Tag Archives: Zooniverse

Mary Shelley’s Frankenstein, the scientist who may have helped inspire the story, and a poetry/science project

Some of those early scientists were pretty wild (e.g., they experimented on themselves). This March 23, 2023 essay on The Conversation by Alexis Wolf, Research Associate on the Davy Notebooks Project, Lancaster University, and Andrew Lacey, Senior Research Associate on the Davy Notebooks Project, Lancaster University, sheds some light on one of those ‘wild ones’, Note: Links have been removed,

Sir Humphry Davy (1778–1829) is usually remembered as the inventor of a revolutionary miner’s safety lamp. But his wild popularity came as much from his influence on popular culture as it did from his contributions to chemistry and applied science.

In the first few years of the 19th century, there was no hotter spectacle in London than Davy’s lectures at the Royal Institution. The carriage traffic jams caused by his keen audience led to the introduction of London’s first one-way street.

Hundreds of members of the public, many of them women, crowded into the lecture theatre to hear the charismatic Davy speak about his cutting edge research. They would watch demonstrations of his work, which often included elaborate explosions and other breathtaking displays.

In more recent times, Davy’s star has waned. Through our work on the Davy Notebooks Project, we aim to change that. Thanks to the help of thousands of volunteers, we’re creating the first digital edition of Davy’s 83 manuscript notebooks, an exciting and important collection that we’ll soon be able to share with readers all over the world.

The first lecture Davy gave at the Royal Institution was on the subject of galvanism (the electricity generated by chemical actions). The force was thought at the time to be capable of animating matter – or of bringing something dead to life.

That last paragraph certainly suggests the Frankenstein story as the essayists expand upon later,

Davy’s famous lectures on the animating power of electricity at the Royal Institution may have inspired a young Mary Shelley as she came up with the idea for Frankenstein (1818), a novel that questioned the boundaries of creation using emerging scientific ideas.

Shelley may have even modelled aspects of the charming but reckless Victor Frankenstein on Davy himself. In fact, many of the things that Davy said in his lectures were borrowed word-for-word to craft the fictional scientist’s dangerous experiments.

But, as Mary Shelley probably would have known, Davy was also a writer himself with close ties to the leading authors of his day. [Mary Shelley wrote her book on a trip to Switzerland which included Lord Byron.]

He was friends with poets Lord Byron and Robert Southey and had a hand in the creation of some of the greatest works of the Romantic period. This included editing the second edition of William Wordsworth and Samuel Taylor Coleridge’s Lyrical Ballads (1800).

And he wrote his own poetry – lots of it. The pages of Davy’s dozens of surviving notebooks are crammed full of poems, both published and obscure, which share space with the complex records of his scientific experiments, alongside the notes for Davy’s jaw-dropping lectures.

The Davy Notebooks Project, part of the Zooniverse (a citizen science web portal), has this from a researcher on its homepage,

As we see in his notebooks, Davy didn’t see the arts and the sciences as ‘two cultures’. In these manuscripts, we see poetry and chemical enquiry combined: both offered, for Davy, important ways of exploring the mysteries of the world around him.

According to the statistics on the site, the project is 96% complete but they appear to be still accepting volunteers.

Want to help Arctic science and look at polar bears from the comfort of home?

Two polar bears scored according to the Polar Bear Score Card Standard Fatness Index. The bear on the left is categorized as thin, a score of 2/5, while the bear on the right is considered very fat, 5/5. (Photo: Doug Clark, USask

A March 1, 2021 news item on phys.org announced a call for volunteers from University of Saskatchewan (USask) polar bear researcher Doug Clark (the response was tremendous),

University of Saskatchewan (USask) researcher Doug Clark is launching a first-of-its-kind research project that will engage citizen volunteers to help advance knowledge about polar bear behavior by analyzing a decade’s worth of images captured by trail cameras at Wapusk National Park in northern Manitoba.

“This is a totally different way to do polar bear research,” said Clark, an associate professor at USask’s School of Environment and Sustainability. “It’s non-invasive, it involves the public for the first time, and it’s being done in a way that can carry on through the pandemic without endangering anyone in northern communities.”

A February 26, 2021 University of Saskatchewan news release by Sarath Peiris, which originated the news item, described the project

Clark is collaborating with Oxford University penguinologist Tom Hart on the project, which will be run on Zooniverse—a “people-powered” online platform that has more than two million volunteers worldwide who assist researchers in almost every discipline to sort and organize data.

Hart has been using Zooniverse to help with his Antarctic Penguin Watch and Seabird Watch projects. He’s helping Clark and his students to set up the polar bear project by aggregating and uploading data, and will work with Clark on the analysis. (The platform gets institutional support from Oxford University and the Adler Planetarium, and receives grants from a variety of sources.)

“This allows people, who might otherwise just passively consume images on TV and social media, to participate in polar bear research and understand how these bears are interacting with people and other wildlife in what we know is a rapidly changing environment,” said Clark.

The volunteers are supplied with a field guide and asked to count the number of bears in photos, their gender, cubs, body condition and other factors, choosing from provided options. Beta testing with more than 60 volunteers showed the process works well. The photos will be uploaded in tranches over the coming months, allowing volunteers to work through one batch before moving on to the next.

“Volunteers can help us process data in ways that are incredibly labour-intensive, which otherwise would take us and our students years to do. Frankly, Zooniverse produces more robust data and more robust analyses than if we were tiredly flipping through photos on our own.”

The project … launched Feb. 27 [2021\, on International Polar Bear Day.

The research project began in 2011 when Clark was asked by Parks Canada to find out if the field camps it established in Wapusk attracted or repelled polar bears—a question that still hasn’t been conclusively answered.

Other questions his team is trying to answer are:

  • What are the drivers of polar bear visits to human infrastructure/activity? (i.e. is it environmental, is it a result of a lack of sea ice/nutritional stress, or is it a response to human activity?)
  • Are there changes over time in where/when polar bears, and all the other Arctic and boreal species seen in the photos, are observed?

Researchers have installed five non-invasive trail cameras at each of three field camp sites, and eight more at the Churchill Northern Studies Centre that operate year round, and have captured more than 600 discrete polar bear observations over 10 years, along with images of other species such as wolf, caribou, grizzly bears, moose, Arctic and red foxes, and even occasional wolverines.

The four sites are along the Hudson Bay coast and are separated by almost 200 kilometres, across the ecological boundary between boreal forest and tundra providing invaluable data on multiple species in a changing environment.

Ryan Brook, an associate professor in USask’s College of Agriculture and Bioresources, is taking advantage of the lucky “by-catch” of Clark’s project—the images of caribou and wolves—to conduct research on these species, especially caribou populations, at a time of Arctic warming and changing weather patterns.

Here’s more about the project from The Arctic Bears Project on Zooniverse,

Work with us to understand how polar, grizzly, and black bears behave in a changing environment

About The Arctic Bears Project

We’re learning how polar, grizzly, and black bears behave in the changing Arctic environment, with special attention to how they interact with people. The images you’ll see come from remote cameras set up on the fences of field camps in Wapusk National Park, on the west coast of Hudson Bay in Manitoba, Canada. Wapusk means “white bear” in the Cree language, and the park was established in 1996. At the time the park was established the area was well-known for its importance as polar bear denning habitat, and local people knew black bears lived in the forests there, but the appearance of grizzly bears in the late 1990s was a surprise. Read more about our research findings here.

When we say “we”, that includes a whole lot of people who all contribute to making this project happen: and not just the researchers! Wapusk National Park’s staff in Churchill, Manitoba, got the ball rolling in 2010 and since then community members in Churchill and elsewhere have helped us shape this project. Their enthusiasm for non-invasive wildlife research tools, and for the unexpected things we see on the cameras, motivates our team. In the early days of this work we were just excited that our cameras survived over the winter, but pretty soon we were realizing just how many photos we were collecting. This is where you come in: Zooniverse volunteers. Your help processing a decade’s worth of pictures from a changing sub-Arctic landscape is a critical task, and we’re so grateful to have your assistance with this research. These photos are downloaded once a year from most cameras, and the days when we finally see those images are special treats that every one of our team enjoys. We hope you experience the same feeling.

As of Wednesday, March 3, 2021, The Arctic Bears Project is now out of data but hopefully there will be more in the future. In the meantime, you can check out the Zooniverse for other projects.

Citizen science cyborgs: the wave of the future?

If you’re thinking of a human who’s been implanted with sort of computer chip, that’s not the kind of cyborg citizen scientist that Kevin Schawinski who developed the Galaxy Zoo citizen science project is writing about in his March 17, 2016 essay for The Conversation. Schawinski introduces the concept of citizen science and his premise,

Millions of citizen scientists have been flocking to projects that pool their time and brainpower to tackle big scientific problems, from astronomy to zoology. Projects such as those hosted by the Zooniverse get people across the globe to donate some part of their cognitive surplus, pool it with others’ and apply it to scientific research.

But the way in which citizen scientists contribute to the scientific enterprise may be about to change radically: rather than trawling through mountains of data by themselves, they will teach computers how to analyze data. They will teach these intelligent machines how to act like a crowd of human beings.

We’re on the verge of a huge change – not just in how we do citizen science, but how we do science itself.

He also explains why people power (until recently) has been superior to algorithms,

The human mind is pretty amazing. A young child can tell one human face from another without any trouble, yet it took computer scientists and engineers over a decade to build software that could do the same. And that’s not human beings’ only advantage: we are far more flexible than computers. Give a person some example images of galaxies instead of human faces, and she’ll soon outperform any computer running a neural net in classifying galaxies.

I hit on that reality when I was trying to classify about 50,000 galaxy images for my Ph.D. research in 2007. I took a brief overview of what computers could do and decided that none of the state-of-the-art solutions available was really good enough for what I wanted. So I went ahead and sorted nearly 50,000 galaxies “by eye.” This endeavor led to the Galaxy Zoo citizen science project, in which we invited the public to help astronomers classify a million galaxies by shape and discover the “weird things” out there that nobody knew are out there, such as Hanny’s Voorwerp, the giant glowing cloud of gas next to a massive galaxy.

But the people power advantage has changed somewhat with deep brains (deep neural networks), which can learn and develop intuition the way humans do. One of these deep neural networks has made recent news,

Recently, the team behind Google’s DeepMind has thrown down the gauntlet to the world’s best Go players, claiming that their deep mind can beat them. Go has remained an intractable challenge to computers, with good human players still routinely beating the most powerful computers – until now. Just this March AlphaGo, Google’s Go-playing deep mind, beat Go champion Lee Sedol 4-1.

Schawinski goes on to make his case for this new generation of machine intelligence,

We’re now entering an era in which machines are starting to become competitive with humans in terms of analyzing images, a task previously reserved for human citizen scientists clicking away at galaxies, climate records or snapshots from the Serengeti. This landscape is completely different from when I was a graduate student just a decade ago – then, the machines just weren’t quite up to scratch in many cases. Now they’re starting to outperform people in more and more tasks.

He then makes his case for citizen science cyborgs while explaining what he means by that,

But the machines still need help – our help! One of the biggest problems for deep neural nets is that they require large training sets, examples of data (say, images of galaxies) which have already been carefully and accurately classified. This is one way in which the citizen scientists will be able to contribute: train the machines by providing high-quality training sets so the machines can then go off and deal with the rest of the data.

There’s another way citizen scientists will be able to pitch in: by helping us identify the weird things out there we don’t know about yet, the proverbial Rumsfeldian [Donald Rumsfeld, a former US Secretary of Defense under both the Gerald Ford and George H. Bush administrations] “unknown unknowns.” Machines can struggle with noticing unusual or unexpected things, whereas humans excel at it.

So envision a future where a smart system for analyzing large data sets diverts some small percentage of the data to human citizen scientists to help train the machines. The machines then go through the data, occasionally spinning off some more objects to the humans to improve machine performance as time goes on. If the machines then encounter something odd or unexpected, they pass it on to the citizen scientists for evaluation.

Thus, humans and machines will form a true collaboration: citizen science cyborgs.

H/t March 17, 2016 phys.org news item.

I recommend reading Schwawinski’s article, which features an embedded video, in its entirety should you have the time.

Become a Higgs Hunter (anyone can do it)

The Higgs you’d be hunting is a Higgs boson; the one that was confirmed to worldwide jubilation in 2012. (For anyone not familiar with the Higgs, I have a Dec. 14, 2011 post which provides a introductory video from the US Fermi Lab along with more information.)

Thanks to David Bruggeman and a Nov. 29, 2014 post on his Pasco Phronesis blog I have additional details about this citizen science, aka, crowdsourced science, project,

If you accept the assignment, Higgs Hunters will provide you several particle images from the ATLAS detector at CERN.  Mark any tracks that are off-centre in the images and move on to the next.  The tracks represent decay of exotic particles, particles that could have resulted from the decay of the Higgs boson.

Here’s more from a Science Magazine Nov. 26, 2014 posting (Note: Links have been removed),

Today [Nov. 26, 2014] marks the beginning of your chance to hunt for tiny explosions that could eventually lead to entirely new physics. Head to higgshunters.org to help scientists analyze 25,000 images from CERN’s particle collider, but be warned, you’ll be looking for evidence of the Higgs boson’s death. Some scientists believe that when the Higgs boson decays, it leaves behind other, completely new particles. …

Higgshunters.org has prepared its own video introduction to the project,

For those who prefer text, Higgs Hunters has this to say on its Introductory page,

In 2012, the world of Particle Physics rejoiced with the discovery of the long sought after Higgs boson particle. But this is just the beginning. In our search for answers to the most fundamental questions about the nature of reality, we are looking for your help in finding evidence of new physics beyond our current understanding. Through searching for exotic decays (particles falling apart in unexpected ways) in the Large Hadron Collider’s particle collisions, you can be a part of the next great revolution in Physics. The LHC’s computer programs were not designed to look for these decays, but we are willing to bet that a keen pair of human eyes can. So how about it, are you ready to change our understanding of the world?

On its How you can help page, the Higgs Hunters scientists describe the magnitude of the project and The Zooniverse (a citizen science organization), which is providing the platform for this project Note: Links have been removed,

Particle colliders produce a huge amount of data – so large in fact that the world-wide web was invented at CERN so scientists could share the data with each other to handle it. CERN now has a global computing grid of 170 computing centres in 40 countries trawling through the data, but computers are far from perfect. Unlike the human brain, which is naturally curious and excellent at pattern recognition, computer programs can only find what they have been taught how to find.

The Zooniverse has a rich history of making new discoveries that computers had completely missed (some older members will recall the excitement surrounding ‘Hanny’s Voorwerp’ found by a citizen scientist working on the Galaxy Zoo project). In this spirit, we need your help to look for the weird and wonderful secrets hiding in the LHC data. In doing so, you will also be teaching our computers how to better spot exotic particle events, speeding up the process of future scientific discoveries! To do this Higgs Hunters shows you a combination of simulated and real data. We need to understand what kind of events can be ‘detected’ using this site, and so we include computer-generated data as well as real data. You’ll be told after each classification if it was a simulation.

With your help, we can collectively improve our understanding of the universe. The next new discovery is waiting to be found!

Good luck!

I last mentioned The Zooniverse and citizen science in a Nov. 19, 2014 post about the upcoming American Association for the Advancement of Science (AAAS) 2015 meeting in California. Citizen science will be discussed in presentations at the meeting and also at the  Citizen Science Association’s first conference (which is being held as a pre-AAAS 2015 meeting conference).

American Association for the Advancement of Science (AAAS) 2015 meeting in San Jose, CA from Feb. 12 -16, 2014

The theme for the 2015 American Association for the Advancement of Science meeting is Innovations, Information, and Imaging and you can find the program here. A few of the talks and presentations caught my eye and I’m starting with the plenary lectures as these reflect, more or less, the interpretation of the theme and set the tone for the meeting.

Plenary lectures

President’s Address
Thursday, 12 February 2015: 6:00 PM-7:30 PM

Dr. Gerald Fink’s work in genetics, biochemistry, and molecular biology has advanced our understanding of gene regulation, mutation, and recombination. He developed a technique for transforming yeast that allowed researchers to introduce a foreign piece of genetic material into yeast cells and study the inheritance and expression of that DNA. [emphasis mine] The technique, fundamental to genetic engineering, laid the groundwork for the commercial use of yeast as biological factories for manufacturing vaccines and other drugs, and set the stage for genetic engineering in all organisms. Fink chaired a National Research Council Committee that produced the 2003 report Biotechnology Research in an Age of Terrorism: Confronting the Dual Use Dilemma, recommending practices to prevent the potentially destructive application of biotechnology research while enabling legitimate research. …

I did not include Dr.Fink’s many, many professional attributes but rest assured Dr. Fink has founded at least one research group, received many professional honours, and has multiple degrees.

Back to the plenary lectures,

Daphne Koller: The Online Revolution: Learning Without Limits
Plenary Lecture
Friday, 13 February 2015: 5:00 PM-6:00 PM

Dr. Daphne Koller is the Rajeev Motwani Professor in the Department of Computer Science at Stanford University and president and co-founder of Coursera, an online education platform. Her research focus is artificial intelligence and its applications in the biomedical sciences. She received her bachelor’s and master’s degrees from Hebrew University of Jerusalem. Koller completed her Ph.D. at Stanford under the supervision of Joseph Halpern and performed postdoctoral research at University of California, Berkeley. She was named a MacArthur Fellow in 2004 and was awarded the first ACM-Infosys Foundation Award in Computing Sciences. She co-authored, with Nir Friedman, a textbook on probabilistic graphical models and offered a free online course on the subject. She and Andrew Ng, a fellow Stanford computer science professor, launched Coursera in 2012. Koller and Ng were recognized on the 2013 Time 100 list of the most influential people in the world.

David Baker: Post-Evolutionary Biology: Design of Novel Protein Structures, Functions, and Assemblies

Plenary Lecture

Saturday, 14 February 2015: 5:00 PM-6:00 PM

Dr. David Baker is a biochemist and computational biologist whose research focuses on the prediction and design of macromolecular structures and functions. He is the director of the Rosetta Commons, a consortium of labs and researchers that develop the Rosetta biomolecular structure prediction and design program, which has been extended to the distributed computing project Rosetta@Home and the online computer game Foldit. He received his Ph.D. in biochemistry at the University of California, Berkeley and completed postdoctoral work in biophysics at University of California, San Francisco. Baker has received numerous awards in recognition of his work, including the AAAS Newcomb Cleveland Prize; the Sackler International Prize in Biophysics; the Overton Prize from the International Society of Computational Biology; the Feynman Prize from the Foresight Institute; and the Centenary Award from the Biochemical Society. He is an investigator of the Howard Hughes Medical Institute, and a member of the National Academy of Sciences and the American Academy of Arts and Sciences.[emphasis mine]

I found the mention of the Foresight Institute (a nanotechnology organization founded by Eric Drexler and Christine Petersen) quite interesting. The title of Baker’s presentation certainly brings to mind, synthetic biology.

Back to the plenary lectures,

Neil Shubin: Finding Your Inner Fish
Plenary Lecture
Monday, 16 February 2015: 8:30 AM-9:30 AM

Dr. Neil Shubin is a paleontologist and evolutionary biologist who researches the origin of animal anatomical features. He has done field work in Greenland, Africa, Asia, and North America. One of his discoveries, Tiktaalik roseae, has been described as the “missing link” between fish and land animals. He has also done important work on the developmental biology of limbs, and he uses his diverse fossil findings to devise hypotheses on how anatomical transformations occurred by way of genetic and morphogenetic processes. He is a fellow of the John Simon Guggenheim Memorial Foundation and the American Association for the Advancement of Science and a member of the National Academy of Sciences. He earned a Ph.D. in organismic and evolutionary biology from Harvard University. Shubin’s popular science book Your Inner Fish: A Journey into the 3.5-Billion-Year History of the Human Body was adapted for a PBS documentary series in 2014.

Here are a few presentations from the main program; this first one is a ‘conference within a conference’,

Citizen Science 2015, Day One
Pre-registration required
Wednesday, 11 February 2015: 8:30 AM-5:00 PM

Citizen science is a partnership between everyday people and professional scientists to investigate pressing questions about the world. Citizen Science 2015 invites anyone interested in such collaborations to participate in a two-day pre-conference before the AAAS Annual Meeting. All involved in any aspect of citizen science are welcome, including researchers, project leaders, educators, evaluators, designers and makers, volunteers, and more–representing a wide variety of disciplines. Join people from across the field of citizen science to discuss designing, implementing, sustaining, evaluating, and participating in projects. Share your project innovations and questions. Citizen Science 2015 is the inaugural conference and gathering of the newly formed Citizen Science Association (CSA). For additional information, including Citizen Science Conference registration, visit www.citizenscienceassociation.org.

Revolutionary Vision: Implants, Prosthetics, Smart Glasses, and the Telescopic Contact Lens
Friday, 13 February 2015: 8:00 AM-9:30 AM

According to the World Health Organization, 285 million people are estimated to be visually impaired worldwide. Age-related macular degeneration alone is the leading cause of blindness among older adults in the western world. These facts leave no question as to why the brightest minds in science and engineering are setting their sights on vision through new electronics, retinal prosthesis, wearable technologies, and even telescopic contact lenses. Researchers are bringing into focus novel electronics such as systems on plastic, which are deformable and implantable, zero-power, and wireless and have numerous applications for sight and vision. Retinal prosthesis combined with video goggles pulsing near-infrared light, meanwhile, have restored up to half of normal acuity in rats. This symposium showcases and demos the latest prototypes tackling form as well as function: smart glasses with novel display architecture that make them small and light while maintaining an optimal field of view. These breakthroughs not only help subjects see but also hold promise for noninvasive continuous monitoring of eye health. Scientists will reveal the first-ever telescopic contact lens, which magnifies 2.8 times and offers hope for millions suffering from macular degeneration and seeking alternatives to bulky glasses and invasive surgery. These advances reveal the great promise that science holds for the visually impaired — truly a sight to behold.
Organizer:
Megan Williams, swissnex
Co-organizers:
Christian Simm, swissnex
and Melanie Picard, swissnex
Moderator:
Christian Simm, swissnex
Speakers:
Daniel Palanker, Stanford University
Restoration of Sight with Photovoltaic Subretinal Prosthesis
Eric Tremblay, Swiss Federal Institute of Technology (EPFL)
Smart Glasses and Telescopic Contact Lenses for Macular Degeneration
Giovanni Antonio Salvatore, ETH Zurich
The Next Technological Leap in Electronics

Celebration of 2015: The International Year of Light
Friday, 13 February 2015: 8:30 AM-11:30 AM

In recognition that light-based science and technologies play a critical role in our daily lives, the United Nations passed a resolution declaring 2015 the International Year of Light. The UN resolution states that “applications of light science and technology are vital for existing and future advances in medicine, energy, information and communications, fiber optics, astronomy, agriculture, archaeology, entertainment, and culture.” Hundreds of science and engineering organizations across the globe signed on in support of the International Year of Light 2015 and will be raising awareness of light-based science and technology throughout the year. This symposium brings together speakers from diverse fields to illustrate the many sectors that are influenced by optics and photonics.
Organizer:
Martha Paterson, The Optical Society (OSA)
Co-organizers:
Anthony Johnson, University of Maryland
and Phil Bucksbaum, Stanford University
Moderator:
Anthony Johnson, University of Maryland
Speakers:
Elizabeth Hillman, Columbia University
Optics in Neuroscience
Warren Warren, Duke University
Applying Nonlinear Laser Microscopy to Melanoma Diagnosis and Renaissance Art Imaging
Uwe Bergmann, SLAC National Accelerator Laboratory
X-Ray Laser Research: Lighting Our Future
Alan Eli Willner, University of Southern California
Optical Communications
Christopher Stratas , Flextronics
LED Lighting and Energy Efficiency
R. Rox Anderson, Harvard Medical School
Lasers in Medicine

I last mentioned the upcoming International Year of Light in a Nov. 7, 2014 post about the Nanoscale Informal Science Education Network (NISENet) newsletter. For anyone who has difficulty connecting nano with light, remember the Lycurgus Cup (Sept. 21, 2010 post) infused with gold and silver nanoparticles and which appears either green or red depending on how the light is shone?

Back to the programme,

The Future of the Internet: Meaning and Names or Numbers?
The Future of Computing
Friday, 13 February 2015: 10:00 AM-11:30 AM

Information-centric networking (ICN) is a new, disruptive technology that holds the promise of eliminating many of the internet’s current technical shortcomings. The idea is based on two simple concepts: addressing information by its name rather than by its location, and adding computation and memory to the network, especially at the edge. The implications for network architects are far reaching and offer both elegant solutions and perplexing implementation challenges. The field of ICN research is active, including hundreds of projects at leading academic, industrial, and government laboratories around the world. This session will explore the motivations and current state-of-the-art in ICN research from multiple perspectives and approaches. The speakers in this session have contributed to every facet of the internet’s evolution since its inception.
Organizer:
Glenn T. Edens, PARC Xerox
Co-Organizer:
J.J. Garcia-Luna-Aceves, University of California, Santa Cruz
Speakers:
Vinton Cerf, Google Inc.
Digital Vellum
David Oran, Cisco Systems
Information-Centric Networking: Is It Ready for Prime Time? Will It Ever Be?
Glenn T. Edens, PARC Xerox
Information-Centric Networking: Towards a Reliable and Robust 21st Century Internet

It seems odd that the speakers come from industry/business exclusively.

Comics, Zombies, and Hip-Hop: Leveraging Pop Culture for Science Engagement
Friday, 13 February 2015: 1:00 PM-2:30 PM

Access to quality scientific information is progressively more important in society today. The critical ways information can be used range from increasing scientific literacy and developing the public’s understanding of behaviors that promote health and well-being, to increasing interest in careers in science and success in school — particularly among students traditionally underrepresented in the sciences. Traditional forms of scientific communication — textbooks, talks, and articles in the lay press — succeed at reaching some, but leave many others in the dark. Recent research also indicates that scientists have a narrow view of outreach, mostly considering it as simply giving a talk at a school. However, new forms of culturally relevant engagement for K-12 students are emerging — comic books with rich scientific content that have been demonstrated to increase student engagement, novel workshops (for settings in and out of school) that interweave STEM  exploration with creative writing to build students’ scientific and written literacy, and connecting hip-hop culture and the classroom through rap — while engaging students as co-teachers and translators to help their peers learn science.
Organizer:
Rebecca L. Smith, University of California
Co-Organizer:
Kishore Hari, University of California
Moderator:
Rebecca L. Smith, University of California
Speakers:
Judy Diamond, University of Nebraska State Museum
Engaging Teenagers with Science Through Comics
Julius Diaz Panoriñgan, 826LA
Developing Multiple Literacies with Zombies, Space Exploration, and Superheroes
Tom McFadden, Nueva School
Science Rapping from Auckland to Oakland

Tom McFadden, one of the speakers, has been mentioned here on more than one occasion (most recently in a May 30, 2014 post).

Back to the program,

Citizen Science from the Zooniverse: Cutting-Edge Research with 1 Million Scientists
Friday, 13 February 2015: 1:30 PM-4:30 PM

Citizen science (CS) involves public participation and engagement in scientific research in a way that makes it possible to perform tasks that a small number of researchers could not accomplish alone, makes the research more democratic, and potentially educates the participants. Volunteers simply need access to a computer or tablet to become involved and assist research activities. The presence of massive online datasets and the availability of high-speed internet access provide many opportunities for citizen scientists to work on projects analyzing and interpreting data — especially images — in astronomy, biology, climate science, and other fields. The growing phenomenon of CS has drawn the interest of social scientists who study the efficacy of CS projects, motivations of participants, and applications to industry and policymaking. CS clearly has considerable potential in the era of big data. Galaxy Zoo is an example of a successful CS project; it invites volunteers to visually classify the shapes and structures of galaxies seen in images from optical surveys. The project resulted in catalogs of hundreds of thousands of classified galaxies, allowing for novel statistical analyses and the identification of rare objects. Its popularity led to the Zooniverse, a suite of projects in a diverse and interdisciplinary range of fields. This symposium will demonstrate how CS is becoming a vital tool and highlight the work of a variety of researchers.
Organizer:
Ramin A. Skibba, University of California
Speakers:
Laura Whyte, Adler Planetarium
Introduction to Citizen Science and the Zooniverse
Brooke Simmons, University of Oxford
The Scientific Impact of Galaxy Zoo
Alexandra Swanson, University of Minnesota
Photographing Carnivores with Snapshot Serengeti
Kevin Wood, University of Washington
Old Weather: Studying Historical Weather Patterns with Ship Logbooks
Paul Pharoah, University of Cambridge
Contributing to Cancer Research with Cell Slider
Philip Marshall, Stanford University
Using Space Warps To Find Gravitational Lenses

The Zooniverse has been mentioned here before, most recently in a March 17, 2014 post about the TED 2014 conference held in Vancouver (Canada),

Robert Simpson talked about citizen science, the Zooniverse project, and astronomy.  I have mentioned Zooniverse here (a Jan. 17, 2012 posting titled: Champagne galaxy, drawing bubbles for science and a Sept. 17, 2013 posting titled: Volunteer on the Plankton Portal and help scientists figure out ways to keep the ocean healthy.  Simpson says there are 1 million people participating in various Zooniverse projects and he mentioned that in addition to getting clicks and time from people, they’ve also gotten curiosity. That might seem obvious but he went on to describe a project (the Galaxy Zoo project) where the citizen scientists became curious about certain phenomena they were observing and as a consequence of their curiosity an entirely new type of galaxy was discovered, a pea galaxy. From the Pea Galaxy Wikipedia entry (Note: Links have been removed),

A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of Luminous Blue Compact Galaxy which is undergoing very high rates of star formation.[1] Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).

Pea Galaxies were first discovered in 2007 by the volunteer users within the forum section of the online astronomy project Galaxy Zoo (GZ).[2]

Here’s the last presentation I’m featuring in this post and it has a ‘nano’ flavour,

Beyond Silicon: New Materials for 21st Century Electronics
Saturday, 14 February 2015: 8:00 AM-9:30 AM

Silicon Valley gets its name from the element found at the heart of all microelectronics. For decades, pure silicon single crystals have been the basis for computer chips. But as chips become smaller and faster, doubling the number of transistors on integrated circuits every two years in accordance with Moore’s law, silicon is nearing its practical limits. Scientists are exploring radical new materials and approaches to take over where silicon leaves off — from graphene, a honeycombed sheet of carbon just one atom thick, to topological insulators that conduct electricity perfectly on their surfaces and materials that use the electron’s spin, rather than its charge, to store information. Beyond graphene, scientists are investigating relatively new types of two-dimensional materials that have graphene-like structures and are also semiconducting, making them a natural fit for advanced electronics. This session will describe theoretical and experimental progress in materials beyond silicon that hold promise for continued improvement in computer performance.
Organizer:
Glennda Chui, SLAC National Accelerator Laboratory
Discussant:
Shoucheng Zhang, Stanford University
Speakers:
Stuart S.P. Parkin, IBM Research
Spintronic and Ionitronic Materials and Devices
Joshua Goldberger, Ohio State University
Beyond Graphene: Making New Two-Dimensional Materials for Future Electronics
Elsa Reichmanis, Georgia Institute of Technology
Active Organic and Polymer Materials for Flexible Electronics

There are some very intriguing presentations and one theme not featured here: data visualization (several presentations about visualizing data and/or science can be found). you can explore for yourself, here’s the online program.

TED 2014 ‘pre’ opening with reclaimed river, reforesting the world, open source molecular animation software, and a quantum butterfly

Today, March 17, 2014 TED opened with the first of two sessions devoted to the 2014 TED fellows. The ones I’m choosing to describe in brief detail are those who most closely fall within this blog’s purview. My choices are not a reflection of my opinion about the speaker or the speaker’s topic or the importance of the topic.

First, here’s a list of the fellows* along with a link to their TED 2014 biography (list and links from the TED 2014 schedule),

Usman Riaz Percussive guitarist
Ziyah Gafić photographer + storyteller
Alexander McLean african prison activist
Dan Visconti composer + concert presenter
Aziza Chaouni architect + ecotourism specialist
Shubhendu Sharma reforestation expert
Bora Yoon Experimental musician
Aziz Abu Sarah entrepreneur + educator
Gabriella Gomez-Mont Creativity Officer, Guest Host
Jorge Mañes Rubio conceptual artist
Bora Yoon Experimental musician
Janet Iwasa molecular animator
Robert Simpson astronomer + web developer
Shohini Ghose quantum physicist + educator
Sergei Lupashin aerial robotics researcher + entrepreneur
Lars Jan director + media artist
Sarah Parcak Space archaeologist, TED Fellow [part of group presentation]
Tom Rielly Satirist [received a 5th anniversary gift, a muppet of himself from group]
Susie Ibarra composer + improviser + percussionist educator
Usman Riaz

Aziza Chaouni is an architect based in Morocco. From Fez (and I think she was born there), she is currently working to reclaim the Fez River, which she described as the ‘soul of the city’. As urbanization has taken over Fez, the river has been paved over as it has become more polluted with raw sewage being dumped into it along with industrial byproducts from tanning and other industries. As part of the project to reclaim the river, i.e., clean it and uncover it, Chaouni and her collaborators have created public spaces such as a playground which both cleanses the river and gives children a place to play which uncovering part of the city’s ‘soul’.

Shubhendu Sharma founded Afforestt with the intention of bringing forests which have been decimated not only in India but around the world. An engineer by training, he has adapted an industrial model used for car production to his forest-making endeavours. Working with his reforestation model, you can develop a forest with 300 trees in the space needed to park six cars and for less money than you need to buy an iPhone. The Afforestt project is about to go open-source meaning that anyone in the world can download the information necessary to create a forest.

Jorge Mañes Rubio spoke about his art project where he creates travel souvenirs, e.g., water from the near a submerged city in China. The city was submerged in the Three Gorges hydro dam project. For anyone not familiar with the project, from the Wikipedia Three Gorges Dam entry (Note: Links removed),

The Three Gorges Dam is a hydroelectric dam that spans the Yangtze River by the town of Sandouping, located in Yiling District, Yichang, Hubei province, China. The Three Gorges Dam is the world’s largest power station in terms of installed capacity (22,500 MW). In 2012, the amount of electricity the dam generated was similar to the amount generated by the Itaipu Dam. [2][3]

Except for a ship lift, the dam project was completed and fully functional as of July 4, 2012,[4][5] when the last of the main turbines in the underground plant began production. Each main turbine has a capacity of 700 MW.[3][6] The dam body was completed in 2006. Coupling the dam’s 32 main turbines with two smaller generators (50 MW each) to power the plant itself, the total electric generating capacity of the dam is 22,500 MW.[3][7][8]

The one souvenir he showed from that project featured symbols from traditional Chinese art festooned around the edges of white plastic bottle containing water from above a submerged Chinese city.

Janet Iwasa, a PhD in biochemistry, professor at the University of Utah and a molecular animator, talked about the animating molecular movement in and around cells. She showed an animation of a clathrin cage (there’s more about clathrin, a protein in a Wikipedia entry; looks a lot like a buckyball or buckminster fullerene except it’s not carbon) which provides a completely different understanding of how these are formed than is possible from still illustrations. She, along with her team, has created an open source software, Molecular Flipbook, which is available in in beta as of today, March 17, 2014.

The next session is starting. I’ll try and get back here to include more about Robert Simpson and Shohini Ghose.

ETa March 17, 2014 at 1521 PST:

Robert Simpson talked about citizen science, the Zooniverse project, and astronomy.  I have mentioned Zooniverse here (a Jan. 17, 2012 posting titled: Champagne galaxy, drawing bubbles for science and a Sept. 17, 2013 posting titled: Volunteer on the Plankton Portal and help scientists figure out ways to keep the ocean healthy.  Simpson says there are 1 million people participating in various Zooniverse projects and he mentioned that in addition to getting clicks and time from people, they’ve also gotten curiosity. That might seem obvious but he went on to describe a project (the Galaxy Zoo project) where the citizen scientists became curious about certain phenomena they were observing and as a consequence of their curiosity an entirely new type of galaxy was discovered, a pea galaxy. From the Pea Galaxy Wikipedia entry (Note: Links have been removed),

A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of Luminous Blue Compact Galaxy which is undergoing very high rates of star formation.[1] Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).

Pea Galaxies were first discovered in 2007 by the volunteer users within the forum section of the online astronomy project Galaxy Zoo (GZ).[2]

My final entry for this first TED fellow session is about Shohini Ghose, as associate professor of physics, at Wilfrid Laurier University (Waterloo, Canada). She spoke beautifully and you** think you understand while the person’s speaking but aren’t all that sure afterwards. She was talking about chaos at the macro and at the quantum levels. The butterfly effect (a butterfly beats its wings in one part of the world and eventually that disturbance which is repeated is felt as a hurricane in another part of the world) can also occur at the quantum level. In fact, quantum entanglement is generated by chaos at the quantum scale. She was accompanied by a video representing chaos and movement at the quantum scale.

* ‘fellow’ changed to ‘fellows’ March 17, 2013 1606 hours PST
** ‘iyou’ changed to ‘you’ Nov. 19, 2014.

Volunteer on the Plankton Portal and help scientists figure out ways to keep the ocean healthy

University of Miami (Florida, US) researchers with support from the US National Oceanic and Atmospheric Administration (NOAA),  the US National Science Foundation (NSF), and developers at Zooniverse.org  (last mentioned here in a Jan. 17, 2012 posting) have created the Plankton Portal as a means for volunteers/citizen scientists to assist them in their research (from the Sept. 17, 2013 news release on EurekAlert),

Today [Sept. 17, 2013], an online citizen-science project launches called “Plankton Portal” was created by researchers at the University of Miami Rosenstiel School of Marine and Atmospheric Sciences (RSMAS) in collaboration with the National Oceanic and Atmospheric Administration (NOAA) and the National Science Foundation (NSF) and developers at Zooniverse.org Plankton Portal allows you to explore the open ocean from the comfort of your own home. You can dive hundreds of feet deep, and observe the unperturbed ocean and the myriad animals that inhabit the earth’s last frontier.

Millions of plankton images are taken by the In Situ Ichthyoplankton Imaging System (ISIIS), a unique underwater robot engineered at the University of Miami in collaboration with Charles Cousin at Bellamare LLC and funded by NOAA and NSF. ISIIS operates as an ocean scanner that casts the shadow of tiny and transparent oceanic creatures onto a very high resolution digital sensor at very high frequency. So far, ISIIS has been used in several oceans around the world to detect the presence of larval fish, small crustaceans and jellyfish in ways never before possible. This new technology can help answer important questions ranging from how do plankton disperse, interact and survive in the marine environment, to predicting the physical and biological factors could influence the plankton community.

The dataset used for Plankton Portal comes from a project from the Southern California Bight, where Cowen’s [Dr. Robert K. Cowen, UM [University of Miami] RSMAS Emeritus Professor in Marine Biology and Fisheries (MBF) and now the Director of Oregon State University’s Hatfield Marine Science Center] team imaged plankton across a front, which is a meeting of two water masses, over three days in Fall 2010.

According to Jessica Luo, graduate student involved in this project, “in three days, we collected data that would take us more than three years to analyze.” Cowen agrees: “with the volume of data that ISIIS generates, it is impossible for us to individually classify every image by hand, which is why we are exploring different options for image analysis, from automatic image recognition software to crowd-sourcing to citizen scientists.”

“A computer will probably be able to tell the difference between major classes of organisms, such as a shrimp versus a jellyfish,” explains Luo, “but to distinguish different species within an order or family, that is still best done by the human eye.” Volunteer citizen scientists can assist by going to http://www.planktonportal.org. A field guide is provided, and the simple tutorial is easy to understand. Cowen and the science team will monitor the discussion boards; answer any questions about the classifications, the organisms, and the research they are conducting.

I went to the Plankton Portal and started one of the tutorials (click on the Classify tab)  and almost immediately made an error. They do have a means of recovery but you have to keep following their process. Personally, I would have preferred to abort and start over again. That said, this looks like an interesting project and I wish the best for the organizers.

Champagne galaxy, drawing bubbles for science

If you want to draw bubbles in the name of science and for a better understanding of this galaxy, go to The Milky Way Project to sign up.  Although you may want to read about the January 17, 2012 article by Paul Scott Anderson for physorg.com (originally published in Universe Today) for a better description than the project website offers,

Remember when you were a kid and blowing bubbles was such great fun? Well, stars kind of do that too. The “bubbles” are partial or complete rings of dust and gas that occur around young stars in active star-forming regions, known as stellar nurseries. So far, over 5,000 bubbles have been found, but there are many more out there awaiting discovery. Now there is a project that you can take part in yourself, to help find more of these intriguing objects.

They have been seen before, but now the task is to find as many as possible in the newer, high-resolution images from Spitzer [a space telescope]. A previous catalogue of star bubbles in 2007 listed 269 of them. Four other researchers had found about 600 of them in 2006. Now they are being found by the thousands. As of now, the new catalogue lists 5,106 bubbles, after looking at almost half a million images so far. As it turns out, humans are more skilled at identifying them in the images than a computer algorithm would be. People are better at pattern recognition and then making a judgment based on the data as to what actually is a bubble and what isn’t.

There are more details about The Milky Way Project in Anderson’s article which mentions the Zooniverse in passing. I was surprised to find out that (from the Zooniverse About page),

The Zooniverse is home to the internet’s largest, most popular and most successful citizen science projects. …

The Zooniverse began with a single project, Galaxy Zoo , which was launched in July 2007. The Galaxy Zoo team had expected a fairly quiet life, but were overwhelmed and overawed by the response to the project. Once they’d recovered from their server buckling under the strain, they set about planning the future!

The Zooniverse and the suite of projects it contains is produced, maintained and developed by the Citizen Science Alliance. The member institutions of the CSA work with many academic and other partners around the world to produce projects that use the efforts and ability of volunteers to help scientists and researchers deal with the flood of data that confronts them.

As for the Citizen Science Alliance (CSA) group mentioned in About Zooniverse, here’s a description from their home page,

“ The CSA is a collaboration of scientists, software developers and educators who collectively develop, manage and utilise internet-based citizen science projects in order to further science itself, and the public understanding of both science and of the scientific process. These projects use the time, abilities and energies of a distributed community of citizen scientists who are our collaborators ”

The CSA takes proposals and the next selection round will be in February 2012. From the CSA’s proposal page,

Thanks to generous support from the Alfred P. Sloan foundation, Adler Planetarium and the Citizen Science Alliance are pleased to announce the first open call for proposals by researchers who wish to develop citizen science projects which take advantage of the experience, tools and community of the Zooniverse. Successful proposals will receive donated effort of the Adler-based team to build and launch a new citizen science project.

Proposals are welcomed from scientists or researchers in any discipline that would significantly benefit from the active participation of tens or hundreds of thousands of volunteers. Building on the success of our existing projects, including Galaxy Zoo, Planet Hunters and Old Weather, successful proposals will be designed in partnership with the applicants, then implemented and hosted by the Zooniverse team. The applicants will therefore be free to concentrate on making good use of the work of volunteers for the benefit of their research.

We expect proposals to be made by a team who can take responsibility for defining the initial research problem, data set to be used, and who are committed to making use of the results.

They do recommend submitting your proposal by Jan. 15 by the latest which means this is a bit late but maybe next year, eh?

As for the champagne headline, thank you to Eli Bressert who compared the galaxy to champagne with all its bubbles (in Paul Scott Anderson’s article).