Tag Archives: Zoran Popoviç

Your grandma got STEM?

Jeff Bittel thank you for a story (Mar. 26, 2013 on Slate) about Rachel Levy and the website where she gently blows up the notion/stereotype that older women don’t understand science and technology and that they are too old to learn (Note: A link has been removed),

 Is your grandmother a particle physicist? Did she help the Navy build submarines or make concoctions of chlorine gas on the family’s front porch? Or is she a mathematician, inventor, or engineer? If so, then baby, your grandma’s got STEM.

Grandma Got STEM is a celebration of women working in and contributing to the fields of science, technology, engineering, and mathematics. It is also designed to combat the doting, fumbling, pie-making stereotype of grandmatrons.

That’s why Rachel Levy, an associate professor of mathematics at Harvey Mudd College, is collecting the stories of grandmas across the various fields of STEM. She first got the idea after hearing someone utter the phrase, “Just explain it like you would to your grandma.”

At first blush, such a thing seems harmless. But think about what it means—basically, all older women are stupid.

“For two or three years I thought about how I could address this issue without just making people angry and more inclined to use the phrase,” Levy told me. “If I could come up with a million examples of grandmothers who were tech-savvy, people wouldn’t say it anymore because it wouldn’t be apt.”

While attending the conference ScienceOnline this year, Levy realized she could harness the power of the Internet to collect stories and showcase them. So far, she’s been able to upload at least one grandma a day for about a month and a half—and the stories keep pouring in. Levy’s aim so far is to be as inclusive as possible. She’s accepting any grandma currently or previously involved in STEM. They can submit themselves or you can submit for them. Heck, they don’t even have to have children with children, per se. Age’ll do just fine.

Bittel might want to reconsider that bit about children and children with children. That can be a touchy topic.

Levy’s solution was to create the Grandma Got STEM website. From the Mar. 27, 2013 posting about Mary Vellos Klonowski,

GrandmaGotSTEM

Thank you to undergraduate Math/Computer Science Major Joey Klonowski, who submitted this post about his grandmother:

This photo is from the October 3, 1951 edition of The Southtown Economist, a daily newspaper on the South Side of Chicago, when my grandmother, Mary Klonowski, was 18. She attended DePaul University against the wishes of her father, who didn’t want his daughters to be college educated. She received a BS from DePaul in 1954 and was the only woman chemistry major in her class. She later earned a master’s in mathematics education and became a high school math teacher. She is now 80 years old and still working as a substitute teacher.

There are a lot of stories (covering quite the range of grannies) on the site. Levy is asking for international submissions as well,

Seeking international submissions!

You can help promote this project by sharing the posts on your blog, Facebook wall, or by retweeting them.

The project has readers from more than 100 countries, but submissions from only a few.  Please help make this blog an international effort by submitting posts or encouraging others to post.

Call for submissions – short

Know any geeky grannies?  Seeking submissions for Grandma got STEM.  Email name+pic+story to ggstem@hmc.edu.

Call for submissions – long

Call for submissions – Grandma got STEM.  Are you a grandmother working in a STEM (Science, Technology, Engineering, Mathematics) – related field?  Know any geeky grannies?  Email name+pic+story/remembrance to Rachel Levy:  ggstem (at) hmc (dot) edu.  Follow on Twitter: @mathcirque #ggstem  Project site:http://ggstem.wordpress.com

Presumably, the submissions need to be in English.

Getting back to Bittel’s Slate article, he mentions Foldit (here’s my first piece in an Aug. 6, 2010 posting [scroll down about 1/2 way]), a protein-folding game which has generated some very exciting science. He also notes some of that science was generated by older, ‘uneducated’ women. Bittel linked to Jeff Howe’s Feb. 27, 2012 article about Foldit and other crowdsourced science projects for Slate where I found this very intriguing bit,

“You’d think a Ph.D. in biochemistry would be very good at designing protein molecules,” says Zoran Popović, the University of Washington game designer behind Foldit. Not so. “Biochemists are good at other things. But Foldit requires a narrow, deeper expertise.”

Or as it turns out, more than one. Some gamers have a preternatural ability to recognize patterns, an innate form of spatial reasoning most of us lack. Others—often “grandmothers without a high school education,” says Popovic—exercise a particular social skill. “They’re good at getting people unstuck. They get them to approach the problem differently.” What big pharmaceutical company would have anticipated the need to hire uneducated grandmothers? (I know a few, if Eli Lilly HR is thinking of rejiggering its recruitment strategy.) [emphases mine]

There’s an interesting question and I didn’t see it answered in Howe’s article. What kind of grandmother who doesn’t have high school graduation joins a protein-folding game? I ask because neither of my parents had or have a high school education. Neither of them would have joined the game as neither would have had the confidence.

What I’ve tried to present here is a range of possibilities regarding age and education. Being older (female especially but also male, on occasion) doesn’t equal stupidity. As for education, I’ve never found that having high school graduation or a university degree(s) to be a guarantor of an exciting intellect. I mention these two points because it seems to me that people are being ranked as to age and education in ways that are unnecessarily exclusionary. Thank goodness for games like Foldit and websites like Grandma’s Got STEM which suggest alternatives to this relentless and ruthless form of ranking which disallows participation from the great bulk of us.

Folding, origami, and shapeshifting and an article with over 50,000 authors

I’m on a metaphor kick these days so here goes, origami (Japanese paper folding), and shapeshifting are metaphors used to describe a certain biological process that nanoscientists from fields not necessarily associated with biology find fascinating, protein folding.

Origami

Take for example a research team at the California Institute of Technology (Caltech) working to exploit the electronic properties of carbon nanotubes (mentioned in a Nov. 9, 2010 news item on Nanowerk). One of the big issues is that since all of the tubes in a sample are made of carbon getting one tube to react on its own without activating the others is quite challenging when you’re trying to create nanoelectronic circuits. The research team decided to use a technique developed in a bioengineering lab (from the news item),

DNA origami is a type of self-assembled structure made from DNA that can be programmed to form nearly limitless shapes and patterns (such as smiley faces or maps of the Western Hemisphere or even electrical diagrams). Exploiting the sequence-recognition properties of DNA base paring, DNA origami are created from a long single strand of viral DNA and a mixture of different short synthetic DNA strands that bind to and “staple” the viral DNA into the desired shape, typically about 100 nanometers (nm) on a side.

Single-wall carbon nanotubes are molecular tubes composed of rolled-up hexagonal mesh of carbon atoms. With diameters measuring less than 2 nm and yet with lengths of many microns, they have a reputation as some of the strongest, most heat-conductive, and most electronically interesting materials that are known. For years, researchers have been trying to harness their unique properties in nanoscale devices, but precisely arranging them into desirable geometric patterns has been a major stumbling block.

… To integrate the carbon nanotubes into this system, the scientists colored some of those pixels anti-red, and others anti-blue, effectively marking the positions where they wanted the color-matched nanotubes to stick. They then designed the origami so that the red-labeled nanotubes would cross perpendicular to the blue nanotubes, making what is known as a field-effect transistor (FET), one of the most basic devices for building semiconductor circuits.

Although their process is conceptually simple, the researchers had to work out many kinks, such as separating the bundles of carbon nanotubes into individual molecules and attaching the single-stranded DNA; finding the right protection for these DNA strands so they remained able to recognize their partners on the origami; and finding the right chemical conditions for self-assembly.

After about a year, the team had successfully placed crossed nanotubes on the origami; they were able to see the crossing via atomic force microscopy. These systems were removed from solution and placed on a surface, after which leads were attached to measure the device’s electrical properties. When the team’s simple device was wired up to electrodes, it indeed behaved like a field-effect transistor

Shapeshifting

For another more recent example (from an August 5, 2010 article on physorg.com by Larry Hardesty,  Shape-shifting robots),

By combining origami and electrical engineering, researchers at MIT and Harvard are working to develop the ultimate reconfigurable robot — one that can turn into absolutely anything. The researchers have developed algorithms that, given a three-dimensional shape, can determine how to reproduce it by folding a sheet of semi-rigid material with a distinctive pattern of flexible creases. To test out their theories, they built a prototype that can automatically assume the shape of either an origami boat or a paper airplane when it receives different electrical signals. The researchers reported their results in the July 13 issue of the Proceedings of the National Academy of Sciences.

As director of the Distributed Robotics Laboratory at the Computer Science and Artificial Intelligence Laboratory (CSAIL), Professor Daniela Rus researches systems of robots that can work together to tackle complicated tasks. One of the big research areas in distributed robotics is what’s called “programmable matter,” the idea that small, uniform robots could snap together like intelligent Legos to create larger, more versatile robots.

Here’s a video from this site at MIT (Massachusetts Institute of Technology) describing the process,

Folding and over 50, 000 authors

With all this I’ve been leading up to a fascinating project, a game called Foldit, that a team from the University of Washington has published results from in the journal Nature (Predicting protein structures with a multiplayer online game), Aug. 5, 2010.

With over 50,000 authors, this study is a really good example of citizen science (discussed in my May 14, 2010 posting and elsewhere here) and how to use games to solve science problems while exploiting a fascination with folding and origami. From the Aug. 5, 2010 news item on Nanowerk,

The game, Foldit, turns one of the hardest problems in molecular biology into a game a bit reminiscent of Tetris. Thousands of people have now played a game that asks them to fold a protein rather than stack colored blocks or rescue a princess.

Scientists know the pieces that make up a protein but cannot predict how those parts fit together into a 3-D structure. And since proteins act like locks and keys, the structure is crucial.

At any moment, thousands of computers are working away at calculating how physical forces would cause a protein to fold. But no computer in the world is big enough, and computers may not take the smartest approach. So the UW team tried to make it into a game that people could play and compete. Foldit turns protein-folding into a game and awards points based on the internal energy of the 3-D protein structure, dictated by the laws of physics.

Tens of thousands of players have taken the challenge. The author list for the paper includes an acknowledgment of more than 57,000 Foldit players, which may be unprecedented on a scientific publication.

“It’s a new kind of collective intelligence, as opposed to individual intelligence, that we want to study,”Popoviç [principal investigator Zoran Popoviç, a UW associate professor of computer science and engineering] said. “We’re opening eyes in terms of how people think about human intelligence and group intelligence, and what the possibilities are when you get huge numbers of people together to solve a very hard problem.”

There’s a more at Nanowerk including a video about the gamers and the scientists. I think most of us take folding for granted and yet it stimulates all kinds of research and ideas.