Category Archives: water

Jiggly jell-o as a new hydrogen fuel catalyst

Jello [uploaded from https://www.organicauthority.com/eco-chic-table/new-jell-o-mold-jiggle-chic-holidays]

I’m quite intrigued by this ‘jell-o’ story. It’s hard to believe a childhood dessert might prove to have an application as a catalyst for producing hydrogen fuel. From a December 14, 2018 news item on Nanowerk,

A cheap and effective new catalyst developed by researchers at the University of California, Berkeley, can generate hydrogen fuel from water just as efficiently as platinum, currently the best — but also most expensive — water-splitting catalyst out there.

The catalyst, which is composed of nanometer-thin sheets of metal carbide, is manufactured using a self-assembly process that relies on a surprising ingredient: gelatin, the material that gives Jell-O its jiggle.

Two-dimensional metal carbides spark a reaction that splits water into oxygen and valuable hydrogen gas. Berkeley researchers have discovered an easy new recipe for cooking up these nanometer-thin sheets that is nearly as simple as making Jell-O from a box. (Xining Zang graphic, copyright Wiley)

A December 13, 2018 University of California at Berkeley (UC Berkeley) news release by Kara Manke (also on EurekAlert but published on Dec. 14, 2018), which originated the news item, provides more technical detail,

“Platinum is expensive, so it would be desirable to find other alternative materials to replace it,” said senior author Liwei Lin, professor of mechanical engineering at UC Berkeley. “We are actually using something similar to the Jell-O that you can eat as the foundation, and mixing it with some of the abundant earth elements to create an inexpensive new material for important catalytic reactions.”

The work appears in the Dec. 13 [2018] print edition of the journal Advanced Materials.

A zap of electricity can break apart the strong bonds that tie water molecules together, creating oxygen and hydrogen gas, the latter of which is an extremely valuable source of energy for powering hydrogen fuel cells. Hydrogen gas can also be used to help store energy from renewable yet intermittent energy sources like solar and wind power, which produce excess electricity when the sun shines or when the wind blows, but which go dormant on rainy or calm days.

A black and white image of metal carbide under high magnification.

When magnified, the two-dimensional metal carbides resemble sheets of cell[o]phane. (Xining Zang photo, copyright Wiley)

But simply sticking an electrode in a glass of water is an extremely inefficient method of generating hydrogen gas. For the past 20 years, scientists have been searching for catalysts that can speed up this reaction, making it practical for large-scale use.

“The traditional way of using water gas to generate hydrogen still dominates in industry. However, this method produces carbon dioxide as byproduct,” said first author Xining Zang, who conducted the research as a graduate student in mechanical engineering at UC Berkeley. “Electrocatalytic hydrogen generation is growing in the past decade, following the global demand to lower emissions. Developing a highly efficient and low-cost catalyst for electrohydrolysis will bring profound technical, economical and societal benefit.”

To create the catalyst, the researchers followed a recipe nearly as simple as making Jell-O from a box. They mixed gelatin and a metal ion — either molybdenum, tungsten or cobalt — with water, and then let the mixture dry.

“We believe that as gelatin dries, it self-assembles layer by layer,” Lin said. “The metal ion is carried by the gelatin, so when the gelatin self-assembles, your metal ion is also arranged into these flat layers, and these flat sheets are what give Jell-O its characteristic mirror-like surface.”

Heating the mixture to 600 degrees Celsius triggers the metal ion to react with the carbon atoms in the gelatin, forming large, nanometer-thin sheets of metal carbide. The unreacted gelatin burns away.

The researchers tested the efficiency of the catalysts by placing them in water and running an electric current through them. When stacked up against each other, molybdenum carbide split water the most efficiently, followed by tungsten carbide and then cobalt carbide, which didn’t form thin layers as well as the other two. Mixing molybdenum ions with a small amount of cobalt boosted the performance even more.

“It is possible that other forms of carbide may provide even better performance,” Lin said.

On the left, an illustration of blue spheres, representing gelatin molecules, arranged in a lattice shape. On the right, an illustration of thin sheets of metal carbide.

Molecules in gelatin naturally self-assemble in flat sheets, carrying the metal ions with them (left). Heating the mixture to 600 degrees Celsius burns off the gelatin, leaving nanometer-thin sheets of metal carbide. (Xining Zang illustration, copyright Wiley)

The two-dimensional shape of the catalyst is one of the reasons why it is so successful. That is because the water has to be in contact with the surface of the catalyst in order to do its job, and the large surface area of the sheets mean that the metal carbides are extremely efficient for their weight.

Because the recipe is so simple, it could easily be scaled up to produce large quantities of the catalyst, the researchers say.

“We found that the performance is very close to the best catalyst made of platinum and carbon, which is the gold standard in this area,” Lin said. “This means that we can replace the very expensive platinum with our material, which is made in a very scalable manufacturing process.”

Co-authors on the study are Lujie Yang, Buxuan Li and Minsong Wei of UC Berkeley, J. Nathan Hohman and Chenhui Zhu of Lawrence Berkeley National Lab; Wenshu Chen and Jiajun Gu of Shanghai Jiao Tong University; Xiaolong Zou and Jiaming Liang of the Shenzhen Institute; and Mohan Sanghasadasa of the U.S. Army RDECOM AMRDEC.

Here’s a link to and a citation for the paper,

Self‐Assembly of Large‐Area 2D Polycrystalline Transition Metal Carbides for Hydrogen Electrocatalysis by Xining Zang, Wenshu Chen, Xiaolong Zou, J. Nathan Hohman, Lujie Yang
Buxuan Li, Minsong Wei, Chenhui Zhu, Jiaming Liang, Mohan Sanghadasa, Jiajun Gu, Liwei Lin. Advanced Materials Volume30, Issue 50 December 13, 2018 1805188 DOI: https://doi.org/10.1002/adma.201805188 First published [online]: 09 October 2018

This paper is behind a paywall.

In six hours billions of plastic nanoparticles accumulate in marine organisms

For the sake of comparison, I wish they’d thought to include an image of a giant scallop that hadn’t been used in the research (I have an ‘unplastic’ giant scallop image at the end of this posting),

Caption: These are some of the scallops used as part of the current research. Credit: University of Plymouth

But, they did do this,

A scan showing nanoplastic particles accumulated within the scallop’s gills (GI), kidney (K), gonad (GO), intestine (I), hepatopancreas (HP) and muscle (M). Credit: University of Plymouth [downloaded from https://phys.org/news/2018-12-billions-nanoplastics-accumulate-marine-hours.html]

A December 3, 2018 news item on phys.org announces the research,

A ground-breaking study has shown it takes a matter of hours for billions of minute plastic nanoparticles to become embedded throughout the major organs of a marine organism.

The research, led by the University of Plymouth, examined the uptake of nanoparticles by a commercially important mollusc, the great scallop (Pecten maximus).

After six hours exposure in the laboratory, billions of particles measuring 250nm (around 0.00025mm) had accumulated within the scallop’s intestines.

However, considerably more even smaller particles measuring 20nm (0.00002mm) had become dispersed throughout the body including the kidney, gill, muscle and other organs.

A December 3, 2018 University of Plymouth press release (also on EurekAlert), which originated the news item, adds more detail,

The study is the first to quantify the uptake of nanoparticles at predicted environmentally relevant conditions, with previous research having been conducted at far higher concentrations than scientists believe are found in our oceans.

Dr Maya Al Sid Cheikh, Postdoctoral Research Fellow at the University of Plymouth, led the study. She said: “For this experiment, we needed to develop an entirely novel scientific approach. We made nanoparticles of plastic in our laboratories and incorporated a label so that we could trace the particles in the body of the scallop at environmentally relevant concentrations. The results of the study show for the first time that nanoparticles can be rapidly taken up by a marine organism, and that in just a few hours they become distributed across most of the major organs.”

Professor Richard Thompson OBE, Head of the University’s International Marine Litter Research Unit, added: “This is a ground breaking study, in terms of both the scientific approach and the findings. We only exposed the scallops to nanoparticles for a few hours and, despite them being transferred to clean conditions, traces were still present several weeks later. Understanding the dynamics of nanoparticle uptake and release, as well as their distribution in body tissues, is essential if we are to understand any potential effects on organisms. A key next step will be to use this approach to guide research investigating any potential effects of nanoparticles and in particular to consider the consequences of longer term exposures.”

Accepted for publication in the Environmental Science and Technology journal, the study also involved scientists from the Charles River Laboratories in Elphinstone, Scotland; the Institute Maurice la Montagne in Canada; and Heriot-Watt University.

It was conducted as part of RealRiskNano, a £1.1million project funded by the Natural Environment Research Council (NERC). Led by Heriot-Watt and Plymouth, it is exploring the effects which microscopic plastic particles can have on the marine environment.

In this study, the scallops were exposed to quantities of carbon-radiolabeled nanopolystyrene and after six hours, autoradiography was used to show the number of particles present in organs and tissue.

It was also used to demonstrate that the 20nm particles were no longer detectable after 14 days, whereas 250nm particles took 48 days to disappear.

Ted Henry, Professor of Environmental Toxicology at Heriot-Watt University, said: “Understanding whether plastic particles are absorbed across biological membranes and accumulate within internal organs is critical for assessing the risk these particles pose to both organism and human health. The novel use of radiolabelled plastic particles pioneered in Plymouth provides the most compelling evidence to date on the level of absorption of plastic particles in a marine organism.”

Here’s a link to and a citation for the paper,

Uptake, Whole-Body Distribution, and Depuration of Nanoplastics by the Scallop Pecten maximus at Environmentally Realistic Concentrations by Maya Al-Sid-Cheikh, Steve J. Rowland, Karen Stevenson, Claude Rouleau, Theodore B. Henry, and Richard C. Thompson. Environ. Sci. Technol., Article ASAP DOI: 10.1021/acs.est.8b05266 Publication Date (Web): November 20, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

‘Unplastic giant scallop’

The sea scallop (Placopecten magellanicus) has over 100 blue eyes along the edge of its mantle, with which it senses light intensity. This mollusk has the ability to scoot away from potential danger by flapping the two parts of its shell, like a swimming castenet. Credit: Dann Blackwood, USGS – http://www.sanctuaries.nos.noaa.gov/pgallery/pgstellwagen/living/living_17.html Public Domain

Stunning, isn’t it?

Altered virus spins gold into beads

They’re not calling this synthetic biology but I’ m pretty sure that altering a virus gene so the virus can spin gold (Rumpelstiltskin anyone?) qualifies. From an August 24, 2018 news item on ScienceDaily,

The race is on to find manufacturing techniques capable of arranging molecular and nanoscale objects with precision.

Engineers at the University of California, Riverside, have altered a virus to arrange gold atoms into spheroids measuring a few nanometers in diameter. The finding could make production of some electronic components cheaper, easier, and faster.

An August 23, 2018 University of California at Riverside (UCR) news release (also on EurekAlett) by Holly Ober, which originated the news item, adds detail,

“Nature has been assembling complex, highly organized nanostructures for millennia with precision and specificity far superior to the most advanced technological approaches,” said Elaine Haberer, a professor of electrical and computer engineering in UCR’s Marlan and Rosemary Bourns College of Engineering and senior author of the paper describing the breakthrough. “By understanding and harnessing these capabilities, this extraordinary nanoscale precision can be used to tailor and build highly advanced materials with previously unattainable performance.”

Viruses exist in a multitude of shapes and contain a wide range of receptors that bind to molecules. Genetically modifying the receptors to bind to ions of metals used in electronics causes these ions to “stick” to the virus, creating an object of the same size and shape. This procedure has been used to produce nanostructures used in battery electrodes, supercapacitors, sensors, biomedical tools, photocatalytic materials, and photovoltaics.

The virus’ natural shape has limited the range of possible metal shapes. Most viruses can change volume under different scenarios, but resist the dramatic alterations to their basic architecture that would permit other forms.

The M13 bacteriophage, however, is more flexible. Bacteriophages are a type of virus that infects bacteria, in this case, gram-negative bacteria, such as Escherichia coli, which is ubiquitous in the digestive tracts of humans and animals. M13 bacteriophages genetically modified to bind with gold are usually used to form long, golden nanowires.

Studies of the infection process of the M13 bacteriophage have shown the virus can be converted to a spheroid upon interaction with water and chloroform. Yet, until now, the M13 spheroid has been completely unexplored as a nanomaterial template.

Haberer’s group added a gold ion solution to M13 spheroids, creating gold nanobeads that are spiky and hollow.

“The novelty of our work lies in the optimization and demonstration of a viral template, which overcomes the geometric constraints associated with most other viruses,” Haberer said. “We used a simple conversion process to make the M13 virus synthesize inorganic spherical nanoshells tens of nanometers in diameter, as well as nanowires nearly 1 micron in length.”

The researchers are using the gold nanobeads to remove pollutants from wastewater through enhanced photocatalytic behavior.

The work enhances the utility of the M13 bacteriophage as a scaffold for nanomaterial synthesis. The researchers believe the M13 bacteriophage template transformation scheme described in the paper can be extended to related bacteriophages.

Here’s a link to and a citation for the paper,

M13 bacteriophage spheroids as scaffolds for directed synthesis of spiky gold nanostructures by Tam-Triet Ngo-Duc, Joshua M. Plank, Gongde Chen, Reed E. S. Harrison, Dimitrios Morikis, Haizhou Liu, and Elaine D. Haberer. Nanoscale, 2018,10, 13055-13063 DOI: 10.1039/C8NR03229G First published on 25 Jun 2018

This paper is behind a paywall.

For another example of genetic engineering and synthetic biology, see my July 18, 2018 posting: Genetic engineering: an eggplant in Bangladesh and a synthetic biology grant at Concordia University (Canada).

For anyone unfamiliar with the Rumpelstiltskin fairytale about spinning straw into gold, see its Wikipedida entry.

Bristly hybrid materials

Caption: [Image 1] A carbon fiber covered with a spiky forest of NiCoHC nanowires. Credit: All images reproduced from reference 1 under a Creative Commons Attribution 4.0 International License© 2018 KAUST

It makes me think of small, cuddly things like cats and dogs but it’s not. From an August 7, 2018 King Abdullah University of Science and Technology (KAUST; Saudi Arabia) news release (also published on August 12, 2018 on EurekAlert),

By combining multiple nanomaterials into a single structure, scientists can create hybrid materials that incorporate the best properties of each component and outperform any single substance. A controlled method for making triple-layered hollow nanostructures has now been developed at KAUST. The hybrid structures consist of a conductive organic core sandwiched between layers of electrocatalytically active metals: their potential uses range from better battery electrodes to renewable fuel production.

Although several methods exist to create two-layer materials, making three-layered structures has proven much more difficult, says Peng Wang from the Water Desalination and Reuse Center who co-led the current research with Professor Yu Han, member of the Advanced Membranes and Porous Materials Center at KAUST. The researchers developed a new, dual-template approach, explains Sifei Zhuo, a postdoctoral member of Wang’s team.

The researchers grew their hybrid nanomaterial directly on carbon paper–a mat of electrically conductive carbon fibers. They first produced a bristling forest of nickel cobalt hydroxyl carbonate (NiCoHC) nanowires onto the surface of each carbon fiber (image 1). Each tiny inorganic bristle was coated with an organic layer called hydrogen substituted graphdiyne (HsGDY) (image 2 [not included here]).

Next was the key dual-template step. When the team added a chemical mixture that reacts with the inner NiCoHC, the HsGDY acted as a partial barrier. Some nickel and cobalt ions from the inner layer diffused outward, where they reacted with thiomolybdate from the surrounding solution to form the outer nickel-, cobalt-co-doped MoS2 (Ni,Co-MoS2) layer. Meanwhile, some sulfur ions from the added chemicals diffused inwards to react with the remaining nickel and cobalt. The resulting substance (image 3 [not included here]) had the structure Co9S8, Ni3S2@HsGDY@Ni,Co-MoS2, in which the conductive organic HsGDY layer is sandwiched between two inorganic layers (image 4 [not included here]).

The triple layer material showed good performance at electrocatalytically breaking up water molecules to generate hydrogen, a potential renewable fuel. The researchers also created other triple-layer materials using the dual-template approach

“These triple-layered nanostructures hold great potential in energy conversion and storage,” says Zhuo. “We believe it could be extended to serve as a promising electrode in many electrochemical applications, such as in supercapacitors and sodium-/lithium-ion batteries, and for use in water desalination.”

Here’s a link to and a citation for the paper,

Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne by Sifei Zhuo, Yusuf Shi, Lingmei Liu, Renyuan Li, Le Shi, Dalaver H. Anjum, Yu Han, & Peng Wang. Nature Communicationsvolume 9, Article number: 3132 (2018) DOI: https://doi.org/10.1038/s41467-018-05474-0 Published 07 August 2018

This paper is open access.

 

Algae outbreaks (dead zones) in wetlands and waterways

It’s been over seven years since I first started writing about Duke University’s  Center for the Environmental Implications of Nanotechnology and mesocosms (miniature ecosystems) and the impact that nanoparticles may have on plants and water (see August 11, 2011 posting). Since then, their focus has shifted from silver nanoparticles and their impact on plants, fish, bacteria, etc. to a more general examination of metallic nanoparticles and water. A June 25, 2018 news item on ScienceDaily announces some of their latest work,

The last 10 years have seen a surge in the use of tiny substances called nanomaterials in agrochemicals like pesticides and fungicides. The idea is to provide more disease protection and better yields for crops, while decreasing the amount of toxins sprayed on agricultural fields.

But when combined with nutrient runoff from fertilized cropland and manure-filled pastures, these “nanopesticides” could also mean more toxic algae outbreaks for nearby streams, lakes and wetlands, a new study finds.

A June 25, 2018 Duke University news release (also on EurekAlert) by Robin A. Smith, which originated the news item, provides more detail,

Too small to see with all but the most powerful microscopes, engineered nanomaterials are substances manufactured to be less than 100 nanometers in diameter, many times smaller than a hair’s breadth.

Their nano-scale gives them different chemical and physical properties from their bulk counterparts, including more surface area for reactions and interactions.

Those interactions could intensify harmful algal blooms in wetlands, according to experiments led by Marie Simonin, a postdoctoral associate with biology professor Emily Bernhardt at Duke University.

Carbon nanotubes and teeny tiny particles of silver, titanium dioxide and other metals are already added to hundreds of commercial products to make everything from faster, lighter electronics, self-cleaning fabrics, and smarter food packaging that can monitor food for spoilage. They are also used on farms for slow- or controlled-release plant fertilizers and pesticides and more targeted delivery, and because they are effective at lower doses than conventional products.

These and other applications have generated tremendous interest and investment in nanomaterials. However the potential risks to human health or the environment aren’t fully understood, Simonin said.

Most of the 260,000 to 309,000 metric tons of nanomaterials produced worldwide each year are eventually disposed in landfills, according to a previous study. But of the remainder, up to 80,400 metric tons per year are released into soils, and up to 29,200 metric tons end up in natural bodies of water.

“And these emerging contaminants don’t end up in water bodies alone,” Simonin said. “They probably co-occur with nutrient runoff. There are likely multiple stressors interacting.”

Algae outbreaks already plague polluted waters worldwide, said Steven Anderson, a research analyst in the Bernhardt Lab at Duke and one of the authors of the research.

Nitrogen and phosphorous pollution makes its way into wetlands and waterways in the form of agricultural runoff and untreated wastewater. The excessive nutrients cause algae to grow out of control, creating a thick mat of green scum or slime on the surface of the water that blocks sunlight from reaching other plants.

These nutrient-fueled “blooms” eventually reduce oxygen levels to the point where fish and other organisms can’t survive, creating dead zones in the water. Some algal blooms also release toxins that can make pets and people who swallow them sick.

To find out how the combined effects of nutrient runoff and nanoparticle contamination would affect this process, called eutrophication, the researchers set up 18 separate 250-liter tanks with sandy sloped bottoms to mimic small wetlands.

Each open-air tank was filled with water, soil and a variety of wetland plants and animals such as waterweed and mosquitofish.

Over the course of the nine-month experiment, some tanks got a weekly dose of algae-promoting nitrates and phosphates like those found in fertilizers, some tanks got nanoparticles — either copper or gold — and some tanks got both.

Along the way the researchers monitored water chemistry, plant and algae growth and metabolism, and nanoparticle accumulation in plant tissues.

“The results were surprising,” Simonin said. The nanoparticles had tiny effects individually, but when added together with nutrients, even low concentrations of gold and copper nanoparticles used in fungicides and other products turned the once-clear water a murky pea soup color, its surface covered with bright green smelly mats of floating algae.

Over the course of the experiment, big algal blooms were more than three times more frequent and more persistent in tanks where nanoparticles and nutrients were added together than where nutrients were added alone. The algae overgrowths also reduced dissolved oxygen in the water.

It’s not clear yet how nanoparticle exposure shifts the delicate balance between plants and algae as they compete for nutrients and other resources. But the results suggest that nanoparticles and other “metal-based synthetic chemicals may be playing an under-appreciated role in the global trends of increasing eutrophication,” the researchers said.

Here’s a link to and a citation for the paper,

Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment by Marie Simonin, Benjamin P. Colman, Steven M. Anderson, Ryan S. King, Matthew T. Ruis, Astrid Avellan, Christina M. Bergemann, Brittany G. Perrotta, Nicholas K. Geitner, Mengchi Ho, Belen de la Barrera, Jason M. Unrine, Gregory V. Lowry, Curtis J. Richardson, Mark R. Wiesner, Emily S. Bernhardt. Ecological Applications, 2018; DOI: 10.1002/eap.1742 First published: 25 June 2018

This paper is behind a paywall.

Metcalf Institute Science Immersion Fellowship 2019 for journalists: applications open

I received this January 4, 2018 announcement from the Metcalf Institute at the University of Rhode Island (URI; US) in my email this morning. In other words, this is fresh off the email,

Get Science Tools to Break Stories
About Global Change & Water Resources

Apply for Metcalf Institute’s Career-Changing Science Immersion Fellowship
tuition, room and board, and travel support included

Global Change Impacts and Water
According to the United Nations, water is the “primary medium through which we will feel the effects of climate change” and water scarcity alone affects nearly half the global population.

Do you have the science tools to make the connection between shrinking water supplies, water quality, food production and climate change? Are you looking for story ideas to convey these global change impacts to your news audience? Would you like to build your confidence in discerning the credibility of scientific sources?

Call for Applications
The University of Rhode Island’s Metcalf Institute is accepting applications for its 21th Annual Science Immersion Workshop for Journalists, June 2-7, 2019. Ten journalists will be awarded Workshop fellowships, which include tuition, room and board, and travel support, thanks to the generosity of private donors and Metcalf Institute’s endowment. Two of the ten slots will be awarded to journalists based outside of the U.S.

Apply for the Workshop here.

About the Workshop
The Metcalf Institute Annual Science Immersion Workshop provides professional journalists with hands-on experience in field and laboratory science with expertise from leading scientists and policymakers who are working to project the impacts of global change, identify adaptation measures, and investigate the most effective ways to communicate these challenges. The workshop will address water resource and climate change topics of global significance while focusing on local and regional case studies in and around Narragansett Bay, among the world’s best studied estuaries. Held at the URI Graduate School of Oceanography, one of the nation’s premier oceanographic research institutions, the Metcalf Workshop provides an intense week of learning in the field, classroom and lecture hall.

Metcalf Fellows will:

  • Receive a comprehensive overview of climate science and global change
  • Gain a deeper understanding of how scientists conduct research and handle scientific uncertainty
  • Develop the skills and confidence to interpret and translate the language of scientific journals for news audiences
  • Build confidence in their abilities to discern the credibility of scientific sources
  • Board a research vessel to study the impacts of rising water temperatures and ocean acidification on coastal ecosystems
  • Explore the study of “emerging contaminants” such as PFAS that affect freshwater and marine ecosystems and public health
  • Visit wetlands, shorelines, and coastal communities to better understand adaptive management efforts and solutions in response to sea level rise and coastal storms
  • Discover new ways to write about global change to build audience understanding and engagement
  • Cultivate new sources by interacting with leading researchers and policy experts in an informal, off-deadline atmosphere
  • Network and develop lasting relationships with journalists from around the globe

Metcalf Alumni
Metcalf Institute has helped nearly 900 journalists cover the environment with greater accuracy and nuance since its first program in 1999. Metcalf alumni represent all media types and a wide variety of large and small news organizations ranging from local and regional newspapers and broadcast outlets to online and national/international outlets such as the Los Angeles Times, Reuters, National Geographic, China Global Television Network, Marketplace, Politico and PBS NewsHour. Metcalf Institute alumni hail from the U.S. and around the world, including Pakistan, Brazil, Nigeria, Israel, Egypt, Italy, South Africa, and China.

“This experience has changed my entire outlook on covering the environment and climate science. I may have only been in Rhode Island for a week, but the tools I gained during my Metcalf fellowship will stay with me for the entirety of my career.” Tony Briscoe, Chicago Tribune reporter and 2018 Annual Workshop alumnus.
                                                    
“Metcalf has greatly enhanced my ability to break down complex issues for my audience. Not only am I headed back home with a bunch of great story ideas, but the ability to set them against an international background and draw broader connections between issues in my region and the rest of the world.” Tegan Wendland, New Orleans Public Radio interim news director, lead coastal reporter, and 2017 Annual Workshop alumna.

Note for journalists applying from outside of the U.S.
While the Workshop addresses environmental topics of global significance, it focuses on U.S. case studies and a U.S. perspective on environmental policies. Metcalf Institute receives applications from journalists worldwide. However, due to funding limitations, only two of the ten fellowships will be awarded to journalists based outside of the U.S.

Eligibility
The Fellowship is designed for early- to mid-career, full-time journalists from all media who are looking to start or expand their coverage of the environment. Applicants must demonstrate a clear need for scientific training in topics relating to global change in coastal environments, specifically related to climate change and water resources. The fellowship includes room, board, tuition, and travel reimbursement paid after the program in the amount of up to US$500 for U.S.-based journalists and up to US$1,000 for journalists based outside of the U.S. Journalists applying from outside the U.S. must provide written assurance that they have full travel funds and can obtain the appropriate visa. Applications for the 2019 Annual Science Immersion Workshop for Journalists must be submitted by February 18, 2019.

Apply for the Workshop here.

About Metcalf Institute
Metcalf Institute is a global leader in environmental science training for journalists and communication training for scientists and other science communicators, as well as provider of science resources for journalists and free public programs and webinars on environmental topics. Metcalf Institute was established at the University of Rhode Island’s Graduate School of Oceanography in 1997 with funding from three media foundations: the Belo Corporation, the Providence Journal Charitable Foundation and the Philip L. Graham Fund, with additional support from the Telaka Foundation. In 2017, the Institute joined the URI College of the Environment and Life Sciences.

Metcalf Institute Funding
Metcalf programming is underwritten by federal and foundation grants, as well as donations from individuals and an endowment managed by the University of Rhode Island Foundation.

I headed off to the Metcalf Institute Fellowship application webpage and decided to include a few details here,

Email Stamp/Postmark Deadline: February 18, 2019

This application has two parts – an online form and a set of required inclusions. Read thoroughly before applying for the workshop below.

Application packages (online form and required enclosures together) will be used to evaluate applicants. Any hard copies of application materials will not be returned.

All application forms and required enclosures must be submitted in English. Application packages in languages other than English will not be reviewed.

Application packages that are not complete by midnight, U.S. Eastern Time, on February 18, 2019, will not be reviewed. …

Good luck!

Nanoplastics accumulating in marine organisms

I’m starting to have a collection of postings related to plastic nanoparticles and aquatic life (I have a listing below). The latest originates in Singapore (from a May 31, 2018 news item on ScienceDaily),

Plastic nanoparticles — these are tiny pieces of plastic less than 1 micrometre in size — could potentially contaminate food chains, and ultimately affect human health, according to a recent study by scientists from the National University of Singapore (NUS). They discovered that nanoplastics are easily ingested by marine organisms, and they accumulate in the organisms over time, with a risk of being transferred up the food chain, threatening food safety and posing health risks.

A May 31, 2018 NUS press release (also on EurekAlert), which originated the news item, expands on the theme,

Ocean plastic pollution is a huge and growing global problem. It is estimated that the oceans may already contain over 150 million tonnes of plastic, and each year, about eight million tonnes of plastic will end up in the ocean. Plastics do not degrade easily. In the marine environment, plastics are usually broken down into smaller pieces by the sun, waves, wind and microbial action. These micro- and nanoplastic particles in the water may be ingested by filter-feeding marine organisms such as barnacles, tube worms and sea-squirts.

Using the acorn barnacle Amphibalanus amphitrite as a model organism, the NUS research team demonstrated for the first time that nanoplastics consumed during the larval stage are retained and accumulated inside the barnacle larvae until they reach adulthood.

“We opted to study acorn barnacles as their short life cycle and transparent bodies made it easy to track and visualise the movement of nanoplastics in their bodies within a short span of time,” said Mr Samarth Bhargava, a PhD student from the Department of Chemistry at the NUS Faculty of Science, who is the first author of the research paper.

“Barnacles can be found in all of the world’s oceans. This accumulation of nanoplastics within the barnacles is of concern. Further work is needed to better understand how they may contribute to longer term effects on marine ecosystems,” said Dr Serena Teo, Senior Research Fellow from the Tropical Marine Science Institute at NUS, who co-supervised the research.

Studying the fate of nanoplastics in marine organisms

The NUS research team incubated the barnacle larvae in solutions of their regular feed coupled with plastics that are about 200 nanometres in size with green fluorescent tags. The larvae were exposed to two different treatments: ‘acute’ and ‘chronic’.

Under the ‘acute’ treatment, the barnacle larvae were kept for three hours in a solution that contained 25 times more nanoplastics than current estimates of what is present in the oceans. On the other hand, under the ‘chronic’ treatment, the barnacle larvae were exposed to a solution containing low concentrations of nanoplastics for up to four days.

The larvae were subsequently filtered from the solution, and examined under the microscope. The distribution and movement of the nanoplastics were monitored by examining the fluorescence from the particles present within the larvae over time.

“Our results showed that after exposing the barnacle larvae to nanoplastics in both treatments, the larvae had not only ingested the plastic particles, but the tiny particles were found to be distributed throughout the bodies of the larvae,” said Ms Serina Lee from the Tropical Marine Science Institute at NUS, who is the second author of the paper.

Even though the barnacles’ natural waste removal pathways of moulting and excretion resulted in some removal of the nanoplastics, the team detected the continued presence of nanoplastics inside the barnacles throughout their growth until they reached adulthood.

“Barnacles may be at the lower levels of the food chain, but what they consume will be transferred to the organisms that eat them. In addition, plastics are capable of absorbing pollutants and chemicals from the water. These toxins may be transferred to the organisms if the particles of plastics are consumed, and can cause further damage to marine ecosystems and human health,” said marine biologist Dr Neo Mei Lin from the Tropical Marine Science Institute at NUS, who is one of the authors of the paper.

The team’s research findings were first published online in the journal ACS Sustainable Chemistry & Engineering in March 2018. The study was funded under the Marine Science Research and Development Programme of the National Research Foundation Singapore.

Next steps

The NUS research team seeks to further their understanding of the translocation of nanoparticles within the marine organisms and potential pathways of transfer in the marine ecosystem.

“The life span and fate of plastic waste materials in marine environment is a big concern at the moment owing to the large amounts of plastic waste and its potential impact on marine ecosystem and food security around the world. The team would like to explore such topics in the near future and possibly to come up with pathways to address such problems,” explained Associate Professor Suresh Valiyaveettil from the Department of Chemistry at the NUS Faculty of Science, who co-supervised the research.

The team is currently examining how nanoplastics affect other invertebrate model organisms to understand the impact of plastics on marine ecosystems.

Here’s a link to and a citation for the paper,

Fate of Nanoplastics in Marine Larvae: A Case Study Using Barnacles, Amphibalanus amphitrite by Samarth Bhargava, Serina Siew Chen Lee, Lynette Shu Min Ying, Mei Lin Neo, Serena Lay-Ming Teo, and Suresh Valiyaveettil. ACS Sustainable Chem. Eng., 2018, 6 (5), pp 6932–6940 DOI: 10.1021/acssuschemeng.8b00766 Publication Date (Web): March 21, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Other plastic nanoparticle postings:

While this doesn’t relate directly to aquatic life, the research focuses on how plastic degrades into plastic nanoparticles,

That’s it for now.

Spooling strips of graphene

An April 18, 2018 news item on phys.org highlights an exciting graphene development at the Massachusetts Institute of Technology (MIT),

MIT engineers have developed a continuous manufacturing process that produces long strips of high-quality graphene.

The team’s results are the first demonstration of an industrial, scalable method for manufacturing high-quality graphene that is tailored for use in membranes that filter a variety of molecules, including salts, larger ions, proteins, or nanoparticles. Such membranes should be useful for desalination, biological separation, and other applications.

A new manufacturing process produces strips of graphene, at large scale, for use in membrane technologies and other applications. Image: Christine Daniloff, MIT

An April 17, 2018 MIT news release (also on EurekAlert) by Jennifer Chu, which originated the news item,. provides more detail,

“For several years, researchers have thought of graphene as a potential route to ultrathin membranes,” says John Hart, associate professor of mechanical engineering and director of the Laboratory for Manufacturing and Productivity at MIT. “We believe this is the first study that has tailored the manufacturing of graphene toward membrane applications, which require the graphene to be seamless, cover the substrate fully, and be of high quality.”

Hart is the senior author on the paper, which appears online in the journal Applied Materials and Interfaces. The study includes first author Piran Kidambi, a former MIT postdoc who is now an assistant professor at Vanderbilt University; MIT graduate students Dhanushkodi Mariappan and Nicholas Dee; Sui Zhang of the National University of Singapore; Andrey Vyatskikh, a former student at the Skolkovo Institute of Science and Technology who is now at Caltech; and Rohit Karnik, an associate professor of mechanical engineering at MIT.

Growing graphene

For many researchers, graphene is ideal for use in filtration membranes. A single sheet of graphene resembles atomically thin chicken wire and is composed of carbon atoms joined in a pattern that makes the material extremely tough and impervious to even the smallest atom, helium.

Researchers, including Karnik’s group, have developed techniques to fabricate graphene membranes and precisely riddle them with tiny holes, or nanopores, the size of which can be tailored to filter out specific molecules. For the most part, scientists synthesize graphene through a process called chemical vapor deposition, in which they first heat a sample of copper foil and then deposit onto it a combination of carbon and other gases.

Graphene-based membranes have mostly been made in small batches in the laboratory, where researchers can carefully control the material’s growth conditions. However, Hart and his colleagues believe that if graphene membranes are ever to be used commercially they will have to be produced in large quantities, at high rates, and with reliable performance.

“We know that for industrialization, it would need to be a continuous process,” Hart says. “You would never be able to make enough by making just pieces. And membranes that are used commercially need to be fairly big – some so big that you would have to send a poster-wide sheet of foil into a furnace to make a membrane.”

A factory roll-out

The researchers set out to build an end-to-end, start-to-finish manufacturing process to make membrane-quality graphene.

The team’s setup combines a roll-to-roll approach – a common industrial approach for continuous processing of thin foils – with the common graphene-fabrication technique of chemical vapor deposition, to manufacture high-quality graphene in large quantities and at a high rate. The system consists of two spools, connected by a conveyor belt that runs through a small furnace. The first spool unfurls a long strip of copper foil, less than 1 centimeter wide. When it enters the furnace, the foil is fed through first one tube and then another, in a “split-zone” design.

While the foil rolls through the first tube, it heats up to a certain ideal temperature, at which point it is ready to roll through the second tube, where the scientists pump in a specified ratio of methane and hydrogen gas, which are deposited onto the heated foil to produce graphene.

“Graphene starts forming in little islands, and then those islands grow together to form a continuous sheet,” Hart says. “By the time it’s out of the oven, the graphene should be fully covering the foil in one layer, kind of like a continuous bed of pizza.”

As the graphene exits the furnace, it’s rolled onto the second spool. The researchers found that they were able to feed the foil continuously through the system, producing high-quality graphene at a rate of 5 centimers per minute. Their longest run lasted almost four hours, during which they produced about 10 meters of continuous graphene.

“If this were in a factory, it would be running 24-7,” Hart says. “You would have big spools of foil feeding through, like a printing press.”

Flexible design

Once the researchers produced graphene using their roll-to-roll method, they unwound the foil from the second spool and cut small samples out. They cast the samples with a polymer mesh, or support, using a method developed by scientists at Harvard University, and subsequently etched away the underlying copper.

“If you don’t support graphene adequately, it will just curl up on itself,” Kidambi says. “So you etch copper out from underneath and have graphene directly supported by a porous polymer – which is basically a membrane.”

The polymer covering contains holes that are larger than graphene’s pores, which Hart says act as microscopic “drumheads,” keeping the graphene sturdy and its tiny pores open.

The researchers performed diffusion tests with the graphene membranes, flowing a solution of water, salts, and other molecules across each membrane. They found that overall, the membranes were able to withstand the flow while filtering out molecules. Their performance was comparable to graphene membranes made using conventional, small-batch approaches.

The team also ran the process at different speeds, with different ratios of methane and hydrogen gas, and characterized the quality of the resulting graphene after each run. They drew up plots to show the relationship between graphene’s quality and the speed and gas ratios of the manufacturing process. Kidambi says that if other designers can build similar setups, they can use the team’s plots to identify the settings they would need to produce a certain quality of graphene.

“The system gives you a great degree of flexibility in terms of what you’d like to tune graphene for, all the way from electronic to membrane applications,” Kidambi says.

Looking forward, Hart says he would like to find ways to include polymer casting and other steps that currently are performed by hand, in the roll-to-roll system.

“In the end-to-end process, we would need to integrate more operations into the manufacturing line,” Hart says. “For now, we’ve demonstrated that this process can be scaled up, and we hope this increases confidence and interest in graphene-based membrane technologies, and provides a pathway to commercialization.”

Here’s a link to and a citation for the paper,

A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting by Piran R. Kidambi, Dhanushkodi D. Mariappan, Nicholas T. Dee, Andrey Vyatskikh, Sui Zhang, Rohit Karnik, and A. John Hart. ACS Appl. Mater. Interfaces, 2018, 10 (12), pp 10369–10378 DOI: 10.1021/acsami.8b00846 Publication Date (Web): March 19, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Finally, there is a video of the ‘graphene spooling out’ process,

Robust reverse osmosis membranes made of carbon nanotubes

Caption: SEM images of MWCNT-PA (Multi-Walled Carbon Nanotube-Polyamide) nanocomposite membranes, for plain PA, and PA with 5, 9.5, 12.5, 15.5, 17 and 20 wt.% of MWCNT, where the typical lobe-like structures appear at the surface. Note the tendency towards a flatter membrane surface as the content of MWCNT increases. Scale bar corresponds to 1.0?μm for all the micrographs. Credit: Copyright 2018, Springer Nature, Licensed under CC BY 4.0

It seems unlikely that the image’s resemblance to a Japanese kimono on display is accidental. Either way, nicely done!

An April 12, 2018 news item on phys.org describes a technique that would allow large-scale water desalination,

A research team of Shinshu University, Japan, has developed robust reverse osmosis membranes that can endure large-scale water desalination. The team published their results in early February [2018] in Scientific Reports.

“Since more than 97 percent of the water in the world is saline water, reverse osmosis desalination plants for producing fresh water are increasingly important for providing a safe and consistent supply,” said Morinobu Endo, Ph.D., corresponding author on the paper. Endo is a distinguished professor of Shinshu University and the Honorary Director of the Institute of Carbon Science and Technology. “Even though reverse osmosis membrane technology has been under development for several decades, new threats like global warming and increasing clean water demand in populated urban centers challenge the conventional water supply systems.”

Reverse osmosis membranes typically consist of thin film composite systems, with an active layer of polymer film that restricts undesired substances, such as salt, from passing through a permeable porous substrate. Such membranes can turn seawater into drinkable water, as well as aid in agricultural and landscape irrigation, but they can be costly to operate and spend a large amount of energy.

To meet the demand of potable water at low cost, Endo says more robust membranes capable of withstanding harsh conditions, while remaining chemically stable to tolerate cleaning treatments, are necessary. The key lays in carbon nanotechnology.

An April 11, 2018 Shinshu University press release, which originated the news item, provides more details about the work,

Endo is a pioneer of carbon nanotubes [sic] synthesis by catalytic chemical vapor deposition. In this research, Endo and his team developed a multi-walled carbon nanotube-polyamide nanocomposite membrane, which is resistant to chlorine–one of the main cause of degradation or failure cases in reverse osmosis membranes. The added carbon nanotubes create a protective effect that stabilized the linked molecules of the polyamide against chlorine.

“Carbon nanotechnology has been expected to bring benefits, and this is one promising example of the contribution of carbon nanotubes to a very critical application: water purification,” Endo said. “Carbon nanotubes and fibers are already superb reinforcements for other applications in materials science and engineering, and this is yet another field where their exceptional properties can be used for improving conventional technologies.”

The researchers are working to stabilize and expand the production and processing of multi-walled carbon nanotube-polyamide nanocomposite membranes.

“We are currently working on scaling up our method of synthesis, which, in principle, is based on the same method used to prepare current polyamide membranes,” Endo said. He also noted that his team is planning a collaboration to produce commercial membranes.

Here’s a link to and a citation for the paper,

Robust water desalination membranes against degradation using high loads of carbon nanotubes by J. Ortiz-Medina, S. Inukai, T. Araki, A. Morelos-Gomez, R. Cruz-Silva, K. Takeuchi, T. Noguchi, T. Kawaguchi, M. Terrones, & M. Endo. Scientific Reports volume 8, Article number: 2748 (2018) doi:10.1038/s41598-018-21192-5 Published online: 09 February 2018

This paper is open access.

Clean up oil spills (on water and/or land) with oil-eating bacterium

Quebec’s Institut national de la recherche scientifique (INRS) announced an environmentally friendly way of cleaning up oil spills in an April 9, 2018 news item on ScienceDaily,

From pipelines to tankers, oil spills and their impact on the environment are a source of concern. These disasters occur on a regular basis, leading to messy decontamination challenges that require massive investments of time and resources. But however widespread and serious the damage may be, the solution could be microscopic — Alcanivorax borkumensis — a bacterium that feeds on hydrocarbons. Professor Satinder Kaur Brar and her team at INRS have conducted laboratory tests that show the effectiveness of enzymes produced by the bacterium in degrading petroleum products in soil and water. Their results offer hope for a simple, effective, and eco-friendly method of decontaminating water and soil at oil sites.

An April 8, 2018 INRS news release by Stephanie Thibaut, which originated the news item, expands on the theme,

In recent years, researchers have sequenced the genomes of thousands of bacteria from various sources. Research associate Dr.Tarek Rouissi poured over “technical data sheets” for many bacterial strains with the aim of finding the perfect candidate for a dirty job: cleaning up oil spills. He focused on the enzymes they produce and the conditions in which they evolve.

A. borkumensis, a non-pathogenic marine bacterium piqued his curiosity. The microorganism’s genome contains the codes of a number of interesting enzymes and it is classified as “hydrocarbonoclastic”—i.e., as a bacterium that uses hydrocarbons as a source of energy. A. borkumensis is present in all oceans and drifts with the current, multiplying rapidly in areas where the concentration of oil compounds is high, which partly explains the natural degradation observed after some spills. But its remedial potential had not been assessed.

“I had a hunch,” Rouissi said, “and the characterization of the enzymes produced by the bacterium seems to have proven me right!” A. borkumensis boasts an impressive set of tools: during its evolution, it has accumulated a range of very specific enzymes that degrade almost everything found in oil. Among these enzymes, the bacteria’shydroxylases stand out from the ones found in other species: they are far more effective, in addition to being more versatile and resistant to chemical conditions, as tested in coordination by a Ph.D. student, Ms. Tayssir Kadri.

To test the microscopic cleaner, the research team purified a few of the enzymes and used them to treat samples of contaminated soil. “The degradation of hydrocarbons using the crude enzyme extract is really encouraging and reached over 80% for various compounds,” said Brar. The process is effective in removing benzene, toluene, and xylene, and has been tested under a number of different conditions to show that it is a powerful way to clean up polluted land and marine environments.”

The next steps for Brar’s team are to find out more about how these bacteria metabolize hydrocarbons and explore their potential for decontaminating sites. One of the advantages of the approach developed at INRS is its application in difficult-to-access environments, which present a major challenge during oil spill cleanup efforts.

Here’s a link to and a citation for the paper,

Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes by Tayssir Kadri, Sara Magdouli, Tarek Rouissi, Satinder Kaur Brar. Biochemical Engineering Journal Volume 132, 15 April 2018, Pages 279-287 DOI: https://doi.org/10.1016/j.bej.2018.01.014

This paper is behind a paywall.

In light of this research, it seems remiss not to mention the recent setback for Canada’s Trans Mountain pipeline expansion. Canada’s Federal Court of Appeal quashed the approval as per this August 30, 2018 news item on canadanews.org. There were two reasons for the quashing (1) a failure to properly consult with indigenous people and (2) a failure to adequately assess environmental impacts on marine life. Interestingly, no one ever mentions environmental cleanups and remediation, which could be very important if my current suspicions regarding the outcome for the next federal election are correct.

Regardless of which party forms the Canadian government after the 2019 federal election, I believe that either Liberals or Conservatives would be equally dedicated to bringing this pipeline to the West Coast. The only possibility I can see of a change lies in a potential minority government is formed by a coalition including the NDP (New Democratic Party) and/or the Green Party; an outcome that seems improbable at this juncture.

Given what I believe to be the political will regarding the Trans Mountain pipeline, I would dearly love to see more support for better cleanup and remediation measures.