our community partner BYOR (Bring your own Robot)

I wonder if some of the funding from Italy is in support of Italian Research in World Day. This is the inaugural year for the event, which will be held annually on April 15.

Vancouver’s brains

The Society of Italian Researchers and Professionals in Western Canada (ARPICO) is hosting an event in Vancouver (from a March 22, 2018 ARICO announcement received via email),

Our second speaking event of the year, in collaboration with the Consulate General of Italy in Vancouver, has been scheduled for Wednesday, April 11th, 2018 at the Roundhouse Community Centre. Professor Vesna Sossi’s talk will be examining how positron emission tomography (PET) imaging has contributed to better understanding of the brain function and disease with particular focus on Parkinson’s disease. You can read a summary of Prof. Sossi’s lecture as well as her short professional biography at the bottom of this message.

This event is organized in collaboration with the Consulate General of Italy in Vancouver to celebrate the newly instituted Italian Research in the World Day, as part of the Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo. You can read more on our website event page.

We look forward to seeing everyone there.

Please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

The evening agenda is as follows:

  • 6:45 pm – Doors Open
  • 7:00 pm – Lecture by Prof. Vesna Sossi
  • ~8:00 pm – Q & A Period
  • Mingling & Refreshments until about 9:30 pm

If you have not yet RSVP’d, please do so on our EventBrite page.

Further details are also available at arpico.ca, our facebook page, and Eventbrite.


Imaging: A Window into the Brain

Brain illness, comprising neurological disorders, mental illness and addiction, is considered the major health challenge in the 21st century with a socio-economic cost greater than cancer and cardiovascular disease combined. There are at least three unique challenges hampering brain disease management: relative inaccessibility, disease onset often preceding the onset of clinical symptoms by many years and overlap between clinical and pathological symptoms that makes accurate disease identification often difficult. This talk will give examples of how positron emission tomography (PET) imaging has contributed to better understanding of the brain function and disease with particular focus on Parkinson’s disease. Emphasis will be placed on the interplay between scientific discoveries and instrumentation and data analysis development as exemplified by the current understanding of the brain function as comprised by interactions between connectivity networks and neurochemistry and advancement in multi-modal imaging such as simultaneous PET and magnetic resonance imaging (MRI).

Vesna Sossi is a Professor in the University of British Columbia (UBC) Physics and Astronomy Department and at the UBC Djavad Mowafaghian Center for Brain Health. She directs the UBC Positron Emission Tomography (PET) imaging centre, which is known for its use of imaging as applied to neurodegeneration with emphasis on Parkinson’s disease. Her main areas of interest comprise development of imaging methods to enhance the investigation of neurochemical mechanisms that lead to an increased risk of Parkinson’s disease (PD) and mechanisms that contribute to treatment-related complications. She uses PET imaging to explore how alterations of the different neurotransmitter systems contribute to different trajectories of disease progression. Her other areas of interest are PET image analysis, instrumentation and multi-modal, multi-parameter data analysis. She published more than 180 peer review papers, is funded by several granting agencies, including the Michael J Fox Foundation, and sits on several national and international review panels.


WHEN: Wednesday, April 11th, 2018 at 7:00pm (doors open at 6:45pm)
WHERE: Roundhouse Community Centre, Room B – 181 Roundhouse Mews, Vancouver, BC, V6Z 2W3
RSVP: Please RSVP at EventBrite (https://imaging-a-window-into-the-brain.eventbrite.ca) or email info@arpico.ca


Tickets are Needed

  • Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.
  • All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.

You can find directions for the Roundhouse Community Centre here

I have one idle question. What’s going to happen these groups if Canadians change their use of  Facebook or abandon the platform as they are threatening to do in the face of Cambridge Analytica’s use of their data? A March 25, 2018 article on huffingtonpost.ca outlines the latest about Canadians’ reaction to the Cambridge Analytical news according to an Angus Reid poll,

A survey by Angus Reid Institute suggests 73 per cent of Canadian Facebook users say they will make changes, while 27 per cent say it will be “business as usual.”

Nearly a quarter (23 per cent) said they would use Facebook less in the future, and 41 per cent of users said they would check and/or change their privacy settings.

The survey also found that one in 10 say they plan to abandon the platform, at least temporarily.

Facebook has been under fire for its ability to protect user privacy after Cambridge Analytica was accused of lifting the Facebook profiles of more than 50 million users without their permission.

There you have it.

*Well, a bit more information about one of the “Emergent’ speakers was received in an April 4, 2018 ArtSci Salon email announcement,

Do make sure to check out Pier Luigi Capucci’s EU-based (but with international breadth) Noemalab platform. https://noemalab.eu/ since the mid-nineties, this platform has been an important node of information for New Media Art and the relation between the arts and science.

noemalab’s blog regularly hosts reviews of events and conferences occurring around the world, including  the Subtle Technologies Festival between 2007 and 2014. you can search its archives here http://blogs.noemalab.eu/

Capucci has been writing several reflections on emergent forms of Life and theorized what he called the “third life”. See a recent essay https://noemalab.eu/memo/events/evolutionary-creativity-the-inner-life-and-meaning-of-art/ here is a picture which I would love him to explain during Emergent Form. Intrigued? come listen to him!

A SciArt Gallery @ Science Rendezvous call for artists and a SciFi and Fantasy screenplay contest and

I’ve got two ‘creativity’ opportunities, one for people working on an art/sci (sciart) project and another for people with scripts,

SciArt Gallery @ Science Rendezvous

This notice arrived in a January 31, 2018 email from the ArtSci Salon people in Toronto (Ontario, Canada),

Science Rendezvous is a free Canada‐wide outreach festival that spurs interest in scientific research among the general public and last year at U of T, we attracted over 30,000 guests! This year we are hosting our first science-inspired art gallery called the SciArt Gallery! We are actively recruiting artists for the gallery to display their science-inspired works! Painting, design, music, dance, theatre, textiles, ceramics: We welcome all artists to apply!

To apply and for more information, please visit: http://bit.ly/SciArtGallery2018

The open call deadline is Friday, February 23rd, 2018 at 11:59pm!

To learn more about Science Rendezvous and this year’s festival on Saturday, May 12th, please visit www.ScienceRendezvousUofT.ca.

So you know what you might be getting into, the About Science Rendezvous webpage has this to say about what the organization does and about its origins,

We work with Canada’s top research institutes to present a coast-to-coast open house and festival that is FREE for everyone. With over 300 events across 30 cities and 1000’s of mind-blowing activities, Science Rendezvous is Canada’s largest celebration of the amazing feats of science and engineering happening right here at home.

In 2017, more than 210,000 attendees participated in our unique brand of hands-on science, a new landmark for such events in Canada. Science Rendezvous is the only organization that generates this level of public engagement with science, and direct face-to-face involvement with those at the very frontiers of innovation.

This SATURDAY, MAY 12th 2018 [emphasis mine] over 6,000 of Canada’s greatest innovators, researchers, engineers, and scientists from 125 partner organizations will open their doors and close city streets to present exciting demonstrations, hands-on activities, and explosive experiments. From the physics of rock and roll to the chemistry of ice-cream, Science Rendezvous has something for everyone!

History

Science Rendezvous began as a joint program between the University of Toronto, Ryerson University, York University and the University of Ontario Institute of Technology (UOIT) in 2008. These founding partners saw the need to work together in order to launch an event of great enough scale and exciting content to engage the public in the vast wonders of science and engineering. Since that time, Science Rendezvous has grown to include 40 of Canada’s top research institutions and over 85 community partnerships across 30 cities in 10 provinces and 2 territories. Today, it is a marquee event and signature partner of Science Odyssey [Note: This is a government of Canada annual national “celebration of science, technology, engineering and mathematics, featuring fun and inspiring experiences in museums, research centres, laboratories and classrooms from coast to coast” which will run from May 11 – 20, 2018 this year], and is the single largest science festival in Canada.

Science Rendezvous is a science outreach pioneer in Canada. Offering direct engagement with 6,000 of Canada’s top researchers and scientists at 300 simultaneous events and 1000’s of hands-on experiments for the public to try themselves.

The Science Rendezvous head office acts as an umbrella organization that coordinates the efforts of all participating institutions, reinvents public engagement with science through festival programming, and offers direction for event organizers all while promoting both the festival and Canadian science on a national level.

To be clear, the call for sciart projects is from the physics department at the University of Toronto (U of T) and the deadline is February 23, 2018. I went to the U of T Science Rendezvous SciArt Gallery artist application page and found more details about the call,

The theme for SR 2018 is “Full S.T.E.A.M. Ahead!” – We’re placing an emphasis on the Art in S.T.E.M. [science, technology, engineering, and mathematics] this year and hosting our first and hopefully annual SciArt Gallery! We want to create a gallery full of science-inspired art and showcase the talent of our local Toronto artists! We hope that artists will be able to share their enthusiasm and teach visitors about how science inspired you to create and the science behind the art!

Artists will be permitted to sell their wares and will be provided with tents, chairs, volunteers, t-shirts, and lunch if accepted to the gallery. SR2018 is currently accepting applications for its SciArt Gallery taking place on Saturday, May 12, 2018 from 11am to 5pm.

There will be a $20 table deposit fee that will be refunded upon your attendance at SR. SR hopes to showcase science-inspired works of art and host workshops to allow artists to inspire kids and adults about their art medium.

*** Applications will close on Friday, February 23rd, 2018 at 11:59pm! ***

If you have any questions or concerns, please do not hesitate to contact us at uoftsr.sciartgallery@gmail.com

For more information and to keep up-to-date about the SciArt Gallery, please visit our:

Website: http://www.sciencerendezvousuoft.ca/
Facebook: https://www.facebook.com/UofTSR/

The name and photo associated with your Google account will be recorded when you upload files and submit this form.

I don’t know if you noticed but the application page specifies Toronto artists while the email did not. You may want to contact the organizers for more details. At a guess, they don’t want to fund any trips or accommodation for out-of-town artists but if you’re willing to self-fund they’ll consider your application.

One final thing worth mentioning, there may be opportunities in your home community. So, it may be worthwhile to check out the Science Rendezvous website.

SciFi and fantasy screenplay contest

I got this January 31, 2018 withoutabox.com announcement via email,

… the 4th Annual ScreenCraft Sci-Fi & Fantasy Screenplay Contest, an out of this world screenplay competition set to discover talented writers. The 2018 contest judges are Steven Douglas-Craig, Development at Sony Pictures, the studio behind Passengers, Ghostbusters, Men In Black, Resident Evil, and Spider-Man; Jonathan Wu, Development Executive at 20th Century Fox, the studio behind Avatar, X-Men, Another Earth, Rise Of The Planet Of The Apes, and Prometheus ; and Michael Doven, CEO of United Pictures, producer of such celebrated movies as Mission: Impossible, Vanilla Sky, Minority Report, and The Last Samurai.

The Grand Prize winner will receive a $1,000 USD cash award and personal introductions to producers, managers, agents and studio executives. Additionally, the top finalists will be circulated to ScreenCraft’s vetted network of over 60 producers, studio executives, managers and agents. Whether you’re writing a contained science fiction drama or an epic fantasy saga, ScreenCraft wants to read your sci-fi or fantasy feature film screenplay. Great science fiction explores the human condition against the backdrop of a heightened imagined world, impacted by technology and human creativity and imagination.

Past ScreenCraft winners have optioned their projects and signed with top representatives at top Hollywood companies including WME, CAA, 3Arts Entertainment, Anonymous Content, Paradigm Talent Agency, ICM, Bellevue Productions Zero Gravity Management, Kaplan/Perrone and many more.

UPCOMING DEADLINE
February 9, 2018 – Earlybird Deadline [March 30,2018 final deadline]

View submission details

MISSION AND OBJECTIVE
ScreenCraft’s screenwriting contests are dedicated to discovering talented screenwriters and connecting them with producers, agents and managers.

MORE ABOUT THE FESTIVAL
ScreenCraft runs a suite of screenwriting competitions that have a long history of getting writers represented and working. The secret is that ScreenCraft actually determines the winners with judges who work in the particular genre or space – real industry executives (not just readers). The winners get actual meetings with actual executives, so that a relationship forms beyond just a great script.

I checked for more details and found this (from the withoutabox.com 4th Annual ScreenCraft Sci-Fi & Fantasy Screenplay Contest Submission webpage),

RULES:
Submissions are accepted via electronic submission only, between January 10, 2018 and March 30, 2018.
Entry fee for each feature film screenplay is $49 until the early deadline on February 9, 2018, then $69 until the final deadline on March 30, 2018.
Optional feedback from a professional reader may be requested at the time of entry. Requests for feedback after an entry is submitted will not be accepted.
Screenplays must be a minimum of 75 pages and a maximum of 150 pages.
There is no limit to the number of projects you may submit.
Entries must be received on or before the deadline dates by 11:59PM Pacific Time, and submission fee payment must be made in full at time of the submission. All entry fees are non-refundable.
All submitted material must be original, and all rights must be wholly owned by the writer(s).
Material must be submitted by the writer. Material written by writing teams must be submitted by one of the writers, with consent of the other(s). All writers must be credited on title page.
If a writing team is chosen as a winner, prizes will be given to the person who submits the project. Each team is responsible for dividing or sharing the prize money.
Substitutions of either corrected pages or new drafts of the entered material will be allowed for a limited time with a $5 reentry fee through Coverfly. Please proofread your script carefully before submitting.
It is recommended that original material be registered with the WGA or The Library of Congress before submitting to any competition, however we do not require registration.
Contact info may be included on the cover page of the screenplay, however it is not required.
All ownership and rights to the scripts submitted to this contest remains with the original rights holders.

ELIGIBILITY:
All writers at least 18 years of age are eligible. However, a writer who has earned more than $50,000 (or equivalent currency) from professional writing services for film or TV in the preceding year is not. (Contest winnings not included.)
All persons from anywhere in the world are eligible; however the material submitted must be in English (occasional dialogue in other languages is acceptable, if subtitle translation is provided).
All material submitted to other competitions or contests are eligible for this contest.
There are no requirements as to when the material was written.
Screenplay and intellectual property must be wholly owned and submitted by the writer(s).
Material should be submitted in standard screenplay format, font, spacing and margin.
We have no preferences regarding title page content. Title and name of writer would suffice.
Entries for this competition are managed on the submission platform Coverfly.
Adaptations are ineligible unless the underlying rights are owned by the writer or the work is in the public domain.
Feature screenplays longer than 150 pages will not be eligible.
All material must be submitted electronically as a PDF or it will not be eligible.

You can find out more about ScreenCraft here.

To everyone: good luck!

Droplets take the stairs

Stair climbing is not an activity usually associated with water droplets but that’s how the activity is described in a July 11, 2017 American Institute of Physics news release (titled: Even Droplets Sometimes Take the Stairs; h/t July 11, 2017 news item on Nanowerk) about research  addressing ‘wettability’,

Sometimes, liquid drops don’t drop. Instead, they climb. Using computer simulations, researchers have now shown how to induce droplets to climb stairs all by themselves.

This stair-climbing behavior could be useful in everything from water treatment and new lab-on-a-chip microfluidic devices, to biochemical processing and medical diagnostic tools. The researchers, from the Indian Institute of Technology in Roorkee, India, and York University in Toronto, describe their findings this week in the journal Physics of Fluids, from AIP Publishing.

To get the droplets to climb, this new research reveals you need a staircase whose surface adheres to each droplet more readily with each step. A surface on which a droplet sticks easily has what’s called a high wettability, causing the droplet to spread out and flatten. On a low-wettability surface, however, the droplet would stay more spherical, like raindrops beading up on a waterproof jacket.

The researchers have previously used a gradient of increasing wettability to coax droplets to move across a flat surface and even to go up a slope. A water droplet, for example, is more attracted to a hydrophilic surface with its greater wettability, so an incline featuring an increasing hydrophilic surface as it rises can “pull” a droplet uphill.

Real surfaces are never perfectly smooth, however; at small-enough scales, a surface eventually appears rough. A slope at these scales is actually a microscopic staircase. “Most surfaces are textured, and mobility of a droplet over such surfaces require climbing stairs,” said Arup Kumar Das of IIT Roorkee.

To explore how a droplet could climb steps — and thus if this technique can work on more real-world surface applications — the researchers simulated the physics of microliter-sized droplets on staircases with a wettability gradient.

These droplets are wider than the length of each step, so their leading side is on a higher step with a more wettable surface, than the trailing side. The front part of the droplet thus spreads more, forming a smaller, flatter angle with the surface.

The difference in angles between the front and back of the climbing droplets causes the liquid inside the droplet to circulate. When the leading edge of the droplet reaches the next step, the circulation drives the droplet forward, spilling over onto the next higher step, and the process repeats itself.

Whether the droplet has enough force to overcome gravity depends on the size of the droplet, the steepness of the steps and the differences in wettability. In general, a bigger droplet is better at climbing stairs, and for steeper steps, there needs to be a higher wettability gradient.

The researchers are now working on experiments to confirm the simulation results.

Many other methods to control droplets rely on external forces such as temperature variations, and electric and magnetic fields. But, Das explained, those methods are often challenging and complex. The new study shows that passive approaches like wettability could be more efficient. “Passive means [we] can manipulate a droplet to even climb stairs sustainably without using an external force,” he said. 

Here’s a link to and a citation for the paper,

Proposition of stair climb of a drop using chemical wettability gradient by Prabh P. S. Seerha, Parmod Kumar, Arup K. Das, and Sushanta K. Mitra. Physics of Fluids 29, 072103 (2017); doi: http://dx.doi.org/10.1063/1.4985213 Volume 29, Issue 7

This paper is behind a paywall.

The insanity of Canadian science outreach (Science Odyssey, May 12 – 21, 2017 and Science RendezVous on May 13, 2017)

When was the last time you saw a six-year old or a twelve-year old attend a political candidates’ meeting or vote in an election? Sadly, most creative science outreach in Canada is aimed at children and teenagers in the misbegotten belief that adults don’t matter and ‘youth are the future’. There are three adult science outreach scenarios although they didn’t tend to be particularly creative. (1) Should scientists feel hard done by elected representatives, they reach out to other adults for support. (2) Should those other adults become disturbed by any scientific or technological ‘advance’ then scientific experts will arrive to explain why that’s wrong. (3) Should the science enterprise want money, then a call goes out (see my May 12, 2017 posting about the Canada Science and Technology Museums Corporation gala and, yes, they were a bit creative about it).

I am oversimplifying the situation but not by much especially if one considers two upcoming national Canadian science events: Science Rendezvous which is a day-long (May 13, 2017) cross country science event taking place during while the Science Odyssey holds a 10-day (May 12 – 2017) cross country science event. The two groups arranged their events separately and then decided to coordinate their efforts. Science Odyssey is a rebranding of the Canada Science and Technology Week organized by the federal government for at least two decades and which was held (until 2016) in the fall of each year. Science Rendezvous (About page) was launched in Toronto in 2008 (University of Toronto, Ryerson University, York University and the University of Ontario Institute of Technology (UOIT)).

Regardless, both events are clearly aimed at children (and families).

I’m not suggesting that exciting science outreach for children should be curtailed. Let’s expand the efforts to9 include the adult and senior populations too.

In all the talk about Canada’s adult and ageing populations, perhaps we could approach it all more creatively. For example, there’s this (from an April 18, 2017 University of California at San Diego University news release (also on EurekAlert) by Inga Kiderra,

Philip Guo caught the coding bug in high school, at a fairly typical age for a Millennial. Less typical is that the UC San Diego cognitive scientist is now eager to share his passion for programming with a different demographic. And it’s not one you’re thinking of – it’s not elementary or middle school-aged kids. Guo wants to get adults age 60 and up.

In the first known study of older adults learning computer programming, Guo outlines his reasons: People are living and working longer. This is a growing segment of the population, and it’s severely underserved by learn-to-code intiatives, which usually target college students and younger. Guo wants to change that. He would like this in-demand skill to become more broadly accessible.

“Computers are everywhere, and digital literacy is becoming more and more important,” said Guo, assistant professor in the Department of Cognitive Science, who is also affiliated with UC San Diego’s Design Lab and its Department of Computer Science and Engineering. “At one time, 1,000 years ago, most people didn’t read or write – just some monks and select professionals could do it. I think in the future people will need to read and write in computer language as well. In the meantime, more could benefit from learning how to code.”

Guo’s study was recently awarded honorable mention by the world’s leading organization in human-computer interaction, ACM SIGCHI. Guo will present his findings at the group’s premier international conference, CHI, in May [2017].

When prior human-computer interaction studies have focused on older adults at all, Guo said, it has been mostly as consumers of new technology, of social networking sites like Facebook, say, or ride-sharing services. While a few have investigated the creation of content, like blogging or making digital music, these have involved the use of existing apps. None, to his knowledge, have looked at older adults as makers of entirely new software applications, so he set out to learn about their motivations, their frustrations and if these provided clues to design opportunities.

The Study

For his study, Guo surveyed users of pythontutor.com. A web-based education tool that Guo started in 2010, Python Tutor helps those learning to program visualize their work. Step by step, it displays what a computer is doing with each line of code that it runs. More than 3.5 million people in more than 180 countries have now used Python Tutor, including those around the world taking MOOCs (massive open online courses). Despite its legacy name, the tool helps people supplement their studies not only of the Python programming language but also Java, JavaScript, Ruby, C and C++, all of which are commonly used to teach programing. The users of Python Tutor represent a wide range of demographic groups.

Guo’s survey included 504 people between the ages of 60 and 85, from 52 different countries. Some were retired and semi-retired while others were still working.

What Guo discovered: Older adults are motivated to learn programming for a number of reasons. Some are age-related. They want to make up for missed opportunities during youth (22 percent) and keep their brains “challenged, fresh and sharp” as they age (19 percent). A few (5 percent) want to connect with younger family members.

Reasons not related to age include seeking continuing education for a current job (14 percent) and wanting to improve future job prospects (9 percent). A substantial group is in it just for personal enrichment: 19 percent to implement a specific hobby project idea, 15 percent for fun and entertainment, and 10 percent out of general interest.

Interestingly, 8 percent said they wanted to learn to teach others.

Topping the list of frustrations for older students of coding was bad pedagogy. It was mentioned by 21 percent of the respondents and ranged from the use of jargon to sudden spikes in difficulty levels. Lack of real-world relevance came up 6 percent of the time. A 74-year-old retired physician wrote: “Most [tutorials] are offered by people who must know how to program but don’t seem to have much training in teaching.”

Other frustrations included a perceived decline in cognitive abilities (12 percent) and no human contact with tutors and peers (10 percent).

The study’s limitations are tied in part to the instrument – self-reporting on an online survey – and in part to the survey respondents themselves. Most hailed from North America and other English-speaking nations. Most, 84 percent, identified themselves as male; this stat is consistent with other surveys of online learning, especially in math and science topics. There was a diverse array of occupations reported, but the majority of those surveyed were STEM professionals, managers and technicians. These learners, Guo said, likely represent “early adopters” and “the more technology-literate and self-motivated end of the general population.” He suggests future studies look both at in-person learning and at a broader swath of the public. But he expects the lessons learned from this group will generalize.

The Implications

Based on this first set of findings and using a learner-centered design approach, Guo proposes tailoring computer-programming tools and curricula specifically for older learners. He notes, for example, that many of his respondents seemed to take pride in their years and in their tech-savvy, so while it may be good to advertise products as targeting this age group, they should not appear patronizing. It might make sense to reframe lessons as brain-training games, like Lumosity, now popular among the older set.

Just as it’s key to understand who the learners are so is understanding where they have trouble. Repetition and frequent examples might be good to implement, as well as more in-person courses or video-chat-based workshops, Guo said, which may lead to improvements in the teaching of programming not just for older adults but across the board.

Context matters, too. Lessons are more compelling when they are put into domains that people personally care about. And Guo recommends coding curricula that enable older adults to tell their life stories or family histories, for example, or write software that organizes health information or assists care-givers.

Guo, who is currently working on studies to extend coding education to other underrepresented groups, advocates a computing future that is fully inclusive of all ages.

“There are a number of social implications when older adults have access to computer programming – not merely computer literacy,” he said. “These range from providing engaging mental stimulation to greater gainful employment from the comfort of one’s home.”

By moving the tech industry away from its current focus on youth, Guo argues, we all stand to gain. [emphasis mine]

Guo joined the UC San Diego cognitive science faculty in 2016 after two years as an assistant professor at the University of Rochester. He received his bachelor’s and master’s degrees in computer science from MIT in 2006 and his Ph.D. from Stanford in 2012. Before becoming a professor, he built online learning tools as a software engineer at Google and a research scientist at edX. He also blogs, vlogs and podcasts at http://pgbovine.net/

When was the last time you heard about a ‘coding’ camp for adults and seniors in Canada? Also,, ask yourself if after you’d reached a certain age (40? 50? more? less?) you’d feel welcome at the Science Rendezvous events (without a child in tow), Science Odyssey events (without a child in tow), or the May 17, 2017 National Science and Innovation Gala in Ottawa (from my May 12, 2017 posting “It would seem the only person over the age of 30 who’s expected to attend is the CBC host, Heather Hiscox.”)?

Let’s open the door a bit wider, eh?

York University (Toronto, Ontario, Canada) research team creates 3D beating heart and matters of the heart at the Ontario Institute for Regenerative Medicine

I have two items about cardiac research in Ontario. Not strictly speaking about nanotechnology, the two items do touch on topics covered here before, 3D organs and stem cells.

York University and its 3D beating heart

A Feb. 9, 2017 York University news release (also on EurekAlert), describe an innovative approach to creating 3D heart tissue,

Matters of the heart can be complicated, but York University scientists have found a way to create 3D heart tissue that beats in synchronized harmony, like a heart in love, that will lead to better understanding of cardiac health, and improved treatments.

York U chemistry Professor Muhammad Yousaf and his team of grad students have devised a way to stick three different types of cardiac cells together, like Velcro, to make heart tissue that beats as one.

Until now, most 2D and 3D in vitro tissue did not beat in harmony and required scaffolding for the cells to hold onto and grow, causing limitations. In this research, Yousaf and his team made a scaffold free beating tissue out of three cell types found in the heart – contractile cardiac muscle cells, connective tissue cells and vascular cells.

The researchers believe this is the first 3D in vitro cardiac tissue with three cell types that can beat together as one entity rather than at different intervals.

“This breakthrough will allow better and earlier drug testing, and potentially eliminate harmful or toxic medications sooner,” said Yousaf of York U’s Faculty of Science.

In addition, the substance used to stick cells together (ViaGlue), will provide researchers with tools to create and test 3D in vitro cardiac tissue in their own labs to study heart disease and issues with transplantation. Cardiovascular associated diseases are the leading cause of death globally and are responsible for 40 per cent of deaths in North America.

“Making in vitro 3D cardiac tissue has long presented a challenge to scientists because of the high density of cells and muscularity of the heart,” said Dmitry Rogozhnikov, a chemistry PhD student at York. “For 2D or 3D cardiac tissue to be functional it needs the same high cellular density and the cells must be in contact to facilitate synchronized beating.”

Although the 3D cardiac tissue was created at a millimeter scale, larger versions could be made, said Yousaf, who has created a start-up company OrganoLinX to commercialize the ViaGlue reagent and to provide custom 3D tissues on demand.

Here’s a link to and a citation for the paper,

Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering by Dmitry Rogozhnikov, Paul J. O’Brien, Sina Elahipanah, & Muhammad N. Yousaf. Scientific Reports 6, Article number: 39806 (2016) doi:10.1038/srep39806 Published online: 23 December 2016

This paper is open access.

Ontario Institute for Regenerative Medicine and its heart stem cell research

Steven Erwood has written about how Toronto has become a centre for certain kinds of cardiac research by focusing on specific researchers in a Feb. 13, 2017 posting on the Ontario Institute for Regenerative Medicine’s expression blog (Note: Links have been removed),

You may have heard that Paris is the city of love, but you might not know that Toronto specializes in matters of the heart, particularly broken hearts.

Dr. Ren Ke Li, an investigator with the Ontario Institute for Regenerative Medicine, established his lab at the Toronto General Hospital Research Institute in 1993 hoping to find a way to replace the muscle cells, or cardiomyocytes, that are lost after a heart attack. Specifically, Li hoped to transplant a collection of cells, called stem cells, into a heart damaged by a heart attack. Stem cells have the power to differentiate into virtually any cell type, so if Li could coax them to become cardiomyocytes, they could theoretically reverse the damage caused by the heart attack.

Over the years, Li’s experiments using stem cells to regenerate and repair damaged heart tissue, which progressed all the way through to human clinical trials, pushed Li to rethink his approach to heart repair. Most of the transplanted cells failed to engraft to the host tissue and many of those that did successfully integrate into the patient’s heart remained non-contractile, sitting still beside the rest of the beating heart muscle. Despite this, the treatments were still proving beneficial — albeit less beneficial than Li had hoped. These cells weren’t replacing the lost cardiomyocytes, but they were still helping the patient recover. Li was then just beginning to reveal something that is now well described: transplanting exogenous stem cells (originating outside the patient) onto damaged tissue stimulated the endogenous stem cells to repair that damage. These transplanted stem cells were changing the behaviour of the patient’s own stem cells, enhancing their response to injury.

Li calls this process “rejuvenation” — arguing that the reason older populations can’t recover from cardiac injury is because they have fewer stem cells, and those stem cells have lost their ability to repair and regenerate damaged tissue over time. Li argues that the positive effects he was seeing in his experiments and clinical trials was a restoration or reversal of age-related deterioration in repair capability — a rejuvenation of the aged heart.

Li, alongside fellow OIRM [Ontario Institute for Regenerative Medicine] researcher and cardiac surgeon at Toronto General Hospital, Dr. Richard Weisel, dedicated a large part of their research effort to understanding this process. Weisel explains, “We put young cells into old animals, and we can get them to respond to a heart attack like a young person — which is remarkable!”

A team of researchers led by the duo published an article in Basic Research in Cardiology last month describing a new method to rejuvenate the aged heart, and characterizing this rejuvenation at the molecular and cellular level.

Successfully advancing this research to the clinic is where Weisel thinks Toronto provides a unique advantage. “We have the ability to do the clinical trials — the same people who are working on these projects [in the lab], can also take them into the clinic, and a lot of other places in the world [the clinicians and the researchers] are separate. We’ve been doing that for all the areas of stem cell research.” This unique set of circumstances, Weisel argues, more readily allows for a successful transition from research to clinical practice.

But an integrated research and clinical environment isn’t all the city has to offer to those looking to make substantial progress in stem cell therapies. Dr. Michael Laflamme, OIRM researcher and a leading authority on stem cell therapies for cardiac repair, called his decision to relocate to Toronto from the University of Washington in Seattle “a no-brainer”.

Laflamme focuses on improving the existing approaches to exogenous stem cell transplantation in cardiac repair and believes that solving the problems Li faced in his early experiments is just a matter of finding the right cell type. Laflamme, in an ongoing preclinical trial funded by OIRM, is differentiating stem cells in a bioreactor into ventricular cardiomyocytes, the specific type of cell lost after a heart attack, and delivering those cells directly to the scar tissue in hopes of turning it back into muscle. Laflamme is optimistic these ventricular cardiomyocytes might be just the cell type he’s looking for. Using these cells in animal models, although in a mixture of other cardiac cell types, Laflamme explains, “We’ve shown that those cells will stably engraft and they actually become electrically integrated with the rest of the tissue — they will [beat] in synchrony with the rest of the heart.”

Laflamme states that “Toronto is the place where we can get this stuff done better and we can get it done faster,” citing the existing Toronto-based expertise in both the differentiation of stem cells and the biotechnological means to scale these processes as being unparalleled elsewhere in the world.

It’s not only academic researchers and clinicians that recognize Toronto’s potential to advance regenerative medicine and stem cell therapy. Pharmaceutical giant Bayer, partnered with San Francisco-based venture capital firm Versant Ventures, announced last December a USD 225 million investment in a stem cell biotechnology company called BlueRock Therapeutics — the second largest investment of it’s kind in the history of the biotechnology industry. …

There’s substantially to more Erwood’s piece in the original posting.

One final thought, I wonder if there is a possibility that York University’s ViaGlue might be useful in the work talking place at Ontario Institute for Regenerative Medicine. I realize the two institutions are in the same city but do the researchers even know about each other’s work?

Canada’s Situating Science in Fall 2014

Canada’s Situating Science cluster (network of humanities and social science researchers focused on the study of science) has a number of projects mentioned and in its Fall 2014 newsletter,

1. Breaking News
It’s been yet another exciting spring and summer with new developments for the Situating Science SSHRC Strategic Knowledge Cluster team and HPS/STS [History of Philosophy of Science/Science and Technology Studies] research. And we’ve got even more good news coming down the pipeline soon…. For now, here’s the latest.

1.1. New 3 yr. Cosmopolitanism Partnership with India and Southeast Asia
We are excited to announce that the Situating Science project has helped to launch a new 3 yr. 200,000$ SSHRC Partnership Development Grant on ‘Cosmopolitanism and the Local in Science and Nature’ with institutions and scholars in Canada, India and Singapore. Built upon relations that the Cluster has helped establish over the past few years, the project will closely examine the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape. A recent workshop on Globalizing History and Philosophy of Science at the Asia Research Institute at the National University of Singapore helped to mark the soft launch of the project (see more in this newsletter).

ARI along with Manipal University, Jawaharlal Nehru University, University of King’s College, Dalhousie University, York University, University of Toronto, and University of Alberta, form the partnership from which the team will seek new connections and longer term collaborations. The project’s website will feature a research database, bibliography, syllabi, and event information for the project’s workshops, lecture series, summer schools, and artifact work. When possible, photos, blogs, podcasts and videos from events will be posted online as well. The project will have its own mailing list so be sure to subscribe to that too. Check it all out: www.CosmoLocal.org

2.1. Globalizing History and Philosophy of Science workshop in Singapore August 21-22 2014
On August 21 and 22, scholars from across the globe gathered at the Asia Research Institute at the National University of Singapore to explore key issues in global histories and philosophies of the sciences. The setting next to the iconic Singapore Botanical Gardens provided a welcome atmosphere to examine how and why globalizing the humanities and social studies of science generates intellectual and conceptual tensions that require us to revisit, and possibly rethink, the leading notions that have hitherto informed the history, philosophy and sociology of science.

The keynote by Sanjay Subrahmanyam (UCLA) helped to situate discussions within a larger issue of paradigms of civilization. Workshop papers explored commensurability, translation, models of knowledge exchange, indigenous epistemologies, commercial geography, translation of math and astronomy, transmission and exchange, race, and data. Organizer Arun Bala and participants will seek out possibilities for publishing the proceedings. The event partnered with La Trobe University and Situating Science, and it helped to launch a new 3 yr. Cosmopolitanism project. For more information visit: www.CosmoLocal.org

2.2. Happy Campers: The Summer School Experience

We couldn’t help but feel like we were little kids going to summer camp while our big yellow school bus kicked up dust driving down a dirt road on a hot summer’s day. In this case it would have been a geeky science camp. We were about to dive right into day-long discussions of key pieces from Science and Technology Studies and History and Philosophy of Science and Technology.

Over four and a half days at one of the Queen’s University Biology Stations at the picturesque Elbow Lake Environmental Education Centre, 18 students from across Canada explored the four themes of the Cluster. Each day targeted a Cluster theme, which was introduced by organizer Sergio Sismondo (Sociology and Philosophy, Queen’s). Daryn Lehoux (Classics, Queen’s) explained key concepts in Historical Epistemology and Ontology. Using references of the anti-magnetic properties of garlic (or garlic’s antipathy with the loadstone) from the ancient period, Lehoux discussed the importance and significance of situating the meaning of a thing within specific epistemological contexts. Kelly Bronson (STS, St. Thomas University) explored modes of science communication and the development of the Public Engagement with Science and Technology model from the deficit model of Public Understanding of Science and Technology during sessions on Science Communication and its Publics. Nicole Nelson (University of Wisconsin-Madison) explained Material Culture and Scientific/Technological Practices by dissecting the meaning of animal bodies and other objects as scientific artifacts. Gordon McOuat wrapped up the last day by examining the nuances of the circulation and translation of knowledge and ‘trading zones’ during discussions of Geographies and Sites of Knowledge.

2.3. Doing Science in and on the Oceans
From June 14 to June 17, U. King’s College hosted an international workshop on the place and practice of oceanography in celebration of the work of Dr. Eric Mills, Dalhousie Professor Emeritus in Oceanography and co-creator of the History of Science and Technology program. Leading ocean scientists, historians and museum professionals came from the States, Europe and across Canada for “Place and Practice: Doing Science in and on the Ocean 1800-2012”. The event successfully connected different generations of scholars, explored methodologies of material culture analysis and incorporated them into mainstream historical work. There were presentations and discussions of 12 papers, an interdisciplinary panel discussion with keynote lecture by Dr. Mills, and a presentation at the Maritime Museum of the Atlantic by Canada Science and Technology Museum curator, David Pantalony. Paper topics ranged from exploring the evolving methodology of oceanographic practice to discussing ways that the boundaries of traditional scientific writing have been transcended. The event was partially organized and supported by the Atlantic Node and primary support was awarded by the SSHRC Connection Grant.

2.4. Evidence Dead or Alive: The Lives of Evidence National Lecture Series

The 2014 national lecture series on The Lives of Evidence wrapped up on a high note with an interdisciplinary panel discussion of Dr. Stathis Psillos’ exploration of the “Death of Evidence” controversy and the underlying philosophy of scientific evidence. The Canada Research Chair in Philosophy of Science spoke at the University of Toronto with panelists from law, philosophy and HPS. “Evidence: Wanted Dead of Alive” followed on the heels of his talk at the Institute for Science, Society and Policy “From the ‘Bankruptcy of Science’ to the ‘Death of Evidence’: Science and its Value”.

In 6 parts, The Lives of Evidence series examined the cultural, ethical, political, and scientific role of evidence in our world. The series formed as response to the recent warnings about the “Death of Evidence” and “War on Science” to explore what was meant by “evidence”, how it is interpreted, represented and communicated, how trust is created in research, what the relationship is between research, funding and policy and between evidence, explanations and expertise. It attracted collaborations from such groups as Evidence for Democracy, the University of Toronto Evidence Working Group, Canadian Centre for Ethics in Public Affairs, Dalhousie University Health Law Institute, Rotman Institute of Philosophy and many more.

A December [2013] symposium, “Hype in Science”, marked the soft launch of the series. In the all-day public event in Halifax, leading scientists, publishers and historians and philosophers of science discussed several case studies of how science is misrepresented and over-hyped in top science journals. Organized by the recent winner of the Gerhard Herzberg Canada Gold Medal for Science and Engineering, Ford Doolittle, the interdisciplinary talks in “Hype” explored issues of trustworthiness in science publications, scientific authority, science communication, and the place of research in the broader public.

The series then continued to explore issues from the creation of the HIV-Crystal Meth connection (Cindy Patton, SFU), Psychiatric Research Abuse (Carl Elliott, U. Minnesota), Evidence, Accountability and the Future of Canadian Science (Scott Findlay, Evidence for Democracy), Patents and Commercialized Medicine (Jim Brown, UofT), and Clinical Trials (Joel Lexchin, York).

All 6 parts are available to view on the Situating Science YouTube channel.You can read a few blogs from the events on our website too. Some of those involved are currently discussing possibilities of following up on some of the series’ issues.

2.5. Other Past Activities and Events
The Frankfurt School: The Critique of Capitalist Culture (July, UBC)

De l’exclusion à l’innovation théorique: le cas de l’éconophysique ; Prosocial attitudes and patterns of academic entrepreneurship (April, UQAM)

Critical Itineraries Technoscience Salon – Ontologies (April, UofT)

Technologies of Trauma: Assessing Wounds and Joining Bones in Late Imperial China (April, UBC)

For more, check out: www.SituSci.ca

You can find some of the upcoming talks and the complete Fall 2014 Situating Science newsletter here.

About one week after receiving the newsletter, I got this notice (Sept. 11, 2014),

We are ecstatic to announce that the Situating Science SSHRC Strategic Knowledge Cluster is shortlisted for a highly competitive SSHRC Partnership Impact Award!

And what an impact we’ve had over the past seven years: Organizing and supporting over 20 conferences and workshops, 4 national lecture series, 6 summer schools, and dozens of other events. Facilitating the development of 4 new programs of study at partner institutions. Leveraging more than one million dollars from Nodal partner universities plus more than one million dollars from over 200 supporting and partnering organizations. Hiring over 30 students and 9 postdoctoral fellows. Over 60 videos and podcasts as well as dozens of student blogs and over 50 publications. Launching a new Partnership Development Grant between Canada, India and Southeast Asia. Developing a national consortium…And more!

The winners will be presented with their awards at a ceremony in Ottawa on Monday, November 3, 2014.

From the Sept. 11, 2014 Situating Science press release:

University of King’s College [Nova Scotia, Canada] professor Dr. Gordon McOuat has been named one of three finalists for the Social Sciences and Humanities Research Council of Canada’s (SSHRC) Partnership Award, one of five Impact Awards annually awarded by SSHRC.

Congratulations on the nomination and I wish Gordon McQuat and Situating Science good luck in the competition.

Vodka-powered wireless communications featured Canada’s national anthem

In a joint project between Warwick University (UK) and York University (Canada), researchers sent a text message featuring O Canada (national anthem) in a system that relies on vodka molecules. From the Dec. 18, 2013  news item on Nanowerk,

After successfully text messaging ‘O Canada’ using evaporated vodka, two York University researchers and their UK-based counterpart say their simple system can be used where conventional wireless technology fails.

“Chemical signals can offer a more efficient way of transmitting data inside tunnels, pipelines or deep underground structures. For example, the recent massive clog in London sewer system could have been detected earlier on, and without all the mess workers had to deal with, sending robots equipped with a molecular communication system,” says Professor Andrew Eckford, in whose lab in the Department of Electrical Engineering and Computer Science located in Lassonde School of Engineering, the experiment was conducted.

The Dec. 18, 2013 York University news release (also on EurekAlert), which originated the news item, details how the signaling was achieved (Note: A link has been removed),

The chemical signal, using the alcohol found in vodka in this case, was sent four metres across the lab with the aid of a tabletop fan. It was then demodulated by a receiver which measured the rate of change in concentration of the alcohol molecules, picking up whether the concentration was increasing or decreasing.

“We believe we have sent the world’s first text message to be transmitted entirely with molecular communication, controlling concentration levels of the alcohol molecules, to encode the alphabets with single spray representing bit 1 and no spray representing the bit 0,” says York U doctoral candidate Nariman Farsad, who led the experiment.

Though use of chemical signals is a new method in human communication technology, the biocompatible method is very common in the animal kingdom. Bees for example use chemicals in pheromones when there is a threat to the hive, and so do the Canadian lnyx, when marking territories.

In an article, Tabletop Molecular Communication: Text Messages Through Chemical Signals, in the peer-reviewed journal PLOS ONE, the researchers say their system also fills a major gap in the molecular communication literature, by providing an inexpensive platform for testing theoretical models. This allows researchers to gain real-world experience with molecular communication, cheaply and easily.

“Our system shows that reliable communication is possible and our work motivates future studies on more realistic modelling, analysis, and design of theoretical models and algorithms for molecular communication systems,” says Engineering Professor Weisi Guo at the University of Warwick, who initiated the research during a meeting with Eckford, last year. He adds, “They can also be used to communicate on the nanoscale, for example in medicine where recent advances mean it’s possible to embed sensors into the organs of the body or create miniature robots to carry out a specific task such as targeting drugs to cancer cells.”

York University has also produced a video demonstrating vodka-fueled signaling,

A Dec. 19, 2013 University of Warwick press release provides additional perspective on this achievement (Note: Links have been removed),

Scientists have created a molecular communications system for the transmission of messages and data in challenging environments such as tunnels, pipelines, underwater and within the body.

The technique has a wide range of applications in environments where electromagnetic waves cannot be used, for example in underground structures such as tunnels, pipelines or in underwater environments.

Molecular signalling is a common feature of the plant and animal kingdom – insects for example use pheromones for long-range signalling – but to date continuous data have not been transmitted.

Researchers at the University of Warwick in the UK and the York University in Canada have developed the capability to transform any generic message into binary signals, which in turn is ‘programmed’ into evaporated alcohol molecules to demonstrate the potential of molecular communications. Their results are published in the open access journal PLOS ONE.

Dr Weisi Guo from the School of Engineering at the University of Warwick said: “Imagine sending a detailed message using perfume – it sounds like something from a spy thriller novel, but in reality it is an incredibly simple way to communicate.

“ Of course people have achieved short ranged signalling using chemicals, but we have gone to the next level and successfully communicated continuous and generic messages over several metres.

For the curious,here’s a link to and a citation for the paper,

Tabletop Molecular Communication: Text Messages through Chemical Signals by Nariman Farsad, Weisi Guo, & Andrew W. Eckford. PLOS ONE Published: December 18, 2013 DOI: 10.1371/journal.pone.0082935

All papers published by PLOS (Public Library of Science) ONE are open access.

One final thought, are the rum-, gin-, ouzo-, whiskey-, tequiila-, etc. lovers going to demand their favourite spirits get equal attention?