Tag Archives: Yu Zhu

Book announcement: Atomistic Simulation of Quantum Transport in Nanoelectronic Devices

For anyone who’s curious about where we go after creating chips at the 7nm size, this may be the book for you. Here’s more from a July 27, 2016 news item on Nanowerk,

In the year 2015, Intel, Samsung and TSMC began to mass-market the 14nm technology called FinFETs. In the same year, IBM, working with Global Foundries, Samsung, SUNY, and various equipment suppliers, announced their success in fabricating 7nm devices. A 7nm silicon channel is about 50 atomic layers and these devices are truly atomic! It is clear that we have entered an era of atomic scale transistors. How do we model the carrier transport in such atomic scale devices?

One way is to improve existing device models by including more and more parameters. This is called the top-down approach. However, as device sizes shrink, the number of parameters grows rapidly, making the top-down approach more and more sophisticated and challenging. Most importantly, to continue Moore’s law, electronic engineers are exploring new electronic materials and new operating mechanisms. These efforts are beyond the scope of well-established device models — hence significant changes are necessary to the top-down approach.

An alternative way is called the bottom-up approach. The idea is to build up nanoelectronic devices atom by atom on a computer, and predict the transport behavior from first principles. By doing so, one is allowed to go inside atomic structures and see what happens from there. The elegance of the approach comes from its unification and generality. Everything comes out naturally from the very basic principles of quantum mechanics and nonequilibrium statistics. The bottom-up approach is complementary to the top-down approach, and is extremely useful for testing innovative ideas of future technologies.

A July 27, 2016 World Scientific news release on EurekAlert, which originated the news item, delves into the topics covered by the book,

In recent decades, several device simulation tools using the bottom-up approach have been developed in universities and software companies. Some examples are McDcal, Transiesta, Atomistic Tool Kit, Smeagol, NanoDcal, NanoDsim, OpenMX, GPAW and NEMO-5. These software tools are capable of predicting electric current flowing through a nanostructure. Essentially the input is the atomic coordinates and the output is the electric current. These software tools have been applied extensively to study emerging electronic materials and devices.

However, developing such a software tool is extremely difficult. It takes years-long experiences and requires knowledge of and techniques in condensed matter physics, computer science, electronic engineering, and applied mathematics. In a library, one can find books on density functional theory, books on quantum transport, books on computer programming, books on numerical algorithms, and books on device simulation. But one can hardly find a book integrating all these fields for the purpose of nanoelectronic device simulation.

“Atomistic Simulation of Quantum Transport in Nanoelectronic Devices” (With CD-ROM) fills the chasm. Authors Yu Zhu and Lei Liu have experience in both academic research and software development. Yu Zhu is the project manager of NanoDsim, and Lei Liu is the project manager of NanoDcal. The content of the book is based Zhu and Liu’s combined R&D experiences of more than forty years.

In this book, the authors conduct an experiment and adopt a “paradigm” approach. Instead of organizing materials by fields, they focus on the development of one particular software tool called NanoDsim, and provide relevant knowledge and techniques whenever needed. The black of box of NanoDsim is opened, and the complete procedure from theoretical derivation, to numerical implementation, all the way to device simulation is illustrated. The affilicated source code of NanoDsim also provides an open platform for new researchers.

I’m not recommending the book as I haven’t read it but it does seem intriguing. For anyone who wishes to purchase it, you can do that here.

I wrote about IBM and its 7nm chip in a July 15, 2015 post.

IBM, the Cognitive Era, and carbon nanotube electronics

IBM has a storied position in the field of nanotechnology due to the scanning tunneling microscope developed in the company’s laboratories. It was a Nobel Prize-winning breakthough which provided the impetus for nanotechnology applied research. Now, an Oct. 1, 2015 news item on Nanowerk trumpets another IBM breakthrough,

IBM Research today [Oct. 1, 2015] announced a major engineering breakthrough that could accelerate carbon nanotubes replacing silicon transistors to power future computing technologies.

IBM scientists demonstrated a new way to shrink transistor contacts without reducing performance of carbon nanotube devices, opening a pathway to dramatically faster, smaller and more powerful computer chips beyond the capabilities of traditional semiconductors.

While the Oct. 1, 2015 IBM news release, which originated the news item, does go on at length there’s not much technical detail (see the second to last paragraph in the excerpt for the little they do include) about the research breakthrough (Note: Links have been removed),

IBM’s breakthrough overcomes a major hurdle that silicon and any semiconductor transistor technologies face when scaling down. In any transistor, two things scale: the channel and its two contacts. As devices become smaller, increased contact resistance for carbon nanotubes has hindered performance gains until now. These results could overcome contact resistance challenges all the way to the 1.8 nanometer node – four technology generations away. [emphasis mine]

Carbon nanotube chips could greatly improve the capabilities of high performance computers, enabling Big Data to be analyzed faster, increasing the power and battery life of mobile devices and the Internet of Things, and allowing cloud data centers to deliver services more efficiently and economically.

Silicon transistors, tiny switches that carry information on a chip, have been made smaller year after year, but they are approaching a point of physical limitation. With Moore’s Law running out of steam, shrinking the size of the transistor – including the channels and contacts – without compromising performance has been a vexing challenge troubling researchers for decades.

IBM has previously shown that carbon nanotube transistors can operate as excellent switches at channel dimensions of less than ten nanometers – the equivalent to 10,000 times thinner than a strand of human hair and less than half the size of today’s leading silicon technology. IBM’s new contact approach overcomes the other major hurdle in incorporating carbon nanotubes into semiconductor devices, which could result in smaller chips with greater performance and lower power consumption.

Earlier this summer, IBM unveiled the first 7 nanometer node silicon test chip [emphasis mine], pushing the limits of silicon technologies and ensuring further innovations for IBM Systems and the IT industry. By advancing research of carbon nanotubes to replace traditional silicon devices, IBM is paving the way for a post-silicon future and delivering on its $3 billion chip R&D investment announced in July 2014.

“These chip innovations are necessary to meet the emerging demands of cloud computing, Internet of Things and Big Data systems,” said Dario Gil, vice president of Science & Technology at IBM Research. “As silicon technology nears its physical limits, new materials, devices and circuit architectures must be ready to deliver the advanced technologies that will be required by the Cognitive Computing era. This breakthrough shows that computer chips made of carbon nanotubes will be able to power systems of the future sooner than the industry expected.”

A New Contact for Carbon Nanotubes

Carbon nanotubes represent a new class of semiconductor materials that consist of single atomic sheets of carbon rolled up into a tube. The carbon nanotubes form the core of a transistor device whose superior electrical properties promise several generations of technology scaling beyond the physical limits of silicon.

Electrons in carbon transistors can move more easily than in silicon-based devices, and the ultra-thin body of carbon nanotubes provide additional advantages at the atomic scale. Inside a chip, contacts are the valves that control the flow of electrons from metal into the channels of a semiconductor. As transistors shrink in size, electrical resistance increases within the contacts, which impedes performance. Until now, decreasing the size of the contacts on a device caused a commensurate drop in performance – a challenge facing both silicon and carbon nanotube transistor technologies.

IBM researchers had to forego traditional contact schemes and invented a metallurgical process akin to microscopic welding that chemically binds the metal atoms to the carbon atoms at the ends of nanotubes. This ‘end-bonded contact scheme’ allows the contacts to be shrunken down to below 10 nanometers without deteriorating performance of the carbon nanotube devices.

“For any advanced transistor technology, the increase in contact resistance due to the decrease in the size of transistors becomes a major performance bottleneck,” Gil added. “Our novel approach is to make the contact from the end of the carbon nanotube, which we show does not degrade device performance. This brings us a step closer to the goal of a carbon nanotube technology within the decade.”

Every once in a while, the size gets to me and a 1.8nm node is amazing. As for IBM’s 7nm chip, which was previewed this summer, there’s more about that in my July 15, 2015 posting.

Here’s a link to and a citation for the IBM paper,

End-bonded contacts for carbon nanotube transistors with low, size-independent resistance by Qing Cao, Shu-Jen Han, Jerry Tersoff, Aaron D. Franklin†, Yu Zhu, Zhen Zhang‡, George S. Tulevski, Jianshi Tang, and Wilfried Haensch. Science 2 October 2015: Vol. 350 no. 6256 pp. 68-72 DOI: 10.1126/science.aac8006

This paper is behind a paywall.

De-icing film for radar domes adapted for use on glass

Interesting to see that graphene is in use for de-icing. From a Sept. 16, 2014 news item  on ScienceDaily,

Rice University scientists who created a deicing film for radar domes have now refined the technology to work as a transparent coating for glass.

The new work by Rice chemist James Tour and his colleagues could keep glass surfaces from windshields to skyscrapers free of ice and fog while retaining their transparency to radio frequencies (RF).

A Sept. 16, 2014 Rice University news release on EurekAlert, which originated the news item, describes the technology and its new application in more detail,

The material is made of graphene nanoribbons, atom-thick strips of carbon created by splitting nanotubes, a process also invented by the Tour lab. Whether sprayed, painted or spin-coated, the ribbons are transparent and conduct both heat and electricity.

Last year the Rice group created films of overlapping nanoribbons and polyurethane paint to melt ice on sensitive military radar domes, which need to be kept clear of ice to keep them at peak performance. The material would replace a bulky and energy-hungry metal oxide framework.

The graphene-infused paint worked well, Tour said, but where it was thickest, it would break down when exposed to high-powered radio signals. “At extremely high RF, the thicker portions were absorbing the signal,” he said. “That caused degradation of the film. Those spots got so hot that they burned up.”

The answer was to make the films more consistent. The new films are between 50 and 200 nanometers thick – a human hair is about 50,000 nanometers thick – and retain their ability to heat when a voltage is applied. The researchers were also able to preserve their transparency. The films are still useful for deicing applications but can be used to coat glass and plastic as well as radar domes and antennas.

In the previous process, the nanoribbons were mixed with polyurethane, but testing showed the graphene nanoribbons themselves formed an active network when applied directly to a surface. They were subsequently coated with a thin layer of polyurethane for protection. Samples were spread onto glass slides that were then iced. When voltage was applied to either side of the slide, the ice melted within minutes even when kept in a minus-20-degree Celsius environment, the researchers reported.

“One can now think of using these films in automobile glass as an invisible deicer, and even in skyscrapers,” Tour said. “Glass skyscrapers could be kept free of fog and ice, but also be transparent to radio frequencies. It’s really frustrating these days to find yourself in a building where your cellphone doesn’t work. This could help alleviate that problem.”

Tour noted future generations of long-range Wi-Fi may also benefit. “It’s going to be important, as Wi-Fi becomes more ubiquitous, especially in cities. Signals can’t get through anything that’s metallic in nature, but these layers are so thin they won’t have any trouble penetrating.”

He said nanoribbon films also open a path toward embedding electronic circuits in glass that are both optically and RF transparent.

Here’s a link to and a citation for the paper,

Functionalized Graphene Nanoribbon Films as a Radiofrequency and Optically Transparent Material by Abdul-Rahman O. Raji, Sydney Salters, Errol L. G. Samuel, Yu Zhu, Vladimir Volman, and James M. Tour. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/am503478w Publication Date (Web): September 4, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.

De-icing is a matter of some interest in the airlines industry as I noted in my Nov. 19, 2012 posting about de-icing airplane wings.

James’ bond (Rice University research team creates graphene/nanotube hybrid)

I have to give credit to Mike Williams’ Nov. 27, 2012 Rice University news release for the “James’ bond” phrase used to describe this graphene/nanotube hybrid,

A seamless graphene/nanotube hybrid created at Rice University may be the best electrode interface material possible for many energy storage and electronics applications.

Led by Rice chemist James Tour, researchers have successfully grown forests of carbon nanotubes that rise quickly from sheets of graphene to astounding lengths of up to 120 microns, according to a paper published today by Nature Communications. A house on an average plot with the same aspect ratio would rise into space.

Seven-atom rings (in red) at the transition from graphene to nanotube make this new hybrid material a seamless conductor. The hybrid may be the best electrode interface material possible for many energy storage and electronics applications. Image courtesy of the Tour Group

The Rice hybrid combines two-dimensional graphene, which is a sheet of carbon one atom thick, and nanotubes into a seamless three-dimensional structure. The bonds between them are covalent, which means adjacent carbon atoms share electrons in a highly stable configuration. The nanotubes aren’t merely sitting on the graphene sheet; they become a part of it.

“Many people have tried to attach nanotubes to a metal electrode and it’s never gone very well because they get a little electronic barrier right at the interface,” Tour said. “By growing graphene on metal (in this case copper) and then growing nanotubes from the graphene, the electrical contact between the nanotubes and the metal electrode is ohmic. That means electrons see no difference, because it’s all one seamless material.

In the new work, the team grew a specialized odako that retained the iron catalyst and aluminum oxide buffer but put them on top of a layer of graphene grown separately on a copper substrate. The copper stayed to serve as an excellent current collector for the three-dimensional hybrids that were grown within minutes to controllable lengths of up to 120 microns.

Electron microscope images showed the one-, two- and three-walled nanotubes firmly embedded in the graphene, and electrical testing showed no resistance to the flow of current at the junction.

“The performance we see in this study is as good as the best carbon-based supercapacitors that have ever been made,” Tour said. “We’re not really a supercapacitor lab, and still we were able to match the performance because of the quality of the electrode. It’s really remarkable, and it all harkens back to that unique interface.”

Here’s the citation and a link for the article,

A seamless three-dimensional carbon nanotube graphene hybrid material by Yu Zhu, Lei Li, Chenguang Zhang, Gilberto Casillas,  Zhengzong Sun, Zheng Yan, Gedeng Ruan, Zhiwei Peng, Abdul-Rahman O. Raji, Carter Kittrell, Robert H. Hauge & James M. Tour in Nature Communications 3, Article number:1225 doi:10.1038/ncomms2234 Published 27 November 2012

This article is behind a paywall.

Graphene dreams of the Morph

For anyone who’s not familiar with the Morph, it’s an idea that Nokia and the University of Cambridge’s Nanoscience Centre have been working on for the last few years. Originally announced as a type of flexible phone that you could wrap around your wrist, the Morph is now called a concept.  Here’s an animation illustrating some of the concepts which include flexibility and self-cleaning,

There have been very few announcements of any kind about the Morph or the technology that will support this concept. A few months ago, they did make an announcement about researching graphene as a means of actualizing the concept (noted in my May 6, 2011 posting [scroll down about 1/2 way]).

Interestingly the latest research published  on graphene and the flexible, transparent screens that are necessary to making something like the Morph a reality has come from a lab at Rice University. From the August 1, 2011 news item on Nanowerk,

The lab of Rice chemist James Tour lab has created thin films that could revolutionize touch-screen displays, solar panels and LED lighting. The research was reported in the online edition of ACS Nano (“Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes”).

Flexible, see-through video screens may be the “killer app” that finally puts graphene — the highly touted single-atom-thick form of carbon — into the commercial spotlight once and for all, Tour said. Combined with other flexible, transparent electronic components being developed at Rice and elsewhere, the breakthrough could lead to computers that wrap around the wrist and solar cells that wrap around just about anything. [emphasis mine]

The lab’s hybrid graphene film is a strong candidate to replace indium tin oxide (ITO), a commercial product widely used as a transparent, conductive coating. It’s the essential element in virtually all flat-panel displays, including touch screens on smart phones and iPads, and is part of organic light-emitting diodes (OLEDs) and solar cells.

Here’s James Tour and Yu Zhu, the paper’s lead author, explaining how the flexible screen was developed,

There are other flexible screens and competitors to the Morph notably the PaperPhone mentioned in my May 6,2011 posting (scroll down about 2/3 of the way) and in my May 12, 2011 posting featuring an interview with Roel Vertegaal of Queen’s University, Ontario, Canada, about the PaperPhone. (We did not discuss the role that graphene might or might not play in the development of the Paperphone’s screens.)

I wonder what impact this work at Rice will have not only for the Morph and the PaperPhone but on the European Union’s pathfinder research competition (the prize is $1B Euros), mentioned in my June 13, 2011 posting about graphene (scroll down about 1/3 of the way). Graphene is one of the research areas being considered for the prize.

ETA Aug. 5, 2011: Tour’s team just published another paper on graphene, one that proves you can make it from anything containing carbon according the Aug. 4, 2011 news item, One Box of Girl Scout Cookies Worth $15 Billion: Lab Shows Troop How Any Carbon Source Can Become Valuable Graphene, on Science Daily,

The cookie gambit started on a dare when Tour mentioned at a meeting that his lab had produced graphene from table sugar.

“I said we could grow it from any carbon source — for example, a Girl Scout cookie, because Girl Scout Cookies were being served at the time,” Tour recalled. “So one of the people in the room said, ‘Yes, please do it. … Let’s see that happen.'”

Members of Girl Scouts of America Troop 25080 came to Rice’s Smalley Institute for Nanoscale Science and Technology to see the process. Rice graduate students Gedeng Ruan, lead author of the paper, and Zhengzong Sun calculated that at the then-commercial rate for pristine graphene — $250 for a two-inch square — a box of traditional Girl Scout shortbread cookies could turn a $15 billion profit.

Here’s the full reference for this second paper,

Gedeng Ruan, Zhengzong Sun, Zhiwei Peng, James M. Tour. Growth of Graphene from Food, Insects and Waste. ACS Nano, 2011; 110729113834087 DOI: 10.1021/nn202625c

The article is behind a paywall.