Tag Archives: Yue Wang

Nanotechnology-enabled pain relief for tooth sensitivity

A November 23, 2021 news item on phys.org announces research from Australia that may lead to pain relief for anyone with sensitive teeth,

In an Australian first, researchers from the University of Queensland have used nanotechnology to develop effective ways to manage tooth sensitivity.

Dr. Chun Xu from UQ’s [University of Queensland] School of Dentistry said the approach might provide more effective long-term pain relief for people with sensitive teeth, compared to current options.

A November 23, 2021 University of Queensland press release, which originated the news item, describes the condition leading to tooth sensitivity and how the proposed solution works (Note: Links have been removed),

“Dentin tubules are located in the dentin, one of the layers below the enamel surface of your teeth,” Dr Xu said.

“When tooth enamel has been worn down, and the dentin are exposed, eating or drinking something cold or hot can cause a sudden sharp flash of pain.

“The nanomaterials used in this preclinical study can rapidly block the exposed dentin tubules and prevent the unpleasant pain.

“Our approach acts faster and lasts longer than current treatment options.

“The materials could be developed into a paste, so people who have sensitive teeth could simply apply this paste to the tooth and massage for one to three minutes.

“The next step is clinical trials.”

Tooth sensitivity affects up to 74 per cent of the population, at times severely impacting quality of life and requiring expensive treatment.

“If clinical trials are successful people will benefit from this new method that can be used at home, without the need to go to a dentist in the near future,” Dr Xu said.

“We hope this study encourages more research using nanotechnology to address dental problems.”

The team also included researchers from UQ’s Australian Institute for Bioengineering and Nanotechnology (AIBN.

Here’s a link to and a citation for the paper,

Calcium-Doped Silica Nanoparticles Mixed with Phosphate-Doped Silica Nanoparticles for Rapid and Stable Occlusion of Dentin Tubules by Yuxue Cao, Chun Xu, Patricia P. Wright, Jingyu Liu, Yueqi Kong, Yue Wang, Xiaodan Huang, Hao Song, Jianye Fu, Fang Gao, Yang Liu, Laurence J. Walsh, and Chang Lei. ACS Appl. Nano Mater. 2021, 4, 9, 8761–8769 DOI: https://doi.org/10.1021/acsanm.1c01365 Publication Date:August 25, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

New ways to sense landmines

Scottish researchers have recently published a study about an ultra-portable explosives sensor giving hope for a more reliable way to sense landmines. From the August 16, 2011 news item on Nanowerk,

Decades after the bullets have stopped flying, wars can leave behind a lingering danger: landmines that maim civilians and render land unusable for agriculture. Minefields are a humanitarian disaster throughout the world, and now researchers in Scotland have designed a new device that could more reliably sense explosives, helping workers to identify and deactivate unexploded mines.

Other devices have used the change in a fluorescent polymer’s light-emitting power to detect explosive vapors, but the Scottish team’s prototype, described in the AIP’s new journal AIP Advances (“Ultra-portable explosives sensor based on a CMOS florescence lifetime analysis micro-system”), is the first to use a compact silicon-based micro-system to measure the change in the length of time an electron stays in the ‘excited’ higher energy state.

This measurement is less affected by environmental factors, such as stray light, which should make the device more reliable.

The sensor itself is 20 × 13 × 7 cm3,

A photo of the customized sensing box. Consisting of two ports for gas flow, two wires for connection to an external DC power supply and a USB connection, with the CMOS system sitting inside (Downloaded from http://aipadvances.aip.org/resource/1/aaidbi/v1/i3/p032115_s1?view=fulltext&bypassSSO=1).

(There is open access to the article which is being distributed under a Creative Commons licence in the American Institute of Physics’ AIP Advances journal.)

According to the news item on Nanowerk, the prototype is not yet ready for commercialization but the researchers (Yue Wang, Bruce R. Rae, Robert K. Henderson, Zheng Gong, Jonathan Mckendry, Erdan Gu, Martin D. Dawson, Graham A. Turnbull, and Ifor D. W. Samuel) are hopeful that it will be possible soon.