Category Archives: water

Iran nanotechnology sector update

It’s been a long time but last August I stumbled across a number of stories about Iran’s nanotechnology efforts.

First up, there’s an August 29, 2021 news item in Tehran Times,

As of the start of a national plan to develop the nanotechnology sector 15 years ago, more than 5,283 billion rials (about $125.7 million [US?] at the official exchange rate of 42,000 rials) has been allocated to nanotechnology projects, IRNA [Islamic Republic News Agency] reported on Saturday [August 28, 2021].

Nanotechnology’s trend of development is growing in Iran, as the number of nanoproducts and equipment developed in the previous [Iranian calendar] year (ended March 20 [2021]) increased to 750, compared with 647 a year before.

Some 223 product manufacturing companies and 59 equipment manufacturing companies are active in the field of nanotechnology and by the end of last year, which developed a total of 750 products and equipment.

Of the 750 products and equipment registered in the nanotechnology product database, 535 were related to nano-products and 215 were related to nano-equipment, both of which have experienced a growing trend over the past few years, although nano-products have grown more significantly.

Saeed Sarkar, the head of Iran’s Nanotechnology Innovation Council, said in June that Iran has created centers in six Asian countries for exporting nanotechnology products.

China, India, Indonesia, Syria, Turkey, and Iraq have received Iranian nanotechnology products and services.

Iranian-made nanotechnology products are currently exported to 49 countries in five continents, he added.

Iran has been introduced as the 4th leading country in the world in the field of nanotechnology, publishing 11,546 scientific articles in 2020.

The country held a 6 percent share of the world’s total nanotechnology articles, according to StatNano’s monthly evaluation accomplished in WoS [Web of Science] databases.

Then a national contest was announced in a September 1, 2021 news item in the Tehran Times, Note: Some of the information in this news item has been repeated from the August 31, 2021 news item],

The second round of the 10th National Nanotech Contest will be held on Friday [September 3, 2021] with 308 university students competing in 21 centers nationwide.

As the most significant academic event in the country, the national contest is held annually in the five fields of basic concepts, synthesis, analysis, applications, and commercialization of domestically-made products, ISNA reported.

The first round of the event was held July 31-August 2 [2021].

Finally, there’s a September 5, 2021 article by Faranak Bakhtiari about nanotechnology and drought abatement measures for the Tehran Times,

Iran is located in an arid and semi-arid region, and Iranians have long sought to make the most of water.

In recent years, the drought has intensified making water resources fragile and it can be said that we have reached water bankruptcy in Iran.

However, water stress will continue this fall (September 23-December 21 [2021]), and the season is expected to be relatively hot and short of rain, according to Ahad Vazifeh, head of the national center for drought and crisis management.

In such a situation, officials and experts propose various solutions for optimal water management.

Alireza Qazizadeh, a water and environment expert, referring to 80 percent of the arid regions in the country, said that “Iran has one percent of the earth’s area and receives only 36 percent of renewable resources.

The country receives 250 mm of rainfall annually, which is about 400 billion cubic meters, considering 70 percent evaporation, there is only 130 billion cubic meters of renewable water and 13 billion cubic meters of input from border waters.”

Referring to 800 ml of average rainfall and 700 mm of global evaporation, he noted that 70 percent of rainfall in Iran occurs in only 25 percent of the country and only 25 percent rains in irrigation seasons.

Pointing to the need for 113 billion cubic meters of water in the current year (began on March 21), he stated that “of this amount, 102 billion is projected for agricultural use, 7 percent for drinking and 2 percent for industry, and at this point water stress occurs.

In 2001, 5.5 billion cubic meters of underground resources were withdrawn annually, and if we consider this amount as 20 years from that year until now, it means that we have withdrawn an equivalent of one year of water consumption from non-renewable resources, which is alarming.”

Rasoul Sarraf, the Faculty of Materials at Shahid Modarres University, suggests a different solution and states that “To solve ease water stress, we have no choice but to use nanotechnology and solar power plants.

A recent report by Nature Scientific Journal on Iran’s water crisis indicates that from 2002 to 2015, over 74 billion cubic meters have been extracted from aquifers, which is unprecedented and its revival takes thousands of years along with urgent action.

Bakhtiari’s article does not mention how nanotechnology can be a factor in mitigating water shortages, rather it focuses on the urgency of the situation.

For anyone who thinks that droughts and water shortages do not affect Canada, take a good look at the Canadian Drought Monitor map (as of July 31, 2021). In an area known internationally for its rainfall (Vancouver and Vancouver Island in British Columbia), we had drought conditions ranging from severe to extreme. As for the rest of Canada, the prairie provinces seemed to have experienced the driest conditions with Manitoba experiencing some of the most extreme conditions in the country. From all reports, this will not be unusual in the future.

Artificial ionic neuron for electronic memories

This venture into brain-like (neuromorphic) computing comes from France according to an August 17, 2021 news item on Nanowerk (Note: A link has been removed),

Brain-inspired electronics are the subject of intense research. Scientists from CNRS (Centre national de la recherche scientifique; French National Centre for Scientific Research) and the Ecole Normale Supérieure – PSL have theorized how to develop artificial neurons using, as nerve cells, ions to carry the information.

Their work, published in Science (“Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits”), reports that devices made of a single layer of water transporting ions within graphene nanoslits have the same transmission capacity as a neuron.

Caption Artificial neuron prototype: nanofluidic slits can play the role of ion channels and allow neurons to communicate. Ion clusters achieve the ion transport that causes this communication. Credit © Paul Robin, ENS Laboratoire de Physique (CNRS/ENS-PSL/Sorbonne Université/Université de Paris).

Au August 16, 2021 CNRS press release (also on EurekAlert but published August 6, 2021), which originated the news item, provides insight into the international interest in neuromorphic computing along with a few technical details about this latest research,

With an energy consumption equivalent to two bananas per day, the human brain can perform many complex tasks. Its high energy efficiency depends in particular on its base unit, the neuron, which has a membrane with nanometric pores called ion channels, which open and close according to the stimuli received. The resulting ion flows create an electric current responsible for the emission of action potentials, signals that allow neurons to communicate with each other.

Artificial intelligence can do all of these tasks but only at the cost of energy consumption tens of thousands of times that of the human brain. So the entire research challenge today is to design electronic systems that are as energy efficient as the human brain, for example, by using ions, not electrons, to carry the information. For this, nanofluidics, the study of how fluids behave in channels less than 100 nanometers wide, offer many perspectives. In a new study, a team from the ENS Laboratoire de Physique (CNRS/ENS-PSL/Sorbonne Université/Université de Paris) shows how to construct a prototype of an artificial neuron formed of extremely thin graphene slits containing a single layer of water molecules1. The scientists have shown that, under the effect of an electric field, the ions from this layer of water assemble into elongated clusters and develop a property known as the memristor effect: these clusters retain some of the stimuli that have been received in the past. To repeat the comparison with the brain, the graphene slits reproduce the ion channels, clusters and ion flows. And, using theoretical and digital tools, scientists have shown how to assemble these clusters to reproduce the physical mechanism of emission of action potentials, and thus the transmission of information.

This theoretical work continues experimentally within the French team, in collaboration with scientists from the University of Manchester (UK). The goal now is to prove experimentally that such systems can implement simple learning algorithms that can serve as the basis for tomorrow’s electronic memories.

1 Recently invented in Manchester by the group of André Geim (Nobel Prize in Physics 2010)

Here’s a link to and a citation for the paper,

Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits by Paul Robin, Nikita Kavokine, Lydéric Bocquet. Science 06 Aug 2021: Vol. 373, Issue 6555, pp. 687-691 DOI: 10.1126/science.abf7923

This paper is behind a paywall.

Canadian and Guadeloupean oysters: exposure to nanoplastics and arsenic

A May 27, 2021 news item on phys.org describes research into oysters and nanoplastics,

Oysters’ exposure to plastics is concerning, particularly because these materials can accumulate and release metals which are then absorbed by the mollusks. According to a recent study published in the journal Chemosphere, the combined presence of nanoplastics and arsenic affects the biological functions of oysters. This study was conducted by the Institut national de la recherche scientifique (INRS) in Québec City and the French National Centre for Scientific Research (CNRS) at the University of Bordeaux in France

A May 27, 2021 INRS news release (French language version here and an English language version on EurekAlert), which originated the news item, provides fascinating details,

The international research team chose to study arsenic, since it is one of the most common metals absorbed by the plastic debris collected from the beaches of Guadeloupe. “Oysters easily accumulate metals from the environment into their tissues. We therefore wanted to test whether the combined exposure to nanoplastics and arsenic would increase the bioaccumulation of this contaminant,” reported Marc Lebordais, the Master’s student in charge of the research.

The scientists proved that the bioaccumulation of arsenic does not increase when nanoplastics are also present. However, it remained higher in the gills of the Canadian Crassostrea virginica oyster [emphasis mine] than in the Isognomon alatus oyster, found in Guadeloupe. These results are the first to highlight the diverging sensitivity of different species. [emphasis mine]

Gene deregulation

In addition to bioaccumulation, the team also observed an overexpression of genes responsible for cell death and the number of mitochondria–a cell’s energy centres–in C. virginica. In I. alatus, the expression of these same genes was less significant.

“Evaluating the expression of genes involved in important functions, such as cell death and detoxification, gives us information on the toxicity of nanoplastics and arsenic on a cellular level,” explained the young researcher, who is co-directed by Professors Valérie Langlois of INRS and Magalie Baudrimont of the University of Bordeaux.

The food chain

The next step, after characterizing the presence of nanoplastics and arsenic in oysters, would be to study how these contaminants are transferred through the food chain.

“Analytical tools are currently being developed to quantify the presence of nanoplastics in biological tissues,” said Marc Lebordais. “Understanding the amount of nanoplastics in farmed oysters currently boils down to a technical issue.” ?

Here’s a link to and a citation for the paper,

Molecular impacts of dietary exposure to nanoplastics combined with arsenic in Canadian oysters (Crassostrea virginica) and bioaccumulation comparison with Caribbean oysters (Isognomon alatus) by Marc Lebordais, Juan Manuel Gutierrez-Villagomez, Julien Gigault, Magalie Baudrimont, and Valérie Langlois. Chemosphere Volume 277, August 2021, 130331 DOI: https://doi.org/10.1016/j.chemosphere.2021.130331 First published online 19 March 2021.

This paper is open access.

Salt ‘creatures’ could help unclog industrial pipes

I love the video (wish the narrator had a more conversational style rather than the ‘read aloud’ style so many of us adopted in school),

Joel Goldberg’s April 28, 2021 news article (short read) in Science magazine online describes the research (Note: A link has been removed),

Behold the salt monsters. These twisted mineral crystals—formed from the buildup of slightly salty water in power plant pipes—come in many shapes and sizes. But the tiny monsters are a big problem: Each year, they cost the world’s power plants at least $100 billion because workers have to purge the pipes and scrub the crystals from filters.

Now, a solution may be at hand. Engineers can reduce the damage by coating the insides of the pipes with textured, water-repellant [hydrophobic] surfaces …

Here’s a link to and a citation for the paper,

Crystal critters: Self-ejection of crystals from heated, superhydrophobic surfaces by Samantha A. McBride, Henri-Louis Girard, and Kripa K. Varanasi. Science Advances 28 Apr 2021: Vol. 7, no. 18, eabe6960 DOI: 10.1126/sciadv.abe6960

This paper is open access. As research papers go, this is quite readable, from the Introduction (Note: Links have been removed),

Many of the uses for water are intimately familiar to us. Drinking water, wash water, water for agriculture, and even water used for recreation have an omnipresent and essential impact on our lives. However, water’s impact and importance extend far beyond these everyday uses. In many developed countries, thermoelectric power production is one of the largest sources of water consumption (1), where it is used to cool reactors and transport heat. In 2015, 41% of all surface water withdrawals in the United States went toward cooling in thermoelectric power plants (2). Thermoelectric power accounts for 90% of all electricity generated within the United States and encompasses many forms of power production, including nuclear, coal, natural gas, and oil.

There you go.

New water treatment with 3D-printed graphene aerogels

Caption: Graphene aerogel on a single tissue. Credit: University at Buffalo

That image of the graphene aerogel on a tissue shows off its weightlessness very well.

Here’s more about the graphene aerogel water treatment from an April 14, 2021 news item on Nanowerk,

Graphene excels at removing contaminants from water, but it’s not yet a commercially viable use of the wonder material.

That could be changing.

In a recent study, University at Buffalo [UB] engineers report a new process of 3D printing graphene aerogels that they say overcomes two key hurdles — scalability and creating a version of the material that’s stable enough for repeated use — for water treatment.

“The goal is to safely remove contaminants from water without releasing any problematic chemical residue,” says study co-author Nirupam Aich, PhD, assistant professor of environmental engineering at the UB School of Engineering and Applied Sciences. “The aerogels we’ve created hold their structure when put in water treatment systems, and they can be applied in diverse water treatment applications.”

An April 14, 2021 UB news release (also on EurekAlert) by Melvin Bankhead III, which originated the news item, explains the breakthrough in more detail,

An aerogel is a light, highly porous solid formed by replacement of liquid in a gel with a gas so that the resulting solid is the same size as the original. They are similar in structural configuration to Styrofoam: very porous and lightweight, yet strong and resilient.

Graphene is a nanomaterial formed by elemental carbon and is composed of a single flat sheet of carbon atoms arranged in a repeating hexagonal lattice.

To create the right consistency of the graphene-based ink, the researchers looked to nature. They added to it two bio-inspired polymers — polydopamine (a synthetic material, often referred to as PDA, that is similar to the adhesive secretions of mussels), and bovine serum albumin (a protein derived from cows).

In tests, the reconfigured aerogel removed certain heavy metals, such as lead and chromium, that plague drinking water systems nationwide. It also removed organic dyes, such as cationic methylene blue and anionic Evans blue, as well as organic solvents like hexane, heptane and toluene.

To demonstrate the aerogel’s reuse potential, the researchers ran organic solvents through it 10 times. Each time, it removed 100% of the solvents. The researchers also reported the aerogel’s ability to capture methylene blue decreased by 2-20% after the third cycle.

The aerogels can also be scaled up in size, Aich says, because unlike nanosheets, aerogels can be printed in larger sizes. This eliminates a previous problem inherent in large-scale production, and makes the process available for use in large facilities, such as in wastewater treatment plants, he says. He adds the aerogels can be removed from water and reused in other locations, and that they don’t leave any kind of residue in the water.

Aich is part of a collaboration between UB and the University of Pittsburgh, led by UB chemistry professor Diana Aga, PhD, to find methods and tools to degrade per- and polyfluoroalkyl substances (PFAS), toxic materials so difficult to break down that they are known as “forever chemicals.” Aich notes the similarities to his work with 3D aerogels, and he hopes results from the two projects can be brought together to create more effective methods of removing waterborne contaminants.

“We can use these aerogels not only to contain graphene particles but also nanometal particles which can act as catalysts,” Aich says. “The future goal is to have nanometal particles embedded in the walls and the surface of these aerogels and they would be able to degrade or destroy not only biological contaminants, but also chemical contaminants.”

Aich, Chi, and Masud [Arvid Masud, PhD] hold a pending patent for the graphene aerogel described in the study, and they are looking for industrial partners to commercialize this process.

Here’s link to and a citation for the paper,

Emerging investigator series: 3D printed graphene-biopolymer aerogels for water contaminant removal: a proof of concept by Arvid Masud, Chi Zhoub and Nirupam Aich. Environ. Sci.: Nano, 2021,8, 399-414 DOI: https://doi.org/10.1039/D0EN00953A First published online: 09 Dec 2020

This paper is behind a paywall.

An electronics-free, soft robotic dragonfly

From the description on YouTube,

With the ability to sense changes in pH, temperature and oil, this completely soft, electronics-free robot dubbed “DraBot” could be the prototype for future environmental sentinels. …

Music: Joneve by Mello C from the Free Music Archive

A favourite motif in the Art Nouveau movement (more about that later in the post), dragonflies or a facsimile thereof feature in March 25, 2021 Duke University news release (also on EurekAlert) by Ken Kingery,

Engineers at Duke University have developed an electronics-free, entirely soft robot shaped like a dragonfly that can skim across water and react to environmental conditions such as pH, temperature or the presence of oil. The proof-of-principle demonstration could be the precursor to more advanced, autonomous, long-range environmental sentinels for monitoring a wide range of potential telltale signs of problems.

The soft robot is described online March 25 [2021] in the journal Advanced Intelligent Systems.

Soft robots are a growing trend in the industry due to their versatility. Soft parts can handle delicate objects such as biological tissues that metal or ceramic components would damage. Soft bodies can help robots float or squeeze into tight spaces where rigid frames would get stuck.

The expanding field was on the mind of Shyni Varghese, professor of biomedical engineering, mechanical engineering and materials science, and orthopaedic surgery at Duke, when inspiration struck.

“I got an email from Shyni from the airport saying she had an idea for a soft robot that uses a self-healing hydrogel that her group has invented in the past to react and move autonomously,” said Vardhman Kumar, a PhD student in Varghese’s laboratory and first author of the paper. “But that was the extent of the email, and I didn’t hear from her again for days. So the idea sort of sat in limbo for a little while until I had enough free time to pursue it, and Shyni said to go for it.”

In 2012, Varghese and her laboratory created a self-healing hydrogel that reacts to changes in pH in a matter of seconds. Whether it be a crack in the hydrogel or two adjoining pieces “painted” with it, a change in acidity causes the hydrogel to form new bonds, which are completely reversible when the pH returns to its original levels.

Varghese’s hastily written idea was to find a way to use this hydrogel on a soft robot that could travel across water and indicate places where the pH changes. Along with a few other innovations to signal changes in its surroundings, she figured her lab could design such a robot as a sort of autonomous environmental sensor.

With the help of Ung Hyun Ko, a postdoctoral fellow also in Varghese’s laboratory, Kumar began designing a soft robot based on a fly. After several iterations, the pair settled on the shape of a dragonfly engineered with a network of interior microchannels that allow it to be controlled with air pressure.

They created the body–about 2.25 inches long with a 1.4-inch wingspan–by pouring silicon into an aluminum mold and baking it. The team used soft lithography to create interior channels and connected with flexible silicon tubing.

DraBot was born.

“Getting DraBot to respond to air pressure controls over long distances using only self-actuators without any electronics was difficult,” said Ko. “That was definitely the most challenging part.”

DraBot works by controlling the air pressure coming into its wings. Microchannels carry the air into the front wings, where it escapes through a series of holes pointed directly into the back wings. If both back wings are down, the airflow is blocked, and DraBot goes nowhere. But if both wings are up, DraBot goes forward.

To add an element of control, the team also designed balloon actuators under each of the back wings close to DraBot’s body. When inflated, the balloons cause the wings to curl upward. By changing which wings are up or down, the researchers tell DraBot where to go.

“We were happy when we were able to control DraBot, but it’s based on living things,” said Kumar. “And living things don’t just move around on their own, they react to their environment.”

That’s where self-healing hydrogel comes in. By painting one set of wings with the hydrogel, the researchers were able to make DraBot responsive to changes in the surrounding water’s pH. If the water becomes acidic, one side’s front wing fuses with the back wing. Instead of traveling in a straight line as instructed, the imbalance causes the robot to spin in a circle. Once the pH returns to a normal level, the hydrogel “un-heals,” the fused wings separate, and DraBot once again becomes fully responsive to commands.

To beef up its environmental awareness, the researchers also leveraged the sponges under the wings and doped the wings with temperature-responsive materials. When DraBot skims over water with oil floating on the surface, the sponges will soak it up and change color to the corresponding color of oil. And when the water becomes overly warm, DraBot’s wings change from red to yellow.

The researchers believe these types of measurements could play an important part in an environmental robotic sensor in the future. Responsiveness to pH can detect freshwater acidification, which is a serious environmental problem affecting several geologically-sensitive regions. The ability to soak up oils makes such long-distance skimming robots an ideal candidate for early detection of oil spills. Changing colors due to temperatures could help spot signs of red tide and the bleaching of coral reefs, which leads to decline in the population of aquatic life.

The team also sees many ways that they could improve on their proof-of-concept. Wireless cameras or solid-state sensors could enhance the capabilities of DraBot. And creating a form of onboard propellant would help similar bots break free of their tubing.

“Instead of using air pressure to control the wings, I could envision using some sort of synthetic biology that generates energy,” said Varghese. “That’s a totally different field than I work in, so we’ll have to have a conversation with some potential collaborators to see what’s possible. But that’s part of the fun of working on an interdisciplinary project like this.”

Here’s a link to and a citation for the paper,

Microengineered Materials with Self‐Healing Features for Soft Robotics by Vardhman Kumar, Ung Hyun Ko, Yilong Zhou, Jiaul Hoque, Gaurav Arya, Shyni Varghese. Advanced Intelligent Systems DOI: https://doi.org/10.1002/aisy.202100005 First published: 25 March 2021

This paper is open access.

The earlier reference to Art Nouveau gives me an excuse to introduce this March 7, 2020 (?) essay by Bex Simon (artist blacksmith) on her eponymous website.

Dragonflies, in particular, are a very poplar subject matter in the Art Nouveau movement. Art Nouveau, with its wonderful flowing lines and hidden fantasies, is full of symbolism.  The movement was a response to the profound social changes and industrialization of every day life and the style of the moment was, in part, inspired by Japanese art.

Simon features examples of Art Nouveau dragonfly art along with examples of her own take on the subject. She also has this,

[downloaded from https://www.bexsimon.com/dragonflies-and-butterflies-in-art-nouveau/]

This is a closeup of a real dragonfly as seen on Simon’s website. If you have an interest, reading her March 7, 2020 (?) essay and gazing at the images won’t take much time.

Water and minerals have a nanoscale effect on bones

Courtesy: University of Arkansas

What a great image of bones! This December 3, 2020 University of Arkansas news release (also on EurekAlert) by Matt McGowan features research focused on bone material looks exciting. The date for the second study citation and link that I have listed (at the end of this posting) suggests the more recent study may have been initially overlooked in the deluge of COVID-19 research we are experiencing,

University of Arkansas researchers Marco Fielder and Arun Nair have conducted the first study of the combined nanoscale effects of water and mineral content on the deformation mechanisms and thermal properties of collagen, the essence of bone material.

The researchers also compared the results to the same properties of non-mineralized collagen reinforced with carbon nanotubes, which have shown promise as a reinforcing material for bio-composites. This research aids in the development of synthetic materials to mimic bone.

Using molecular dynamics — in this case a computer simulation of the physical movements of atoms and molecules — Nair and Fielder examined the mechanics and thermal properties of collagen-based bio-composites containing different weight percentages of minerals, water and carbon nanotubes when subjected to external loads.

They found that variations of water and mineral content had a strong impact on the mechanical behavior and properties of the bio-composites, the structure of which mimics nanoscale bone composition. With increased hydration, the bio-composites became more vulnerable to stress. Additionally, Nair and Fielder found that the presence of carbon nanotubes in non-mineralized collagen reduced the deformation of the gap regions.

The researchers also tested stiffness, which is the standard measurement of a material’s resistance to deformation. Both mineralized and non-mineralized collagen bio-composites demonstrated less stability with greater water content. Composites with 40% mineralization were twice as strong as those without minerals, regardless of the amount of water content. Stiffness of composites with carbon nanotubes was comparable to that of the mineralized collagen.

“As the degree of mineralization or carbon nanotube content of the collagenous bio-composites increased, the effect of water to change the magnitude of deformation decreased,” Fielder said.

The bio-composites made of collagen and carbon nanotubes were also found to have a higher specific heat than the studied mineralized collagen bio-composites, making them more likely to be resistant to thermal damage that could occur during implantation or functional use of the composite. Like most biological materials, bone is a hierarchical – with different structures at different length scales. At the microscale level, bone is made of collagen fibers, composed of smaller nanofibers called fibrils, which are a composite of collagen proteins, mineralized crystals called apatite and water. Collagen fibrils overlap each other in some areas and are separated by gaps in other areas.

“Though several studies have characterized the mechanics of fibrils, the effects of variation and distribution of water and mineral content in fibril gap and overlap regions are unexplored,” said Nair, who is an associate professor of mechanical engineering. “Exploring these regions builds an understanding of the structure of bone, which is important for uncovering its material properties. If we understand these properties, we can design and build better bio-inspired materials and bio-composites.”

Here are links and citations for both papers mentioned in the news release,

Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale by Marco Fielder & Arun K. Nair. Biomechanics and Modeling in Mechanobiology volume 18, pages57–68 (2019) Biomech Model Mechanobiol 18, 57–68 (2019). DOI: https://doi.org/10.1007/s10237-018-1067-y First published: 07 August 2018 Issue Date: 15 February 2019

This paper is behind a paywall.

A computational study of mechanical properties of collagen-based bio-composites by Marco Fielder & Arun K. Nair. International Biomechanics Volume 7, 2020 – Issue 1 Pages 76-87 DOI: https://doi.org/10.1080/23335432.2020.1812428 Published online: 02 Sep 2020

This paper is open access.

Living plants detect arsenic by way of embedded nanosensors

There’s a lot of arsenic in the world and it’s often a factor in making water undrinkable. When that water is used in farming It also pollutes soil and enters food-producing plants. A December 11, 2020 news item on Nanowerk announces research into arsenic detectors in plants,

Researchers have developed a living plant-based sensor that can in real-time detect and monitor levels of arsenic, a highly toxic heavy metal, in the soil. Arsenic pollution is a major threat to humans and ecosystems in many Asia Pacific countries.

Caption: Non-destructive plant nanobionic sensor embedded within leaves to report arsenic levels within plants to portable electronics, enabling real-time monitoring of arsenic uptake in living plants. Credit: Dr. Tedrick Thomas Salim Lew

I was not able to find the source for the news item but I did locate something close. From a December 13, 2020 Singapore-Massachusetts Institute of Technology (MIT) Alliance for Research and Technology (SMART), also on EurekAlert,

Scientists from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) research group at the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, have engineered a novel type of plant nanobionic optical sensor that can detect and monitor, in real time, levels of the highly toxic heavy metal arsenic in the underground environment. This development provides significant advantages over conventional methods used to measure arsenic in the environment and will be important for both environmental monitoring and agricultural applications to safeguard food safety, as arsenic is a contaminant in many common agricultural products such as rice, vegetables, and tea leaves.

Arsenic and its compounds are a serious threat to humans and ecosystems. Long-term exposure to arsenic in humans can cause a wide range of detrimental health effects, including cardiovascular disease such as heart attack, diabetes, birth defects, severe skin lesions, and numerous cancers including those of the skin, bladder, and lung. Elevated levels of soil arsenic as a result of anthropogenic activities such as mining and smelting are also harmful to plants, inhibiting growth and resulting in substantial crop losses.

Food crops can absorb arsenic from the soil, leading to contamination of food and produce consumed by humans. Arsenic in underground environments can also contaminate groundwater and other underground water sources, the long-term consumption of which can cause severe health issues. As such, developing accurate, effective, and easy-to-deploy arsenic sensors is important to protect both the agriculture industry and wider environmental safety.

The novel optical nanosensors exhibit changes in their fluorescence intensity upon detecting arsenic. Embedded in plant tissues, with no detrimental effects on the plant, these sensors provide a nondestructive way to monitor the internal dynamics of arsenic taken up by plants from the soil. This integration of optical nanosensors within living plants enables the conversion of plants into self-powered detectors of arsenic from their natural environment, marking a significant upgrade from the time- and equipment-intensive arsenic sampling methods of current conventional methods.

“Our plant-based nanosensor is notable not only for being the first of its kind, but also for the significant advantages it confers over conventional methods of measuring arsenic levels in the below-ground environment, requiring less time, equipment, and manpower,” says Lew. “We envision that this innovation will eventually see wide use in the agriculture industry and beyond. I am grateful to SMART DiSTAP and the Temasek Life Sciences Laboratory (TLL), both of which were instrumental in idea generation and scientific discussion as well as research funding for this work.”

Besides detecting arsenic in rice and spinach, the team also used a species of fern, Pteris cretica, which can hyperaccumulate arsenic. This fern species can absorb and tolerate high levels of arsenic with no detrimental effect — engineering an ultrasensitive plant-based arsenic detector, capable of detecting very low concentrations of arsenic, as low as 0.2 parts per billion. In contrast, the regulatory limit for arsenic detectors is 10 parts per billion. Notably, the novel nanosensors can also be integrated into other species of plants. The researchers say this is the first successful demonstration of living plant-based sensors for arsenic and represents a groundbreaking advancement that could prove highly useful in both agricultural research (e.g., to monitor arsenic taken up by edible crops for food safety) and general environmental monitoring.

Previously, conventional methods of measuring arsenic levels included regular field sampling, plant tissue digestion, extraction, and analysis using mass spectrometry. These methods are time-consuming, require extensive sample treatment, and often involve the use of bulky and expensive instrumentation. The new approach couples nanoparticle sensors with plants’ natural ability to efficiently extract analytes via the roots and transport them. This allows for the detection of arsenic uptake in living plants in real time, with portable, inexpensive electronics such as a portable Raspberry Pi platform equipped with a charge-coupled device camera akin to a smartphone camera.

Co-author, DiSTAP co-lead principal investigator, and MIT Professor Michael Strano adds, “This is a hugely exciting development, as, for the first time, we have developed a nanobionic sensor that can detect arsenic — a serious environmental contaminant and potential public health threat. With its myriad advantages over older methods of arsenic detection, this novel sensor could be a game-changer, as it is not only more time-efficient, but also more accurate and easier to deploy than older methods. It will also help plant scientists in organizations such as TLL to further produce crops that resist uptake of toxic elements. Inspired by TLL’s recent efforts to create rice crops which take up less arsenic, this work is a parallel effort to further support SMART DiSTAP’s efforts in food security research, constantly innovating and developing new technological capabilities to improve Singapore’s food quality and safety.”

The research is carried out by SMART and supported by the National Research Foundation (NRF) Singapore under its Campus for Research Excellence And Technological Enterprise (CREATE) program.

Led by MIT’s Strano and Singapore co-lead principal investigator Professor Chua Nam Hai, DiSTAP is one of the five Interdisciplinary Research Groups (IRGs) in SMART. The DiSTAP program addresses deep problems in food production in Singapore and the world by developing a suite of impactful and novel analytical genetic and biosynthetic technologies. The goal is to fundamentally change how plant biosynthetic pathways are discovered, monitored, engineered, and ultimately translated to meet the global demand for food and nutrients. Scientists from MIT, TTL, Nanyang Technological University, and National University of Singapore are collaboratively developing new tools for the continuous measurement of important plant metabolites and hormones for novel discovery, deeper understanding and control of plant biosynthetic pathways in ways not yet possible, especially in the context of green leafy vegetables; leveraging these new techniques to engineer plants with highly desirable properties for global food security, including high yield density production, drought and pathogen resistance and biosynthesis of high-value commercial products; developing tools for producing hydrophobic food components in industry-relevant microbes; developing novel microbial and enzymatic technologies to produce volatile organic compounds that can protect and/or promote growth of leafy vegetables; and applying these technologies to improve urban farming.

Here’s a link to and a citation for the paper,

Plant Nanobionic Sensors for Arsenic Detection by Tedrick Thomas Salim Lew, Minkyung Park, Jianqiao Cui, Michael S. Strano. Advanced Materials DOI: https://doi.org/10.1002/adma.202005683 First published: 26 November 2020

This paper is behind a paywall.

Nanodiamond-embedded membrane filters for clean water

This December 9, 2020 news item on Nanowerk announces research into a nanodiamond filter which can clean hot wastewater,

Although most of the planet is covered by water, only a fraction of it is clean enough for humans to use. Therefore, it is important to recycle this resource whenever possible. Current purification techniques cannot adequately handle the very hot wastewater generated by some industries.

A December 9, 2020 American Chemical Society (ACS) news release, which originated the news item, provides more detail,

Some oil recovery methods and other industrial processes result in hot wastewater, which requires energy-intensive cooling before it can be purified through traditional reverse osmosis membranes. After purification, the water then needs to be heated before it can be re-used. At such high temperatures, traditional reverse osmosis membranes filter slowly, allowing more salts, solids and other contaminants to get through. Researchers have embedded extremely tiny nanodiamonds — carbon spheres produced by explosions in small, closed containers without oxygen present — onto these membranes in previous studies. Although the membranes effectively and quickly filtered large volumes of water and can protect against fouling, they were not tested with very hot samples. To optimize the membranes for use with hot wastewater, Khorshidi, Sadrzadeh and colleagues wanted to modify the nanodiamond spheres and embed them in a new way.

The team attached amines to nanodiamonds and bathed them in an ethyl acetate solution to prevent the spheres from clumping. Then, a monomer was added that reacted with the amines to create chemical links to the traditional membrane base. Synergistic effects of the amine links and the ethyl acetate treatment resulted in thicker, more temperature-stable membranes, contributing to improvements in their performance. By increasing the amount of amine-enhanced nanodiamonds in the membrane, the researchers obtained higher filtration rates with a greater proportion of impurities being removed, even after 9 hours at 167 F, when compared to membranes without nanodiamonds. The new method produced membranes that could more effectively treat wastewater at high temperatures, the researchers say.

The authors acknowledge funding from Canada’s Oil Sands Innovation Alliance and The Natural Sciences and Engineering Research Council of Canada (NSERC).

Here’s a link to and a citation for the paper,

Nanodiamond-Enabled Thin-Film Nanocomposite Polyamide Membranes for High-Temperature Water Treatment by Pooria Karami, Behnam Khorshidi, Laleh Shamaei, Eric Beaulieu, João B. P. Soares, and Mohtada Sadrzadeh. ACS Appl. Mater. Interfaces 2020, 12, 47, 53274–53285 DOI: https://doi.org/10.1021/acsami.0c15194 Publication Date: November 10, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

The Broad Institute gives us another reason to love CRISPR

More and more, this resembles a public relations campaign. First, CRISPR (clustered regularly interspersed short palindromic repeats) gene editing is going to be helpful with COVID-19 and now it can help us to deal with conservation issues. (See my May 26, 2020 posting about the latest CRISPR doings as of May 7, 2020; included is a brief description of the patent dispute between Broad Institute and UC Berkeley and musings about a public relations campaign.)

A May 21, 2020 news item on ScienceDaily announces how CRISPR could be useful for conservation,

The gene-editing technology CRISPR has been used for a variety of agricultural and public health purposes — from growing disease-resistant crops to, more recently, a diagnostic test for the virus that causes COVID-19. Now a study involving fish that look nearly identical to the endangered Delta smelt finds that CRISPR can be a conservation and resource management tool, as well. The researchers think its ability to rapidly detect and differentiate among species could revolutionize environmental monitoring.

Caption: Longfin smelt can be difficult to differentiate from endangered Delta smelt. Here, a longfin smelt is swabbed for genetic identification through a CRISPR tool called SHERLOCK. Credit: Alisha Goodbla/UC Davis

A May 21, 2020 University of California at Davis (UC Davis) news release (also on EurekAlert) by Kat Kerlin, which originated the news item, provides more detail (Note: A link has been removed),

The study, published in the journal Molecular Ecology Resources, was led by scientists at the University of California, Davis, and the California Department of Water Resources in collaboration with MIT Broad Institute [emphasis mine].

As a proof of concept, it found that the CRISPR-based detection platform SHERLOCK (Specific High-sensitivity Enzymatic Reporter Unlocking) [emphasis mine] was able to genetically distinguish threatened fish species from similar-looking nonnative species in nearly real time, with no need to extract DNA.

“CRISPR can do a lot more than edit genomes,” said co-author Andrea Schreier, an adjunct assistant professor in the UC Davis animal science department. “It can be used for some really cool ecological applications, and we’re just now exploring that.”

WHEN GETTING IT WRONG IS A BIG DEAL

The scientists focused on three fish species of management concern in the San Francisco Estuary: the U.S. threatened and California endangered Delta smelt, the California threatened longfin smelt and the nonnative wakasagi. These three species are notoriously difficult to visually identify, particularly in their younger stages.

Hundreds of thousands of Delta smelt once lived in the Sacramento-San Joaquin Delta before the population crashed in the 1980s. Only a few thousand are estimated to remain in the wild.

“When you’re trying to identify an endangered species, getting it wrong is a big deal,” said lead author Melinda Baerwald, a project scientist at UC Davis at the time the study was conceived and currently an environmental program manager with California Department of Water Resources.

For example, state and federal water pumping projects have to reduce water exports if enough endangered species, like Delta smelt or winter-run chinook salmon, get sucked into the pumps. Rapid identification makes real-time decision making about water operations feasible.

FROM HOURS TO MINUTES

Typically to accurately identify the species, researchers rub a swab over the fish to collect a mucus sample or take a fin clip for a tissue sample. Then they drive or ship it to a lab for a genetic identification test and await the results. Not counting travel time, that can take, at best, about four hours.

SHERLOCK shortens this process from hours to minutes. Researchers can identify the species within about 20 minutes, at remote locations, noninvasively, with no specialized lab equipment. Instead, they use either a handheld fluorescence reader or a flow strip that works much like a pregnancy test — a band on the strip shows if the target species is present.

“Anyone working anywhere could use this tool to quickly come up with a species identification,” Schreier said.

OTHER CRYPTIC CRITTERS

While the three fish species were the only animals tested for this study, the researchers expect the method could be used for other species, though more research is needed to confirm. If so, this sort of onsite, real-time capability may be useful for confirming species at crime scenes, in the animal trade at border crossings, for monitoring poaching, and for other animal and human health applications.

“There are a lot of cryptic species we can’t accurately identify with our naked eye,” Baerwald said. “Our partners at MIT are really interested in pathogen detection for humans. We’re interested in pathogen detection for animals as well as using the tool for other conservation issues.”

Here’s a link to and a citation for the paper,

Rapid and accurate species identification for ecological studies and monitoring using CRISPR‐based SHERLOCK by Melinda R. Baerwald, Alisha M. Goodbla, Raman P. Nagarajan, Jonathan S. Gootenberg, Omar O. Abudayyeh, Feng Zhang, Andrea D. Schreier. Molecular Ecology Resources https://doi.org/10.1111/1755-0998.13186 First published: 12 May 2020

This paper is behind a paywall.

The business of CRISPR

SHERLOCK™, is a trademark for what Sherlock Biosciences calls one of its engineering biology platforms. From the Sherlock Biosciences Technology webpage,

What is SHERLOCK™?

SHERLOCK is an evolution of CRISPR technology, which others use to make precise edits in genetic code. SHERLOCK can detect the unique genetic fingerprints of virtually any DNA or RNA sequence in any organism or pathogen. Developed by our founders and licensed exclusively from the Broad Institute, SHERLOCK is a method for single molecule detection of nucleic acid targets and stands for Specific High Sensitivity Enzymatic Reporter unLOCKing. It works by amplifying genetic sequences and programming a CRISPR molecule to detect the presence of a specific genetic signature in a sample, which can also be quantified. When it finds those signatures, the CRISPR enzyme is activated and releases a robust signal. This signal can be adapted to work on a simple paper strip test, in laboratory equipment, or to provide an electrochemical readout that can be read with a mobile phone.

However, things get a little more confusing when you look at the Broad Institute’s Developing Diagnostics and Treatments webpage,

Ensuring the SHERLOCK diagnostic platform is easily accessible, especially in the developing world, where the need for inexpensive, reliable, field-based diagnostics is the most urgent

SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) is a CRISPR-based diagnostic tool that is rapid, inexpensive, and highly sensitive, with the potential to have a transformative effect on research and global public health. The SHERLOCK platform can detect viruses, bacteria, or other targets in clinical samples such as urine or blood, and reveal results on a paper strip — without the need for extensive specialized equipment. This technology could potentially be used to aid the response to infectious disease outbreaks, monitor antibiotic resistance, detect cancer, and more. SHERLOCK tools are freely available [emphasis mine] for academic research worldwide, and the Broad Institute’s licensing framework [emphasis mine] ensures that the SHERLOCK diagnostic platform is easily accessible in the developing world, where inexpensive, reliable, field-based diagnostics are urgently needed.

Here’s what I suspect. as stated, the Broad Institute has free SHERLOCK licenses for academic institutions and not-for-profit organizations but Sherlock Biosciences, a Broad Institute spinoff company, is for-profit and has trademarked SHERLOCK for commercial purposes.

Final thoughts

This looks like a relatively subtle campaign to influence public perceptions. Genetic modification or genetic engineering as exemplified by the CRISPR gene editing technique is a force for the good of all. It will help us in our hour of need (COVID-19 pandemic) and it can help us save various species and better manage our resources.

This contrasts greatly with the publicity generated by the CRISPR twins situation where a scientist claimed to have successfully edited the germline for twins, Lulu and Nana. This was done despite a voluntary, worldwide moratorium on germline editing of viable embryos. (Search the terms [either here or on a standard search engine] ‘CRISPR twins’, ‘Lulu and Nana’, and/or ‘He Jiankui’ for details about the scandal.

In addition to presenting CRISPR as beneficial in the short term rather than the distant future, this publicity also subtly positions the Broad Institute as CRISPR’s owner.

Or, maybe I’m wrong. Regardless, I’m watching.