Author Archives: Maryse de la Giroday

Toronto’s ArtSci Salon and its Kaleidoscopic Imaginations on Oct 27, 2020 – 7:30 pm (EDT)

The ArtSci Salon is getting quite active these days. Here’s the latest from an Oct. 22, 2020 ArtSci Salon announcement (received via email), which can also be viewed on their Kaleidoscope event page,

Kaleidoscopic Imaginations

Performing togetherness in empty spaces

An experimental  collaboration between the ArtSci Salon, the Digital Dramaturgy Lab_squared/ DDL2 and Sensorium: Centre for Digital Arts and Technology, York University (Toronto, Ontario, Canada)

Tuesday, October 27, 2020

7:30 pm [EDT]

Join our evening of live-streamed, multi-media  performances, following a kaleidoscopic dramaturgy of complexity discourses as inspired by computational complexity theory gatherings.

We are presenting installations, site-specific artistic interventions and media experiments, featuring networked audio and video, dance and performances as we repopulate spaces – The Fields Institute and surroundings – forced to lie empty due to the pandemic. Respecting physical distance and new sanitation and safety rules can be challenging, but it can also open up new ideas and opportunities.

NOTE: DDL2  contributions to this event are sourced or inspired by their recent kaleidoscopic performance “Rattling the the Curve – Paradoxical ECODATA performances of A/I (artistic intelligence), and facial recognition of humans and trees

Virtual space/live streaming concept and design: DDL2  Antje Budde, Karyn McCallum and Don Sinclair

Virtual space and streaming pilot: Don Sinclair

Here are specific programme details (from the announcement),

  1. Signing the Virus – Video (2 min.)
    Collaborators: DDL2 Antje Budde, Felipe Cervera, Grace Whiskin
  2. Niimi II – – Performance and outdoor video projection (15 min.)
    (Nimii means in Anishinaabemowin: s/he dances) Collaborators: DDL2 Candy Blair, Antje Budde, Jill Carter, Lars Crosby, Nina Czegledy, Dave Kemp
  3. Oracle Jane (Scene 2) – A partial playreading on the politics of AI (30 min.)
    Playwright: DDL2 Oracle Collaborators: DDL2 Antje Budde, Frans Robinow, George Bwannika Seremba, Amy Wong and AI ethics consultant Vicki Zhang
  4. Vriksha/Tree – Dance video and outdoor projection (8 min.)
    Collaborators: DDL2 Antje Budde, Lars Crosby, Astad Deboo, Dave Kemp, Amit Kumar
  5. Facial Recognition – Performing a Plate Camera from a Distance (3 min.)
    Collaborators: DDL2 Antje Budde, Jill Carter, Felipe Cervera, Nina Czegledy, Karyn McCallum, Lars Crosby, Martin Kulinna, Montgomery C. Martin, George Bwanika Seremba, Don Sinclair, Heike Sommer
  6. Cutting Edge – Growing Data (6 min.)
    DDL2 A performance by Antje Budde
  7. “void * ambience” – Architectural and instrumental acoustics, projection mapping Concept: Sensorium: The Centre for Digital Art and Technology, York University Collaborators: Michael Palumbo, Ilze Briede [Kavi], Debashis Sinha, Joel Ong

This performance is part of a series (from the announcement),

These three performances are part of Boundary-Crossings: Multiscalar Entanglements in Art, Science and Society, a public Outreach program supported by the Fiends [sic] Institute for Research in Mathematical Science. Boundary Crossings is a series exploring how the notion of boundaries can be transcended and dissolved in the arts and the humanities, the biological and the mathematical sciences, as well as human geography and political economy. Boundaries are used to establish delimitations among disciplines; to discriminate between the human and the non-human (body and technologies, body and bacteria); and to indicate physical and/or artificial boundaries, separating geographical areas and nation states. Our goal is to cross these boundaries by proposing new narratives to show how the distinctions, and the barriers that science, technology, society and the state have created can in fact be re-interpreted as porous and woven together.

This event is curated and produced by ArtSci Salon; Digital Dramaturgy Lab_squared/ DDL2; Sensorium: Centre for Digital Arts and Technology, York University; and Ryerson University; it is supported by The Fields Institute for Research in Mathematical Sciences

Streaming Link 

Finally, the announcement includes biographical information about all of the ‘boundary-crossers’,

Candy Blair (Tkaron:to/Toronto)
Candy Blair/Otsίkh:èta (they/them) is a mixed First Nations/European,
2-spirit interdisciplinary visual and performing artist from Tio’tía:ke – where the group split (“Montreal”) in Québec.

While continuing their work as an artist they also finished their Creative Arts, Literature, and Languages program at Marianopolis College (cégep), their 1st year in the Theatre program at York University, and their 3rd year Acting Conservatory Program at the Centre For Indigenous Theatre in Tsí Tkaròn:to – Where the trees stand in water (Toronto”).

Some of Candy’s noteable performances are Jill Carter’s Encounters at the Edge of the Woods, exploring a range of issues with colonization; Ange Loft’s project Talking Treaties, discussing the treaties of the “Toronto” purchase; Cheri Maracle’s The Story of Six Nations, exploring Six Nation’s origin story through dance/combat choreography, and several other performances, exploring various topics around Indigenous language, land, and cultural restoration through various mediums such as dance,
modelling, painting, theatre, directing, song, etc. As an activist and soon to be entrepreneur, Candy also enjoys teaching workshops around promoting Indigenous resurgence such as Indigenous hand drumming, food sovereignty, beading, medicine knowledge, etc..

Working with their collectives like Weave and Mend, they were responsible for the design, land purification, and installation process of the four medicine plots and a community space with their 3 other members. Candy aspires to continue exploring ways of decolonization through healthy traditional practices from their mixed background and the arts in the hopes of eventually supporting Indigenous relations
worldwide.

Antje Budde
Antje Budde is a conceptual, queer-feminist, interdisciplinary experimental scholar-artist and an Associate Professor of Theatre Studies, Cultural Communication and Modern Chinese Studies at the Centre for Drama, Theatre and Performance Studies, University of Toronto. Antje has created multi-disciplinary artistic works in Germany, China and Canada and works tri-lingually in German, English and Mandarin. She is the founder of a number of queerly feminist performing art projects including most recently the (DDL)2 or (Digital Dramaturgy Lab)Squared – a platform for experimental explorations of digital culture, creative labor, integration of arts and science, and technology in performance. She is interested in the intersections of natural sciences, the arts, engineering and computer science.

Roberta Buiani
Roberta Buiani (MA; PhD York University) is the Artistic Director of the ArtSci Salon at the Fields Institute for Research in Mathematical Sciences (Toronto). Her artistic work has travelled to art festivals (Transmediale; Hemispheric Institute Encuentro; Brazil), community centres and galleries (the Free Gallery Toronto; Immigrant Movement
International, Queens, Myseum of Toronto), and science institutions (RPI; the Fields Institute). Her writing has appeared on Space and Culture, Cultural Studies and The Canadian Journal of Communication_among others. With the ArtSci Salon she has launched a series of experiments in “squatting academia”, by re-populating abandoned spaces and cabinets across university campuses with SciArt installations.

Currently, she is a research associate at the Centre for Feminist Research and a Scholar in Residence at Sensorium: Centre for Digital Arts and Technology at York University [Toronto, Ontario, Canada].

Jill Carter (Tkaron:to/ Toronto)
Jill (Anishinaabe/Ashkenazi) is a theatre practitioner and researcher, currently cross appointed to the Centre for Drama, Theatre and Performance Studies; the Transitional Year Programme; and Indigenous Studies at the University of Toronto. She works with many members of Tkaron:to’s Indigenous theatre community to support the development of new works and to disseminate artistic objectives, process, and outcomes through community- driven research projects. Her scholarly research,
creative projects, and activism are built upon ongoing relationships with Indigenous Elders, Artists and Activists, positioning her as witness to, participant in, and disseminator of oral histories that speak to the application of Indigenous aesthetic principles and traditional knowledge systems to contemporary performance.The research questions she pursues revolve around the mechanics of story creation,
the processes of delivery and the manufacture of affect.

More recently, she has concentrated upon Indigenous pedagogical models for the rehearsal studio and the lecture hall; the application of Indigenous [insurgent] research methods within performance studies; the politics of land acknowledgements; and land – based dramaturgies/activations/interventions.

Jill also works as a researcher and tour guide with First Story Toronto; facilitates Land Acknowledgement, Devising, and Land-based Dramaturgy Workshops for theatre makers in this city; and performs with the Talking Treaties Collective (Jumblies Theatre, Toronto).

In September 2019, Jill directed Encounters at the Edge of the Woods. This was a devised show, featuring Indigenous and Settler voices, and it opened Hart House Theatre’s 100th season; it is the first instance of Indigenous presence on Hart House Theatre’s stage in its 100 years of existence as the cradle for Canadian theatre.

Nina Czegledy
(Toronto) artist, curator, educator, works internationally on collaborative art, science & technology projects. The changing perception of the human body and its environment as well as paradigm shifts in the arts inform her projects. She has exhibited and published widely, won awards for her artwork and has initiated, lead and participated in workshops, forums and festivals worldwide at international events.

Astad Deboo (Mumbai, India)
Astad Deboo is a contemporary dancer and choreographer who employs his
training in Indian classical dance forms of Kathak as well as Kathakali to create a dance form that is unique to him. He has become a pioneer of modern dance in India. Astad describes his style as “contemporary in vocabulary and traditional in restraints.” Throughout his long and illustrious career, he has worked with various prominent performers such as Pina Bausch, Alis on Becker Chase and Pink Floyd and performed in many parts of the world. He has been awarded the Sangeet Natak Akademi Award (1996) and Padma Shri (2007), awarded by the Government of India. In January 2005 along with 12 young women with hearing impairment supported by the Astad Deboo Dance Foundation, he performed at the 20th Annual Deaf Olympics at Melbourne, Australia. Astad has a long record of working with disadvantaged youth.

Ilze Briede [Kavi]
Ilze Briede [artist name: Kavi] is a Latvian/Canadian artist and researcher with broad and diverse interests. Her artistic practice, a hybrid of video, image and object making, investigates the phenomenon of perception and the constraints and boundaries between the senses and knowing. Kavi is currently pursuing a PhD degree in Digital Media at York University with a research focus on computational creativity and generative art. She sees computer-generated systems and algorithms as a potentiality for co-creation and collaboration between human and machine. Kavi has previously worked and exhibited with Fashion Art Toronto, Kensington Market Art Fair, Toronto Burlesque Festival, Nuit Blanche, Sidewalk Toronto and the Toronto Symphony Orchestra.

Dave Kemp
Dave Kemp is a visual artist whose practice looks at the intersections and interactions between art, science and technology: particularly at how these fields shape our perception and understanding of the world. His artworks have been exhibited widely at venues such as at the McIntosh Gallery, The Agnes Etherington Art Centre, Art Gallery of Mississauga, The Ontario Science Centre, York Quay Gallery, Interaccess,
Modern Fuel Artist-Run Centre, and as part of the Switch video festival in Nenagh, Ireland. His works are also included in the permanent collections of the Agnes Etherington Art Centre and the Canada Council Art Bank.

Stephen Morris
Stephen Morris is Professor of experimental non-linear Physics in the faculty of Physics at the University of Toronto. He is the scientific Director of the ArtSci salon at the Fields Institute for Research in Mathematical Sciences. He often collaborates with artists and has himself performed and produced art involving his own scientific instruments and experiments in non-linear physics and pattern formation

Michael Palumbo
Michael Palumbo (MA, BFA) is an electroacoustic music improviser, coder, and researcher. His PhD research spans distributed creativity and version control systems, and is expressed through “git show”, a distributed electroacoustic music composition and design experiment, and “Mischmasch”, a collaborative modular synthesizer in virtual reality. He studies with Dr. Doug Van Nort as a researcher in the Distributed
Performance and Sensorial Immersion Lab, and Dr. Graham Wakefield at the Alice Lab for Computational Worldmaking. His works have been presented internationally, including at ISEA, AES, NIME, Expo ’74, TIES, and the Network Music Festival. He performs regularly with a modular synthesizer, runs the Exit Points electroacoustic improvisation series, and is an enthusiastic gardener and yoga practitioner.

Joel Ong (PhD. Digital Arts and Experimental Media (DXARTS, University
of Washington)

Joel Ong is a media artist whose works connect scientific and artistic approaches to the environment, particularly with respect to sound and physical space.  Professor Ong’s work explores the way objects and spaces can function as repositories of ‘frozen sound’, and in elucidating these, he is interested in creating what systems theorist Jack Burnham (1968) refers to as “art (that) does not reside in material entities, but in relations between people and between people and the components of their environment”.

A serial collaborator, Professor Ong is invested in the broader scope of Art-Science collaborations and is engaged constantly in the discourses and processes that facilitate viewing these two polemical disciplines on similar ground.  His graduate interdisciplinary work in nanotechnology and sound was conducted at SymbioticA, the Center of Excellence for Biological Arts at the University of Western Australia and supervised by BioArt pioneers and TCA (The Tissue Culture and Art Project) artists Dr Ionat Zurr and Oron Catts.

George Bwanika Seremba
George Bwanika Seremba,is an actor, playwright and scholar. He was born
in Uganda. George holds an M. Phil, and a Ph.D. in Theatre Studies, from Trinity
College Dublin. In 1980, having barely survived a botched execution by the Military Intelligence, he fled into exile, resettling in Canada (1983). He has performed in numerous plays including in his own, “Come Good Rain”, which was awarded a Dora award (1993). In addition, he published a number of edited play collections including “Beyond the pale: dramatic writing from First Nations writers & writers of colour” co-edited by Yvette Nolan, Betty Quan, George Bwanika Seremba. (1996).

George was nominated for the Irish Times’ Best Actor award in Dublin’s Calypso Theatre’s for his role in Athol Fugard’s “Master Harold and the boys”. In addition to theatre he performed in several movies and on television. His doctoral thesis (2008) entitled “Robert Serumaga and the Golden Age of Uganda’s Theatre (1968-1978): (Solipsism, Activism, Innovation)” will be published as a monograph by CSP (U.K) in 2021.

Don Sinclair (Toronto)
Don is Associate Professor in the Department of Computational Arts at York University. His creative research areas include interactive performance, projections for dance, sound art, web and data art, cycling art, sustainability, and choral singing most often using code and programming. Don is particularly interested in processes of artistic creation that integrate digital creative coding-based practices with performance in dance and theatre. As well, he is an enthusiastic cyclist.

Debashis Sinha
Driven by a deep commitment to the primacy of sound in creative expression, Debashis Sinha has realized projects in radiophonic art, music, sound art, audiovisual performance, theatre, dance, and music across Canada and internationally. Sound design and composition credits include numerous works for Peggy Baker Dance Projects and productions with Canada’s premiere theatre companies including The Stratford Festival, Soulpepper, Volcano Theatre, Young People’s Theatre, Project Humanity, The Theatre Centre, Nightwood Theatre, Why Not Theatre, MTC Warehouse and Necessary Angel. His live sound practice on the concert stage has led to appearances at MUTEK Montreal, MUTEK Japan, the Guelph Jazz Festival, the Banff Centre, The Music Gallery, and other venues. Sinha teaches sound design at York University and the National Theatre School, and is currently working on a multi-part audio/performance work incorporating machine learning and AI funded by the Canada Council for the Arts.

Vicki (Jingjing) Zhang (Toronto)
Vicki Zhang is a faculty member at University of Toronto’s statistics department. She is the author of Uncalculated Risks (Canadian Scholar’s Press, 2014). She is also a playwright, whose plays have been produced or stage read in various festivals and venues in Canada including Toronto’s New Ideas Festival, Winnipeg’s FemFest, Hamilton Fringe Festival, Ergo Pink Fest, InspiraTO festival, Toronto’s Festival of Original Theatre (FOOT), Asper Center for Theatre and Film, Canadian Museum for Human Rights, Cultural Pluralism in the Arts Movement Ontario (CPAMO), and the Canadian Play Thing. She has also written essays and short fiction for Rookie Magazine and Thread.

If you can’t attend this Oct. 27, 2020 event, there’s still the Oct. 29, 2020 Boundary-Crossings event: Beauty Kit (see my Oct. 12, 2020 posting for more).

As for Kaleidoscopic Imaginations, you can access the Streaming Link On Oct. 27, 2020 at 7:30 pm EDT (4 pm PDT).

Technical University of Munich: embedded ethics approach for AI (artificial intelligence) and storing a tv series in synthetic DNA

I stumbled across two news bits of interest from the Technical University of Munich in one day (Sept. 1, 2020, I think). The topics: artificial intelligence (AI) and synthetic DNA (deoxyribonucleic acid).

Embedded ethics and artificial intelligence (AI)

An August 27, 2020 Technical University of Munich (TUM) press release (also on EurekAlert but published Sept. 1, 2020) features information about a proposal to embed ethicists in with AI development teams,

The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. An interdisciplinary team at the Technical University of Munich (TUM) advocates the integration of ethics from the very beginning of the development process of new technologies. Alena Buyx, Professor of Ethics in Medicine and Health Technologies, explains the embedded ethics approach.

Professor Buyx, the discussions surrounding a greater emphasis on ethics in AI research have greatly intensified in recent years, to the point where one might speak of “ethics hype” …

Prof. Buyx: … and many committees in Germany and around the world such as the German Ethics Council or the EU Commission High-Level Expert Group on Artificial Intelligence have responded. They are all in agreement: We need more ethics in the development of AI-based health technologies. But how do things look in practice for engineers and designers? Concrete solutions are still few and far between. In a joint pilot project with two Integrative Research Centers at TUM, the Munich School of Robotics and Machine Intelligence (MSRM) with its director, Prof. Sami Haddadin, and the Munich Center for Technology in Society (MCTS), with Prof. Ruth Müller, we want to try out the embedded ethics approach. We published the proposal in Nature Machine Intelligence at the end of July [2020].

What exactly is meant by the “embedded ethics approach”?

Prof.Buyx: The idea is to make ethics an integral part of the research process by integrating ethicists into the AI development team from day one. For example, they attend team meetings on a regular basis and create a sort of “ethical awareness” for certain issues. They also raise and analyze specific ethical and social issues.

Is there an example of this concept in practice?

Prof. Buyx: The Geriatronics Research Center, a flagship project of the MSRM in Garmisch-Partenkirchen, is developing robot assistants to enable people to live independently in old age. The center’s initiatives will include the construction of model apartments designed to try out residential concepts where seniors share their living space with robots. At a joint meeting with the participating engineers, it was noted that the idea of using an open concept layout everywhere in the units – with few doors or individual rooms – would give the robots considerable range of motion. With the seniors, however, this living concept could prove upsetting because they are used to having private spaces. At the outset, the engineers had not given explicit consideration to this aspect.

Prof.Buyx: The approach sounds promising. But how can we avoid “embedded ethics” from turning into an “ethics washing” exercise, offering companies a comforting sense of “being on the safe side” when developing new AI technologies?

That’s not something we can be certain of avoiding. The key is mutual openness and a willingness to listen, with the goal of finding a common language – and subsequently being prepared to effectively implement the ethical aspects. At TUM we are ideally positioned to achieve this. Prof. Sami Haddadin, the director of the MSRM, is also a member of the EU High-Level Group of Artificial Intelligence. In his research, he is guided by the concept of human centered engineering. Consequently, he has supported the idea of embedded ethics from the very beginning. But one thing is certain: Embedded ethics alone will not suddenly make AI “turn ethical”. Ultimately, that will require laws, codes of conduct and possibly state incentives.

Here’s a link to and a citation for the paper espousing the embedded ethics for AI development approach,

An embedded ethics approach for AI development by Stuart McLennan, Amelia Fiske, Leo Anthony Celi, Ruth Müller, Jan Harder, Konstantin Ritt, Sami Haddadin & Alena Buyx. Nature Machine Intelligence (2020) DOI: https://doi.org/10.1038/s42256-020-0214-1 Published 31 July 2020

This paper is behind a paywall.

Religion, ethics and and AI

For some reason embedded ethics and AI got me to thinking about Pope Francis and other religious leaders.

The Roman Catholic Church and AI

There was a recent announcement that the Roman Catholic Church will be working with MicroSoft and IBM on AI and ethics (from a February 28, 2020 article by Jen Copestake for British Broadcasting Corporation (BBC) news online (Note: A link has been removed),

Leaders from the two tech giants met senior church officials in Rome, and agreed to collaborate on “human-centred” ways of designing AI.

Microsoft president Brad Smith admitted some people may “think of us as strange bedfellows” at the signing event.

“But I think the world needs people from different places to come together,” he said.

The call was supported by Pope Francis, in his first detailed remarks about the impact of artificial intelligence on humanity.

The Rome Call for Ethics [sic] was co-signed by Mr Smith, IBM executive vice-president John Kelly and president of the Pontifical Academy for Life Archbishop Vincenzo Paglia.

It puts humans at the centre of new technologies, asking for AI to be designed with a focus on the good of the environment and “our common and shared home and of its human inhabitants”.

Framing the current era as a “renAIssance”, the speakers said the invention of artificial intelligence would be as significant to human development as the invention of the printing press or combustion engine.

UN Food and Agricultural Organization director Qu Dongyu and Italy’s technology minister Paola Pisano were also co-signatories.

Hannah Brockhaus’s February 28, 2020 article for the Catholic News Agency provides some details missing from the BBC report and I found it quite helpful when trying to understand the various pieces that make up this initiative,

The Pontifical Academy for Life signed Friday [February 28, 2020], alongside presidents of IBM and Microsoft, a call for ethical and responsible use of artificial intelligence technologies.

According to the document, “the sponsors of the call express their desire to work together, in this context and at a national and international level, to promote ‘algor-ethics.’”

“Algor-ethics,” according to the text, is the ethical use of artificial intelligence according to the principles of transparency, inclusion, responsibility, impartiality, reliability, security, and privacy.

The signing of the “Rome Call for AI Ethics [PDF]” took place as part of the 2020 assembly of the Pontifical Academy for Life, which was held Feb. 26-28 [2020] on the theme of artificial intelligence.

One part of the assembly was dedicated to private meetings of the academics of the Pontifical Academy for Life. The second was a workshop on AI and ethics that drew 356 participants from 41 countries.

On the morning of Feb. 28 [2020], a public event took place called “renAIssance. For a Humanistic Artificial Intelligence” and included the signing of the AI document by Microsoft President Brad Smith, and IBM Executive Vice-president John Kelly III.

The Director General of FAO, Dongyu Qu, and politician Paola Pisano, representing the Italian government, also signed.

The president of the European Parliament, David Sassoli, was also present Feb. 28.

Pope Francis canceled his scheduled appearance at the event due to feeling unwell. His prepared remarks were read by Archbishop Vincenzo Paglia, president of the Academy for Life.

You can find Pope Francis’s comments about the document here (if you’re not comfortable reading Italian, hopefully, the English translation which follows directly afterward will be helpful). The Pope’s AI initiative has a dedicated website, Rome Call for AI ethics, and while most of the material dates from the February 2020 announcement, they are keeping up a blog. It has two entries, one dated in May 2020 and another in September 2020.

Buddhism and AI

The Dalai Lama is well known for having an interest in science and having hosted scientists for various dialogues. So, I was able to track down a November 10, 2016 article by Ariel Conn for the futureoflife.org website, which features his insights on the matter,

The question of what it means and what it takes to feel needed is an important problem for ethicists and philosophers, but it may be just as important for AI researchers to consider. The Dalai Lama argues that lack of meaning and purpose in one’s work increases frustration and dissatisfaction among even those who are gainfully employed.

“The problem,” says the Dalai Lama, “is … the growing number of people who feel they are no longer useful, no longer needed, no longer one with their societies. … Feeling superfluous is a blow to the human spirit. It leads to social isolation and emotional pain, and creates the conditions for negative emotions to take root.”

If feeling needed and feeling useful are necessary for happiness, then AI researchers may face a conundrum. Many researchers hope that job loss due to artificial intelligence and automation could, in the end, provide people with more leisure time to pursue enjoyable activities. But if the key to happiness is feeling useful and needed, then a society without work could be just as emotionally challenging as today’s career-based societies, and possibly worse.

I also found a talk on the topic by The Venerable Tenzin Priyadarshi, first here’s a description from his bio at the Dalai Lama Center for Ethics and Transformative Values webspace on the Massachusetts Institute of Technology (MIT) website,

… an innovative thinker, philosopher, educator and a polymath monk. He is Director of the Ethics Initiative at the MIT Media Lab and President & CEO of The Dalai Lama Center for Ethics and Transformative Values at the Massachusetts Institute of Technology. Venerable Tenzin’s unusual background encompasses entering a Buddhist monastery at the age of ten and receiving graduate education at Harvard University with degrees ranging from Philosophy to Physics to International Relations. He is a Tribeca Disruptive Fellow and a Fellow at the Center for Advanced Study in Behavioral Sciences at Stanford University. Venerable Tenzin serves on the boards of a number of academic, humanitarian, and religious organizations. He is the recipient of several recognitions and awards and received Harvard’s Distinguished Alumni Honors for his visionary contributions to humanity.

He gave the 2018 Roger W. Heyns Lecture in Religion and Society at Stanford University on the topic, “Religious and Ethical Dimensions of Artificial Intelligence.” The video runs over one hour but he is a sprightly speaker (in comparison to other Buddhist speakers I’ve listened to over the years).

Judaism, Islam, and other Abrahamic faiths examine AI and ethics

I was delighted to find this January 30, 2020 Artificial Intelligence: Implications for Ethics and Religion event as it brought together a range of thinkers from various faiths and disciplines,

New technologies are transforming our world every day, and the pace of change is only accelerating.  In coming years, human beings will create machines capable of out-thinking us and potentially taking on such uniquely-human traits as empathy, ethical reasoning, perhaps even consciousness.  This will have profound implications for virtually every human activity, as well as the meaning we impart to life and creation themselves.  This conference will provide an introduction for non-specialists to Artificial Intelligence (AI):

What is it?  What can it do and be used for?  And what will be its implications for choice and free will; economics and worklife; surveillance economies and surveillance states; the changing nature of facts and truth; and the comparative intelligence and capabilities of humans and machines in the future? 

Leading practitioners, ethicists and theologians will provide cross-disciplinary and cross-denominational perspectives on such challenges as technology addiction, inherent biases and resulting inequalities, the ethics of creating destructive technologies and of turning decision-making over to machines from self-driving cars to “autonomous weapons” systems in warfare, and how we should treat the suffering of “feeling” machines.  The conference ultimately will address how we think about our place in the universe and what this means for both religious thought and theological institutions themselves.

UTS [Union Theological Seminary] is the oldest independent seminary in the United States and has long been known as a bastion of progressive Christian scholarship.  JTS [Jewish Theological Seminary] is one of the academic and spiritual centers of Conservative Judaism and a major center for academic scholarship in Jewish studies. The Riverside Church is an interdenominational, interracial, international, open, welcoming, and affirming church and congregation that has served as a focal point of global and national activism for peace and social justice since its inception and continues to serve God through word and public witness. The annual Greater Good Gathering, the following week at Columbia University’s School of International & Public Affairs, focuses on how technology is changing society, politics and the economy – part of a growing nationwide effort to advance conversations promoting the “greater good.”

They have embedded a video of the event (it runs a little over seven hours) on the January 30, 2020 Artificial Intelligence: Implications for Ethics and Religion event page. For anyone who finds that a daunting amount of information, you may want to check out the speaker list for ideas about who might be writing and thinking on this topic.

As for Islam, I did track down this November 29, 2018 article by Shahino Mah Abdullah, a fellow at the Institute of Advanced Islamic Studies (IAIS) Malaysia,

As the global community continues to work together on the ethics of AI, there are still vast opportunities to offer ethical inputs, including the ethical principles based on Islamic teachings.

This is in line with Islam’s encouragement for its believers to convey beneficial messages, including to share its ethical principles with society.

In Islam, ethics or akhlak (virtuous character traits) in Arabic, is sometimes employed interchangeably in the Arabic language with adab, which means the manner, attitude, behaviour, and etiquette of putting things in their proper places. Islamic ethics cover all the legal concepts ranging from syariah (Islamic law), fiqh ( jurisprudence), qanun (ordinance), and ‘urf (customary practices).

Adopting and applying moral values based on the Islamic ethical concept or applied Islamic ethics could be a way to address various issues in today’s societies.

At the same time, this approach is in line with the higher objectives of syariah (maqasid alsyariah) that is aimed at conserving human benefit by the protection of human values, including faith (hifz al-din), life (hifz alnafs), lineage (hifz al-nasl), intellect (hifz al-‘aql), and property (hifz al-mal). This approach could be very helpful to address contemporary issues, including those related to the rise of AI and intelligent robots.

..

Part of the difficulty with tracking down more about AI, ethics, and various religions is linguistic. I simply don’t have the language skills to search for the commentaries and, even in English, I may not have the best or most appropriate search terms.

Television (TV) episodes stored on DNA?

According to a Sept. 1, 2020 news item on Nanowerk, the first episode of a tv series, ‘Biohackers’ has been stored on synthetic DNA (deoxyribonucleic acid) by a researcher at TUM and colleagues at another institution,

The first episode of the newly released series “Biohackers” was stored in the form of synthetic DNA. This was made possible by the research of Prof. Reinhard Heckel of the Technical University of Munich (TUM) and his colleague Prof. Robert Grass of ETH Zürich.

They have developed a method that permits the stable storage of large quantities of data on DNA for over 1000 years.

A Sept. 1, 2020 TUM press release, which originated the news item, proceeds with more detail in an interview format,

Prof. Heckel, Biohackers is about a medical student seeking revenge on a professor with a dark past – and the manipulation of DNA with biotechnology tools. You were commissioned to store the series on DNA. How does that work?

First, I should mention that what we’re talking about is artificially generated – in other words, synthetic – DNA. DNA consists of four building blocks: the nucleotides adenine (A), thymine (T), guanine (G) and cytosine (C). Computer data, meanwhile, are coded as zeros and ones. The first episode of Biohackers consists of a sequence of around 600 million zeros and ones. To code the sequence 01 01 11 00 in DNA, for example, we decide which number combinations will correspond to which letters. For example: 00 is A, 01 is C, 10 is G and 11 is T. Our example then produces the DNA sequence CCTA. Using this principle of DNA data storage, we have stored the first episode of the series on DNA.

And to view the series – is it just a matter of “reverse translation” of the letters?

In a very simplified sense, you can visualize it like that. When writing, storing and reading the DNA, however, errors occur. If these errors are not corrected, the data stored on the DNA will be lost. To solve the problem, I have developed an algorithm based on channel coding. This method involves correcting errors that take place during information transfers. The underlying idea is to add redundancy to the data. Think of language: When we read or hear a word with missing or incorrect letters, the computing power of our brain is still capable of understanding the word. The algorithm follows the same principle: It encodes the data with sufficient redundancy to ensure that even highly inaccurate data can be restored later.

Channel coding is used in many fields, including in telecommunications. What challenges did you face when developing your solution?

The first challenge was to create an algorithm specifically geared to the errors that occur in DNA. The second one was to make the algorithm so efficient that the largest possible quantities of data can be stored on the smallest possible quantity of DNA, so that only the absolutely necessary amount of redundancy is added. We demonstrated that our algorithm is optimized in that sense.

DNA data storage is very expensive because of the complexity of DNA production as well as the reading process. What makes DNA an attractive storage medium despite these challenges?

First, DNA has a very high information density. This permits the storage of enormous data volumes in a minimal space. In the case of the TV series, we stored “only” 100 megabytes on a picogram – or a billionth of a gram of DNA. Theoretically, however, it would be possible to store up to 200 exabytes on one gram of DNA. And DNA lasts a long time. By comparison: If you never turned on your PC or wrote data to the hard disk it contains, the data would disappear after a couple of years. By contrast, DNA can remain stable for many thousands of years if it is packed right.

And the method you have developed also makes the DNA strands durable – practically indestructible.

My colleague Robert Grass was the first to develop a process for the “stable packing” of DNA strands by encapsulating them in nanometer-scale spheres made of silica glass. This ensures that the DNA is protected against mechanical influences. In a joint paper in 2015, we presented the first robust DNA data storage concept with our algorithm and the encapsulation process developed by Prof. Grass. Since then we have continuously improved our method. In our most recent publication in Nature Protocols of January 2020, we passed on what we have learned.

What are your next steps? Does data storage on DNA have a future?

We’re working on a way to make DNA data storage cheaper and faster. “Biohackers” was a milestone en route to commercialization. But we still have a long way to go. If this technology proves successful, big things will be possible. Entire libraries, all movies, photos, music and knowledge of every kind – provided it can be represented in the form of data – could be stored on DNA and would thus be available to humanity for eternity.

Here’s a link to and a citation for the paper,

Reading and writing digital data in DNA by Linda C. Meiser, Philipp L. Antkowiak, Julian Koch, Weida D. Chen, A. Xavier Kohll, Wendelin J. Stark, Reinhard Heckel & Robert N. Grass. Nature Protocols volume 15, pages86–101(2020) Issue Date: January 2020 DOI: https://doi.org/10.1038/s41596-019-0244-5 Published [online] 29 November 2019

This paper is behind a paywall.

As for ‘Biohackers’, it’s a German science fiction television series and you can find out more about it here on the Internet Movie Database.

Music for Incandescent Events: Skyview, Here (version 4) 25 October – 31 October 2020

This October 20, 2020 notice from Toronto’s ArtSci Salon (received via email) features a DIY musical event for dawn and dusk from Oct. 25 – 31, 2020 and it is a Canada-wide event series,

Dear media-arts and music organizations, arts educators & adventurous
radio programmers, kindly distribute this invitation to your members,
students, audiences and colleagues.

You’re invited to a free week-long dawn & dusk audio-viewing event
at a location of your choice:

Sunday October 25 – Saturday October 31

_ Music for Incandescent Events : Skyview, Here (version 4)_
Audio for skyscapes around sunset and sunrise. Livestream &
downloadable for portable sky-viewing adventures_ (variable times).
_
_ By Sarah Peebles. _
Presented by the Canadian Music Centre Ontario Chapter.

Day 1 event page, information & schedule overview – CMC

https://on.cmccanada.org/event/music-for-incandescent-events/

CMC Calendar with day by day links to each day’s event page

https://on.cmccanada.org/events/

Special thanks to CMC – Ontario & Mattew Fava for presenting and hosting this installation.

I hope you enjoy the experience!

I found more information on the event, which clarifies how people in Ontario and how people in the rest of Canada can participate in the Canadian Music Centre’s latest Incandescent Event,

South-Western Ontario, online | We invite audiences to tune-in during scheduled audio streams on Facebook during the week of October 25 occurring roughly at dawn and dusk for those based in South-Western Ontario. Streaming will coincide with the shifting light around sunrise/sunset within a broad zone ranging approximately from Peterborough in the East, to London in the West, and Barrie in the North. Tune in as the sky begins to change colour.

Across Canada, offline | Audiences are also invited to download the dawn-dusk audio files for this work in order to listen offline at a self-directed time based on their location. We encourage you to creatively locate yourself off-line via bicycle, ferry, boat, walking, or driving with your portable listening device.

Instructions for experiencing the pieces | Place yourself with a skyscape view of your choice, indoors or outdoors. Adjust your soundscape to your liking (e.g. open windows, sit under a tree, near waves or find a reflective surface, etc.). Listen online live or via audiofile (download) during sunset and/or sunrise, using good quality loudspeakers, headphones or earbuds.

About the Piece |Music for Incandescent Events meditates our perception of time, memory and place, creating a space for contemplation, for awareness of one’s physical environment, and for exploration of consciousness in the moment.

Each iteration of Incandescent Events combines different improvised short melodies and tones performed on a slightly de-tuned shô (Japanese mouth-organ), re-recorded several octaves lower than original pitch. I recorded these melodies at very close range while sitting near a reflective wall, catching rich beat patterns and sum/difference tones. These and additional frequencies beyond the range of human hearing transform into unexpected, complex audio events at slower play-back speeds, several octaves down.

Music for Incandescent Events version 1 (2002) is published on Somethings #1 (Last Visible Dog). Version 2 (installation) was commissioned by wade Collective for wade project in June, 2004, for Gibraltar Point, Toronto Islands; it showed at the McLuhan International Festival of the Future, “Scanning Nature” exhibition October, 2004 (DeLeon White Gallery rooftop deck. Version no. 3, Colour Temperature Event (for Gabriola Island, Berry Point, 2017), was curated for The QR Anthology

You can find the schedule for the streaming events (Oct. 25 -31, 2020) and a link to the music downloads at the Canadian Music Centre’s Music for Incandescent Events: Skyview, Here (version 4) event page.

Glass-like wood windows protect against UV rays and insulate heat

Engineers at the University of Maryland designed a transparent ceiling made of wood that highlights the natural woodgrain pattern. Credit: A. James Clark School of Engineering, University of Maryland [downloaded from https://phys.org/news/2020-08-glass-like-wood-insulates-tough-blocks.html]

An August 7, 2020 news item by Martha Hell on phys.org announces the latest research (links to previous posts about this research at the end of this post) on ‘transparent’ wood from the University of Maryland,

Need light but want privacy? A new type of wood that’s transparent, tough, and beautiful could be the solution. This nature-inspired building material allows light to come through (at about 80%) to fill the room but the material itself is naturally hazy (93%), preventing others from seeing inside.

An August 16, 2020 University of Maryland news release (also on EurekAlert) describes the work in more detail,

Engineers at the A. James Clark School of Engineering at the University of Maryland (UMD) demonstrate in a new study that windows made of transparent wood could provide more even and consistent natural lighting and better energy efficiency than glass

In a paper just published [July 31, 20202] in the peer-reviewed journal Advanced Energy Materials [this seems to be an incorrectly cited journal; I believe it should be Nature Communications as indicated in the phys.org news item], the team, headed by Liangbing Hu of UMD’s Department of Materials Science and Engineering and the Energy Research Center lay out research showing that their transparent wood provides better thermal insulation and lets in nearly as much light as glass, while eliminating glare and providing uniform and consistent indoor lighting. The findings advance earlier published work on their development of transparent wood.

The transparent wood lets through just a little bit less light than glass, but a lot less heat, said Tian Li, the lead author of the new study. “It is very transparent, but still allows for a little bit of privacy because it is not completely see-through. We also learned that the channels in the wood transmit light with wavelengths around the range of the wavelengths of visible light, but that it blocks the wavelengths that carry mostly heat,” said Li.

The team’s findings were derived, in part, from tests on tiny model house with a transparent wood panel in the ceiling that the team built. The tests showed that the light was more evenly distributed around a space with a transparent wood roof than a glass roof.

The channels in the wood direct visible light straight through the material, but the cell structure that still remains bounces the light around just a little bit, a property called haze. This means the light does not shine directly into your eyes, making it more comfortable to look at. The team photographed the transparent wood’s cell structure in the University of Maryland’s Advanced Imaging and Microscopy (AIM) Lab.

Transparent wood still has all the cell structures that comprised the original piece of wood. The wood is cut against the grain, so that the channels that drew water and nutrients up from the roots lie along the shortest dimension of the window. The new transparent wood uses theses natural channels in wood to guide the sunlight through the wood.

As the sun passes over a house with glass windows, the angle at which light shines through the glass changes as the sun moves. With windows or panels made of transparent wood instead of glass, as the sun moves across the sky, the channels in the wood direct the sunlight in the same way every time.

“This means your cat would not have to get up out of its nice patch of sunlight every few minutes and move over,” Li said. “The sunlight would stay in the same place. Also, the room would be more equally lighted at all times.”

Working with transparent wood is similar to working with natural wood, the researchers said. However, their transparent wood is waterproof due to its polymer component. It also is much less breakable than glass because the cell structure inside resists shattering.

The research team has recently patented their process for making transparent wood. The process starts with bleaching from the wood all of the lignin, which is a component in the wood that makes it both brown and strong. The wood is then soaked in epoxy, which adds strength back in and also makes the wood clearer. The team has used tiny squares of linden wood about 2 cm x 2 cm, but the wood can be any size, the researchers said.

Here’s a link to and a citation for the July 31, 2020 paper,

Scalable aesthetic transparent wood for energy efficient buildings by Ruiyu Mi, Chaoji Chen, Tobias Keplinger, Yong Pei, Shuaiming He, Dapeng Liu, Jianguo Li, Jiaqi Dai, Emily Hitz, Bao Yang, Ingo Burgert & Liangbing Hu. Nature Communications volume 11, Article number: 3836 (2020) DOI: https://doi.org/10.1038/s41467-020-17513-w Published 31 July 2020

This paper is open access.

There were two previous posts about this work at the University of Maryland,

University of Maryland looks into transparent wood May 11, 2016 posting

Transparent wood more efficient than glass in windows? Sept, 8, 2016 posting

I also have this posting, which is also from 2016 but features work in Sweden,

Transparent wood instead of glass for window panes? April 1, 2016 posting

I seem to have stumbled across a number of transparent wood stories in 2016. Hmm I think I need to spend more time searching previous titles for my postings so I didn’t end up with too many that sound similar.

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 in the forest

It seems lignin is a bit of a problem. Its presence in a tree makes processing the wood into various products more difficult. (Of course, some people appreciate trees for other reasons both practical [carbon sequestration?] and/or aesthetic.)

In any event, scientists have been working on ways to reduce the amount of lignin in poplar trees since at least 2014 (see my April 7, 2014 posting titled ‘Good lignin, bad lignin: Florida researchers use plant waste to create lignin nanotubes while researchers in British Columbia develop trees with less lignin’; scroll down about 40% of the way for the ‘less lignin’ story).

(I don’t believe the 2014 research was accomplished with the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 technique as it had only been developed in 2012.)

The latest in the quest to reduce the amount of lignin of poplar trees comes from a Belgian/US team, from an Oct. 6, 2020 news item on ScienceDaily,

Researchers led by prof. Wout Boerjan (VIB-UGent [Ghent University] Center for Plant Systems Biology) have discovered a way to stably finetune the amount of lignin in poplar by applying CRISPR/Cas9 technology. Lignin is one of the main structural substances in plants and it makes processing wood into, for example, paper difficult. This study is an important breakthrough in the development of wood resources for the production of paper with a lower carbon footprint, biofuels, and other bio-based materials. Their work, in collaboration with VIVES University College (Roeselare, Belgium) and University of Wisconsin (USA) appears in Nature Communications.

Picture Tailoring lignin and growth by creating CCR2 allelic variants (From left to right: wild type, CCR2(-/-), CCR2(-/*) line 206, CCR2(-/*) line 12) Courtesy: VIB (Flanders Institute of Biotechnology)

An Oct. 6, 2020 VIB (Vlaams Instituut voor Biotechnologie; Flanders Institute of Biotechnology) press release (also on EurekAlert), which originated the news item, explains the reason for this research and how CRISPR (clustered regularly interspaced short palindromic repeats) technology could help realize it,

Towards a bio-based economy

Today’s fossil-based economy results in a net increase of CO2 in the Earth’s atmosphere and is a major cause of global climate change. To counter this, a shift towards a circular and bio-based economy is essential. Woody biomass can play a crucial role in such a bio-based economy by serving as a renewable and carbon-neutral resource for the production of many chemicals. Unfortunately, the presence of lignin hinders the processing of wood into bio-based products.

Prof. Wout Boerjan (VIB-UGent): “A few years ago, we performed a field trial with poplars that were engineered to make wood containing less lignin. Most plants showed large improvements in processing efficiency for many possible applications. The downside, however, was that the reduction in lignin accomplished with the technology we used then – RNA interference – was unstable and the trees grew less tall.”

New tools

Undeterred, the researchers went looking for a solution. They employed the recent CRISPR/Cas9 technology in poplar to lower the lignin amount in a stable way, without causing a biomass yield penalty. In other words, the trees grew just as well and as tall as those without genetic changes.

Dr. Barbara De Meester (VIB-UGent): “Poplar is a diploid species, meaning every gene is present in two copies. Using CRISPR/Cas9, we introduced specific changes in both copies of a gene that is crucial for the biosynthesis of lignin. We inactivated one copy of the gene, and only partially inactivated the other. The resulting poplar line had a stable 10% reduction in lignin amount while it grew normally in the greenhouse. Wood from the engineered trees had an up to 41% increase in processing efficiency”.

Dr. Ruben Vanholme (VIB-UGent): “The mutations that we have introduced through CRISPR/Cas9 are similar to those that spontaneously arise in nature. The advantage of the CRISPR/Cas9 method is that the beneficial mutations can be directly introduced into the DNA of highly productive tree varieties in only a fraction of the time it would take by a classical breeding strategy.”

The applications of this method are not only restricted to lignin but might also be useful to engineer other traits in crops, providing a versatile new breeding tool to improve agricultural productivity.

Here’s a link to and a citation for the paper,

Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele by Barbara De Meester, Barbara Madariaga Calderón, Lisanne de Vries, Jacob Pollier, Geert Goeminne, Jan Van Doorsselaere, Mingjie Chen, John Ralph, Ruben Vanholme & Wout Boerjan. Nature Communications volume 11, Article number: 5020 (2020) DOI: https://doi.org/10.1038/s41467-020-18822-w Published 06 October 2020

This paper is open access.

“Eat up your ceramic nanoparticles” says the European Space Agency

A Sept. 4, 2020 news item on phys.org showcases some intriguing research from the European Space Agency (ESA),

“Eat your vitamins” might be replaced with “ingest your ceramic nano-particles” in the future as space research is giving more weight to the idea that nanoscopic particles could help protect cells from common causes of damage.

A Sept, 4, 2020 ESA press release, which originated the news item, fills in some of the details and raises a question,

Oxidative stress occurs in our bodies when cells lose the natural balance of electrons in the molecules that we are made of. This is a common and constant occurrence that is part of our metabolism but also plays a role in the aging process and several pathological conditions, such as heart failure, muscle atrophy and Parkinson’s disease.

The best advice for keeping your body in balance and avoiding oxidative stress is still to have a healthy diet and eat enough vitamins, but nanoparticles are showing promising results in keeping cells in shape.

When in space, astronauts have been shown to suffer from more oxidative stress due to the extra radiation they receive and as a by-product of floating in weightlessness, so researchers in Italy were keen to see if nanoparticles would have the same protective effect on cells on the International Space Station as on Earth.

They prepared muscle cells that flew to the International Space Station and were cultured in ESA’s Kubik incubator before being frozen for storage.

A year ago [emphasis mine] our frozen samples splashed down in the Pacific Ocean on the Dragon spacecraft, and after comparing the samples we saw a marked effect in the cells treated with ceramic nanoparticles,” says Gianni Ciofani from the Istituto Italiano di Tecnologia in Italy. “The effect we observed seems to imply that nanoparticles work better and longer than traditional antioxidants such as vitamins.”

“The experiment setup resulted in excellent samples to analyze using state-of-the art RNA sequencing,” continues Gianni. “Conducting space research is nothing like traditional lab work, as we have less samples, we cannot do the work ourselves and we have to work around deadlines such as launch days, landing and storing the samples, it is challenging but thrilling research!” The team even found ways to improve and simplify the process for future studies.

Baby astronauts hypothesis

The research adds weight to the baby-astronaut hypothesis of weightlessness. The changes in muscle tissue observed are similar to how babies’ tissues develop in the womb.

“Some researchers see similarities to how human bodies adapt to living in space with pre-natal conditions: there are similarities with floating in a warm environment with different oxygen intake and we consider it a possibility of return to the state,” says Giada Genchi, also of the Istituto Italiano di Tecnologia’s Smart Bio-Interfaces department.

The team’s high-quality muscle tissue samples are being further analyzed and compared to samples from similar experiments that flew earlier. There is still much more to learn, such as what is the best way to administer nano-ceramics and how long do their protective effects last as well as possible unwanted side effects.

I highlighted a “A year ago” because that should mean 2019 but the research the ESA press release linked to was published in 2018. I cannot find anything more recent. So, for the curious, here’s a link to and a citation for the 2018 research paper,

Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes by Giada Graziana Genchi, Andrea Degl’Innocenti, Alice Rita Salgarella, Ilaria Pezzini, Attilio Marino, Arianna Menciassi, Sara Piccirillo, Michele Balsamo & Gianni Ciofani. Nanomedicine Vol. 13, No. 22 Preliminary Communication DOI: https://doi.org/10.2217/nnm-2018-0316 Published Online: 18 Oct 2018 Print Version: 2018 Nov;13 (22): 2821-2833. DOI: 10.2217/nnm-2018-0316.

The paper is behind a paywall.

This image was used to illustrate the work,

Courtesy Nanomedicine (journal)

Regardless of when the research was published, it’s still pretty interesting work and I hope to hear more about it in the future.

Spinning gold out of nanocellulose

If you’re hoping for a Rumpelstiltskin reference (there is more about the fairy tale at the end of this posting) and despite the press release’s headline, you won’t find it in this August 10, 2020 news item on Nanowerk,

When nanocellulose is combined with various types of metal nanoparticles, materials are formed with many new and exciting properties. They may be antibacterial, change colour under pressure, or convert light to heat.

“To put it simply, we make gold from nanocellulose”, says Daniel Aili, associate professor in the Division of Biophysics and Bioengineering at the Department of Physics, Chemistry and Biology at Linköping University.

The research group, led by Daniel Aili, has used a biosynthetic nanocellulose produced by bacteria and originally developed for wound care. The scientists have subsequently decorated the cellulose with metal nanoparticles, principally silver and gold. The particles, no larger than a few billionths of a metre, are first tailored to give them the properties desired, and then combined with the nanocellulose.

An August 10, 2020 Linköping University press release (also on EurekAlert), which originated the news item,expands on a few details about the work (sob … without mentioning Rumpelstiltskin),

“Nanocellulose consists of thin threads of cellulose, with a diameter approximately one thousandth of the diameter of a human hair. The threads act as a three-dimensional scaffold for the metal particles. When the particles attach themselves to the cellulose, a material that consists of a network of particles and cellulose forms”, Daniel Aili explains.

The researchers can determine with high precision how many particles will attach, and their identities. They can also mix particles of different metals and with different shapes – spherical, elliptical and triangular.

In the first part of a scientific article published in Advanced Functional Materials, the group describes the process and explains why it works as it does. The second part focusses on several areas of application.

One exciting phenomenon is the way in which the properties of the material change when pressure is applied. Optical phenomena arise when the particles approach each other and interact, and the material changes colour. As the pressure increases, the material eventually appears to be gold.

“We saw that the material changed colour when we picked it up in tweezers, and at first we couldn’t understand why”, says Daniel Aili.

The scientists have named the phenomenon “the mechanoplasmonic effect”, and it has turned out to be very useful. A closely related application is in sensors, since it is possible to read the sensor with the naked eye. An example: If a protein sticks to the material, it no longer changes colour when placed under pressure. If the protein is a marker for a particular disease, the failure to change colour can be used in diagnosis. If the material changes colour, the marker protein is not present.

Another interesting phenomenon is displayed by a variant of the material that absorbs light from a much broader spectrum visible light and generates heat. This property can be used for both energy-based applications and in medicine.

“Our method makes it possible to manufacture composites of nanocellulose and metal nanoparticles that are soft and biocompatible materials for optical, catalytic, electrical and biomedical applications. Since the material is self-assembling, we can produce complex materials with completely new well-defined properties,” Daniel Aili concludes.

Here’s a link to and a citation for the paper,

Self‐Assembly of Mechanoplasmonic Bacterial Cellulose–Metal Nanoparticle Composites by Olof Eskilson, Stefan B. Lindström, Borja Sepulveda, Mohammad M. Shahjamali, Pau Güell‐Grau, Petter Sivlér, Mårten Skog, Christopher Aronsson, Emma M. Björk, Niklas Nyberg, Hazem Khalaf, Torbjörn Bengtsson, Jeemol James, Marica B. Ericson, Erik Martinsson, Robert Selegård, Daniel Aili. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202004766 First published: 09 August 2020

This paper is open access.

As for Rumpelstiltskin, there’s this abut the story’s origins and its cross-cultural occurrence, from its Wikipedia entry,

“Rumpelstiltskin” (/ˌrʌmpəlˈstɪltskɪn/ RUMP-əl-STILT-skin[1]) is a fairy tale popularly associated with Germany (where it is known as Rumpelstilzchen). The tale was one collected by the Brothers Grimm in the 1812 edition of Children’s and Household Tales. According to researchers at Durham University and the NOVA University Lisbon, the story originated around 4,000 years ago.[2][3] However, many biases led some to take the results of this study with caution.[4]

The same story pattern appears in numerous other cultures: Tom Tit Tot in England (from English Fairy Tales, 1890, by Joseph Jacobs); The Lazy Beauty and her Aunts in Ireland (from The Fireside Stories of Ireland, 1870 by Patrick Kennedy); Whuppity Stoorie in Scotland (from Robert Chambers’s Popular Rhymes of Scotland, 1826); Gilitrutt in Iceland; جعيدان (Joaidane “He who talks too much”) in Arabic; Хламушка (Khlamushka “Junker”) in Russia; Rumplcimprcampr, Rampelník or Martin Zvonek in the Czech Republic; Martinko Klingáč in Slovakia; “Cvilidreta” in Croatia; Ruidoquedito (“Little noise”) in South America; Pancimanci in Hungary (from A Csodafurulya, 1955, by Emil Kolozsvári Grandpierre, based on the 19th century folktale collection by László Arany); Daiku to Oniroku (大工と鬼六 “A carpenter and the ogre”) in Japan and Myrmidon in France.

An earlier literary variant in French was penned by Mme. L’Héritier, titled Ricdin-Ricdon.[5] A version of it exists in the compilation Le Cabinet des Fées, Vol. XII. pp. 125-131.

The Cornish tale of Duffy and the Devil plays out an essentially similar plot featuring a “devil” named Terry-top.

All these tales are Aarne–Thompson type 500, “The Name of the Helper”.[6]

Should you be curious about the story as told by the Brothers Grimm, here’s the beginning to get you started (from the grimmstories.com Rumpelstiltskin webpage),

There was once a miller who was poor, but he had one beautiful daughter. It happened one day that he came to speak with the king, and, to give himself consequence, he told him that he had a daughter who could spin gold out of straw. The king said to the miller: “That is an art that pleases me well; if thy daughter is as clever as you say, bring her to my castle to-morrow, that I may put her to the proof.”

When the girl was brought to him, he led her into a room that was quite full of straw, and gave her a wheel and spindle, and said: “Now set to work, and if by the early morning thou hast not spun this straw to gold thou shalt die.” And he shut the door himself, and left her there alone. And so the poor miller’s daughter was left there sitting, and could not think what to do for her life: she had no notion how to set to work to spin gold from straw, and her distress grew so great that she began to weep. Then all at once the door opened, and in came a little man, who said: “Good evening, miller’s daughter; why are you crying?”

Enjoy! BTW, should you care to, you can find three other postings here tagged with ‘Rumpelstiltskin’. I think turning dross into gold is a popular theme in applied science.

Apply for faculty positions or entry to master’s programme at Canada’s Perimeter Institute for Theoretical Physics

I think the title for this post says it all.

Faculty positions

From an Oct. 13, 2020 Perimeter Institute for Theoretical Physics (PI) announcement (received via email),

Perimeter Institute for Theoretical Physics is inviting applications for tenure-track Faculty positions in Quantum Matter and Quantum Information Science. For more information please visit our website.

We would be very grateful if you would circulate this information to outstanding early career candidates who may be interested in this opportunity.

Perimeter Institute offers a dynamic, multi-disciplinary environment with maximum research freedom and opportunity to collaborate. Consideration of applications will begin on December 1, 2020; however, applications will be considered until the positions are filled.

Perimeter Scholars International (PSI) master’s programme

From an Oct. 13, 2020 Perimeter Institute for Theoretical Physics (PI) announcement (received via email),

Perimeter Institute for Theoretical Physics is now accepting applications for the 2021/2022 Perimeter Scholars International (PSI) program. 

PSI is a master’s-level course in theoretical physics designed to bring highly qualified and exceptionally motivated graduate students to the cutting edge of the field in an inclusive training environment. 

This unique Master’s program, in partnership with the University of Waterloo, seeks not only students with stellar undergraduate physics and/or mathematics track records, but also those with diverse backgrounds, collaborative spirit, creativity, and other attributes that will set them apart as future innovators. 

Program features

– Removal of financial barriers: Most students who receive and accept offers of admission to PSI will receive a full scholarship. Perimeter Institute also helps with travel arrangements and any immigration arrangements necessary. 

– Students learn from many of the leading minds in theoretical physics while earning a Master’s degree from the University of Waterloo 

– Collaboration is valued over competition; deep understanding and creativity are valued over rote learning and examination 

– PSI recruits worldwide: 85 percent of students come from outside of Canada

– PSI seeks extraordinary talent who may have non-traditional academic backgrounds, but have demonstrated exceptional scientific aptitude 

Early application deadline: November 15, 2020. 
Final application deadline: February 1, 2021. 

Good luck!

Belated posting for Ada Lovelace Day (it was on Tuesday, Oct. 13, 2020)

For anyone who doesn’t know who Ada Lovelace was (from my Oct. 13, 2015 posting, ‘Ada Lovelace “… manipulative, aggressive, a drug addict …” and a genius but was she likable?‘)

Ada Lovelace was the daughter of the poet Lord Byron and mathematician Annabella Milbanke.

Her [Ada Lovelace’s] foresight was so extraordinary that it would take another hundred years and Alan Turing to recognise the significance of her work. But it was an achievement that was probably as much a product of her artistic heritage as her scientific training.

You can take the title of that October 13, 2015 post as a hint that I was using ‘Ada Lovelace “… manipulative, aggressive, a drug addict …” and a genius but was she likable?‘ to comment on the requirement that women be likable in a way that men never have to consider.

Hard to believe that 2015 was the last time I stumbled across information about the day. ’nuff said. This year I was lucky enough to see this Oct. 13, 2020 article by Zoe Kleinman for British Broadcasting Corporation (BBC) news online,

From caravans [campers] to kitchen tables, and podcast production to pregnancy, I’ve been speaking to many women in and around the technology sector about how they have adapted to the challenges of working during the coronavirus pandemic.

Research suggests women across the world have shouldered more family and household responsibilities than men as the coronavirus pandemic continues, alongside their working lives.

And they share their inspirations, frustrations but also their optimism.

“I have a new business and a new life,” says Clare Muscutt, who lost work, her relationship and her flatmate as lockdown hit.

This Tuesday [Oct. 13, 2020] is Ada Lovelace Day – an annual celebration of women working in the male-dominated science, technology, engineering and maths (Stem) sectors.

And, this year, it has a very different vibe.

Claire Broadley, technical writer, Leeds

Before lockdown, my husband and I ran our own company, producing user guides and written content for websites.

Business income dropped by about two-thirds during lockdown.

We weren’t eligible for any government grants. And because we still had a small amount of work, we couldn’t furlough ourselves.

It felt like we were slowly marching our family towards a cliff edge.

In May [2020], to my astonishment and relief, I was offered my dream job, remote writing about the internet and technology.

Working from home with the children has been the most difficult thing we’ve ever done.

My son is seven. He is very scared.

Sometimes, we can’t spend the time with him that we would like to. And most screen-time rules have gone completely out of the window.

The real issue for us now is testing.

My young daughter caught Covid in July [2020]. And she recently had a temperature again. But it took six days to get a test result, so my son was off school again. And my husband was working until midnight to fit everything in.

There are many other stories in Kleinman’s Oct. 13, 2020 article.

Nancy Doyle’s October 13, 2020 article for Forbes tends to an expected narrative about women in science, technology, engineering, and mathematics (STEM),

“21st century science has a problem. It is short of scientists. Technological innovations mean that the world needs many more specialists in the STEM (Science, Technology, Engineering and Maths) subjects than it is currently training. And this problem is compounded by the fact that women, despite clear evidence of aptitude and ability for science subjects, are not choosing to study STEM subjects, are not being recruited into the STEM workforce, are not staying in the STEM workplace.”

Why Don’t Women Do Science?

Professor Rippon [Gina Rippon, Professor of Neuroscience at Aston University in the UK] walked me through the main “neurotrash” arguments about the female brain and its feebleness.

“There is a long and fairly well-rehearsed ‘blame the brain’ story, with essentialist or biology-is-destiny type arguments historically asserting that women’s brains were basically inferior (thanks, Gustave le Bon and Charles Darwin!) or too vulnerable to withstand the rigours of higher education. A newer spin on this is that female brains do not endow their owners with the appropriate cognitive skills for science. Specifically, they are poor at the kind of spatial thinking that is core to success in science or, more generally, are not ‘hard-wired’ for the necessary understanding of systems fundamental to the theory and practice of science.

The former ‘spatial deficit’ description has been widely touted as one of the most robust of sex differences, quite possibly present from birth. But updated and more nuanced research has not been able to uphold this claim; spatial ability appears to be more a function of spatial experience (think toys, videogames, hobbies, sports, occupations) than sex. And it is very clearly trainable (in both sexes), resulting in clearly measurable brain changes as well as improvements in skill.”

You can find out more about women in STEM, Ada Lovelace, and events (year round) to celebrate her at the Ada Lovelace Day website.

Plus, I found this on Twitter about a new series of films about women in science from a Science Friday (a US National Public Radio podcast) tweet,

Science Friday @scifri

Celebrate #WomenInScience with a brand new season of #BreakthroughFilms, dropping today [October 14, 2020]! Discover the innovative research & deeply personal stories of six women working at the forefront of their STEM fields.

Get inspired at BreakthroughFilms.org

Here’s the Breakthrough Films trailer,

Enjoy!

If you want ‘shredded pecs’, train like a burrowing frog

Caption: Forward burrowers use pointed snouts and powerful forelimbs bolstered by strong pectoral muscles to scrabble into the earth. They’re often orb-shaped to improve their ability to hold water. Credit: Rachel Keeffe

It’s always enjoyable to see the scientific community indulge in a little fun and I’m using that as an excuse for including a frog story here.

From an August 31, 2020 Florida Museum of Natural History news release (also on EurekAlert but published on Sept. 1, 2020) by Halle Marchese announces some research into a little known frog,

You might think the buffest frogs would be high jumpers, but if you want shredded pecs, you should train like a burrowing frog. Though famously round, these diggers are the unsung bodybuilders of the frog world. We bring you tips from frog expert Rachel Keeffe, a doctoral student at the University of Florida, and physical therapist Penny Goldberg to help you get the burrowing body of your dreams.

But first, a caveat: According to Keeffe, no workout regimen can help you train your way into a highly specialized frog physique honed by 200 million years of evolution. To better understand burrowing frog anatomy, Keeffe and her adviser David Blackburn, Florida Museum of Natural History curator of herpetology, analyzed CT scans from all 54 frog families to show these frogs boast a robust and quirky skeleton that is more variable than previously thought.

“People think about frogs as being clean and smooth and slimy, or the classic ‘green frog on a lily pad,’ but a lot of them are dirty – they like to scoot around and be in the dirt,” Keeffe said. “Burrowing frogs are really diverse and can do a lot of cool things. And when you look at the skeletons of known burrowers, they’re very different from what you would call a ‘normal frog.'”

Burrowing frogs are found all over the world from deserts to swamps, but their underground lifestyle makes them difficult to study, Keeffe said. Most tunnel hind end-first with their back legs. But a few species are forward burrowers, using pointed snouts and powerful forelimbs bolstered by strong pectoral muscles to scrabble into the earth.

Keeffe’s sample of 89 frog species revealed radical differences in burrowing bone structure, from clavicles the size of eyelashes to other bones that are unusually thick.

“They’re so diverse that it’s challenging to think about even comparing them. It’s almost a black hole of work that we can do with forward burrowers because we tend to focus on the legs,” she said.

Some burrow to seek refuge, whether from arid temperatures or predators, and underground habitats can be hunting grounds or secluded hiding places. Other burrowing frogs can spend months at a time as deep as 3 feet belowground, surviving on a high-protein diet of termites and ants. The takeaway: If you want to compete for resources with the pros, don’t be afraid to put in the work.

Get the burly burrowing body

To train like a burrowing frog, Goldberg, assistant director of ReQuest Physical Therapy in Gainesville, recommended dedicating time to strengthening your upper back.

“In humans, the most important muscle group to focus on if you were to train like one of these frogs would be the scapular stabilizers,” she said. “These include 17 muscles, such as the lats and rotator cuff, with attachments all the way down to the pelvis that allow the upper back to generate power. To burrow like a forward burrower, you need to strengthen this entire region.”

One strengthening move Goldberg recommended is the “Prone W.” Lie facedown with elbows bent and palms on the floor. Squeeze your shoulder blades down and toward your spine as you lift your arms to the ceiling for a couple seconds at a time.

Like any elite athlete, burrowing frogs also maintain an optimal form. They’re often orb-shaped to improve their ability to hold water.

“Personally, if I were a sphere, I think it would be hard for me to dig, but it doesn’t seem to affect these frogs at all,” Keeffe said. “However, frogs with stumpy legs are definitely worse at jumping, and they tend to stagger when they walk.”

For these frogs, time away from the tunnels might be spent swimming instead, Keeffe said. To compete here, Goldberg recommends the breaststroke, adding that her top training tips for getting the upper back and pecs of a forward burrower would include pullups and pushups to develop the shoulder blade area.

“In my world, we would use resistance bands and pushing or pulling motions to train this area,” Goldberg said. “Anything focusing predominantly on building strength in the upper back region.”

If resistance bands are part of your workout routine, try grasping one with both hands and extending your arms while keeping your elbows straight. For best results, Goldberg recommended starting with three sets of 10.

Burrowing frogs might also hold key answers to gaps in scientists’ understanding of amphibian evolution at large. Keeffe’s analysis also found that forward-burrowing behavior evolved independently at least eight times in about one-fifth of frog families, and the trait’s persistence in the frog family tree suggests it’s a beneficial adaptation. Keeffe also found that forward burrowers tended to have a highly contoured humerus, the bone that connects the shoulder to the elbow in humans.

Understanding how bone shape relates to musculature can help scientists identify which frogs, both modern and extinct, are forward burrowers, a helpful tool given their covert behavior.

“Even though it can be frustrating, I like them because they’re secretive,” Keeffe said. “But the whole thing underlying this study is that frogs can do a lot of cool things – they don’t just jump and they’re not just green.”

CT scans were generated from the National Science Foundation-funded oVert project.

Do take a look at the August 31, 2020 Florida Museum of Natural History news release as the researchers have provided pictures of real ‘forward burrowing frogs’ along with more cartoons and other other images that have been embedded in Marchese’s release.

Here’s a link to and a citation for the paper,

Comparative morphology of the humerus in forward-burrowing frogs by Rachel Keeffe, David C Blackburn. Biological Journal of the Linnean Society, blaa092, DOI: https://doi.org/10.1093/biolinnean/blaa092 Published: 28 August 2020

This paper is behind a paywall.