Category Archives: water

Slippery toilet coating could save water

On a practical level, it’s becoming clear that we need to become more thoughtful about our use of water. We here in Canada tend to take our water for granted, as if we have an inexhaustible supply. According to this August 21, 2008 CBC (Canadian Broadcasting Corporation) online news item, that’s not the case,

Canada’s stores of fresh water are not as plentiful as once thought, and threaten to pinch the economy and pit provinces against each other, a federal document says.

An internal report drafted last December [2007] by Environment Canada warns that climate change and a growing population will further drain resources.

“We can no longer take our extensive water supplies for granted,” says the report, titled A Federal Perspective on Water Quantity Issues.

The Canadian Press obtained the 21-page draft report under the Access to Information Act.

It suggests the federal government take a more hands-on role in managing the country’s water, which is now largely done by the provinces. Ottawa still manages most of the fresh water in the North through water boards.

The Conservatives promised a national water strategy in last fall’s throne speech but have been criticized since for announcing only piecemeal projects.

The Tories, like the previous Liberal government, are also behind in publishing annual reports required by law that show how water supplies are used and maintained.

The last assessment posted on Environment Canada’s website is from 2005-06.

The internal draft report says the government currently does not know enough about the country’s water to properly manage it.

‘This is not a crisis yet. Why would we expect any government, regardless of political leaning or level, to do anything about it?’

“Canada lacks sound information at a national scale on the major uses and user[s] of water,” it says.

“National forecasting of water availability has never been done because traditionally our use of the resource was thought to be unlimited.”

Canada has a fifth of the world’s supply of fresh water, but only seven per cent of it is renewable. The rest comes from ice-age glaciers and underground aquifers.

One per cent of Canada’s total water supply is renewed each year by precipitation, the report says.

Moreover, government data on the country’s groundwater reserves is deemed “sparse and often inadequate.”

That’s in contrast to the United States, which has spent more than a decade mapping its underground water reserves. Canada shares aquifers with the U.S., and the report says: “Our lack of data places Canada at strategic disadvantage for bilateral negotiations with the U.S.”

The most recent update I can find is Ivan Semeniuk’s June 11, 2017 article for the Globe and Mail tilted: Charting Canada’s troubled waters: Where the danger lies for watersheds across the country,

A comprehensive review [World Wildlife Federation: a national assessment of of Canada’s freshwater Watershed Reports; 2017] freshwater ecosystems reveals rising threats from pollution, overuse, invasive species and climate change among other problems. Yet, the biggest threat of all may be a lack of information that hinders effective regulation, Ivan Semeniuk reports. …

Some of that information may be out of date.

Getting back on topic, here’s one possible solution to better managing our use of water.

Toilet coating

A November 18, 2019 news item on phys.org announces research that could save water,

Every day, more than 141 billion liters of water are used solely to flush toilets. With millions of global citizens experiencing water scarcity, what if that amount could be reduced by 50%?

The possibility may exist through research conducted at Penn State, released today (Nov. 18) in Nature Sustainability.

“Our team has developed a robust bio-inspired, liquid, sludge- and bacteria-repellent coating that can essentially make a toilet self-cleaning,” said Tak-Sing Wong, Wormley Early Career Professor of Engineering and associate professor of mechanical engineering and biomedical engineering.

Penn State researchers have developed a method that dramatically reduces the amount of water needed to flush a conventional toilet, which usually requires 6 liters. Image: Wong Laboratory for Nature Inspired Engineering

A November 18, 2019 Pennsylvania State University news release (also on EurekAlert,) which originated the news item, describes the research in more detail,

In the Wong Laboratory for Nature Inspired Engineering, housed within the Department of Mechanical Engineering and the Materials Research Institute, researchers have developed a method that dramatically reduces the amount of water needed to flush a conventional toilet, which usually requires 6 liters.

Co-developed by Jing Wang, a doctoral graduate from Wong’s lab, the liquid-entrenched smooth surface (LESS) coating is a two-step spray that, among other applications, can be applied to a ceramic toilet bowl. The first spray, created from molecularly grafted polymers, is the initial step in building an extremely smooth and liquid-repellent foundation.

“When it dries, the first spray grows molecules that look like little hairs, with a diameter of about 1,000,000 times thinner than a human’s,” Wang said.

While this first application creates an extremely smooth surface as is, the second spray infuses a thin layer of lubricant around those nanoscopic “hairs” to create a super-slippery surface.

“When we put that coating on a toilet in the lab and dump synthetic fecal matter on it, it (the synthetic fecal matter) just completely slides down and nothing sticks to it (the toilet),” Wang said.

With this novel slippery surface, the toilets can effectively clean residue from inside the bowl and dispose of the waste with only a fraction of the water previously needed. The researchers also predict the coating could last for about 500 flushes in a conventional toilet before a reapplication of the lubricant layer is needed.

While other liquid-infused slippery surfaces can take hours to cure, the LESS two-step coating takes less than five minutes. The researcher’s experiments also found the surface effectively repelled bacteria, particularly ones that spread infectious diseases and unpleasant odors.

If it were widely adopted in the United States, it could direct critical resources toward other important activities, to drought-stricken areas or to regions experiencing chronic water scarcity, said the researchers.

Driven by these humanitarian solutions, the researchers also hope their work can make an impact in the developing world. The technology could be used within waterless toilets, which are used extensively around the world.

“Poop sticking to the toilet is not only unpleasant to users, but it also presents serious health concerns,” Wong said.

However, if a waterless toilet or urinal used the LESS coating, the team predicts these types of fixtures would be more appealing and safer for widespread use.

To address these issues in both the United States and around the world, Wong and his collaborators, Wang, Birgitt Boschitsch, and Nan Sun, all mechanical engineering alumni, began a start-up venture.

With support from the Ben Franklin Technology Partners’ TechCelerator, the National Science Foundation, the Department of Energy, the Office of Naval Research, the Rice Business Plan Competition and Y-Combinator, their company, spotLESS Materials, is already bringing the LESS coating to market.

“Our goal is to bring impactful technology to the market so everyone can benefit,” Wong said. “To maximize the impact of our coating technology, we need to get it out of the lab.”

Looking forward, the team hopes spotLESS Materials will play a role in sustaining the world’s water resources and continue expanding the reach of their technology.

“As a researcher in an academic setting, my goal is to invent things that everyone can benefit from,” Wong said. “As a Penn Stater, I see this culture being amplified through entrepreneurship, and I’m excited to contribute.”

Here’s a link to and a citation for the paper,

Viscoelastic solid-repellent coatings for extreme water saving and global sanitation by Jing Wang, Lin Wang, Nan Sun, Ross Tierney, Hui Li, Margo Corsetti, Leon Williams, Pak Kin Wong & Tak-Sing Wong. Nature Sustainability (2019) DOI: https://doi.org/10.1038/s41893-019-0421-0 Published 18 November 2019

This paper is behind a paywall. However, the researchers have made a brief video available,

There you have it. One random thought, that toilet image reminded me of the controversy over Marcel Duchamp, the Fountain, and who actually submitted a urinal for consideration as a piece of art (Jan. 23, 2019 posting). Hint: Some believe it was Baroness Elsa von Freytag-Loringhoven.

Space debris, water, and DIY biology, science events in Canada (Jan. 22 – 23, 2020)

There is a lot happening in the next day or two. I have two Vancouver (Canada) science events and an online event, which can be attended from anywhere.

Space debris on January 23, 2020 in Vancouver

I was surprised to learn about space debris (it was described as a floating junkyard in space) in 1992. It seems things have not gotten better. Here’s more from the Cosmic Nights: Space Debris event page on the H.R. MacMillan Space Centre website,

Cosmic Nights: Space Debris

….

There are tens of thousands of pieces of man-made debris, or “space junk,” orbiting the Earth that threaten satellites and other spacecraft. With the increase of space exploration and no debris removal processes in place that number is sure to increase.

Learn more about the impact space debris will have on current and future missions, space law, and the impact human activity, both scientific, and commercial are having on space as we discuss what it will take to make space exploration more sustainable. Physics professors Dr. Aaron Rosengren, and Dr. Aaron Boley will be joining us to share their expertise on the subject.

Tickets available for 7:30pm or 9:00pm planetarium star theatre shows.
________________

7:30 ticket holder schedule:
6:30 – check-in
7:00 – “Pooping in Space” (GroundStation Canada Theatre)
7:30 – 8:30 “Go Boldly and Sustainably” show (Planetarium Star Theatre)
9:00 – 9:30 “Space Debris” lecture

9:00 ticket holder schedule:
6:30 – check-in
7:00 – 9:00 (runs every 30 mins) “Pooping in Space” show (GroundStation Canada Theatre)
8:00 – 8:30 “Space Debris” lecture
9:00 – 10:00 “Go Boldly and Sustainably” show (Planetarium Star Theatre)
The bar will be open from 6:30 – 10:00pm in the Cosmic Courtyard.

Only planetarium shows are ticketed, all other activities are optional.

7:00pm, 7:30pm, 8:00pm, 8:30pm – “Pooping in Space” – GroundStation Canada Theatre
The ultimate waste! What happens when you have to “GO” in space? In this live show you’ll see how astronauts handle this on the ISS, look at some new innovations space suit design for future missions, and we’ll have some fun astronaut trivia.

7:30pm and 9:00pm – “Go Boldly and Sustainably” – Planetarium Star Theatre
As humans venture into a solar system, where no one can own anything, it is becoming increasingly important to create policies to control for waste and promote sustainability. But who will enact these policies? Will it be our governments or private companies? Our astronomer Rachel Wang, and special guest Dr. Aaron Boley will explore these concepts under the dome in the Planetarium Star Theatre. For the 7:30 show SFU’s Paul Meyer will be making an appearance to talk about the key aspects of space security diplomacy and how it relates to the space debris challenge.

Dr. Aaron Boley is an Assistant Professor in the Physics and Astronomy department at UBC whose research program uses theory and observations to explore a wide range of processes in the formation of planets, from the birth of planet-forming discs to the long-term evolution of planetary systems.

Paul Meyer is Fellow in International Security and Adjunct Professor of International Studies at Simon Fraser University and a founding member of the Outer Space Institute. Prior to his assuming his current positions in 2011, Mr. Meyer had a 35-year career with the Canadian Foreign Service, including serving as Canada’s Ambassador to the United Nations and to the Conference on Disarmament in Geneva (2003-2007). He teaches a course on diplomacy at SFU’s School for International Studies and writes on issues of nuclear non-proliferation and disarmament, outer space security and international cyber security.

8:00pm and 9:00pm – “Space Junk: Our Quest to Conquer the Space Environment Problem” lecture by Dr. Aaron Rosengren

At the end of 2019, after nearly two decades, the U.S. government issued updated orbital debris mitigation guidelines, but the revision fell short of the sweeping changes many in the space debris research community expected. The updated guidelines sets new quantitative limits on events that can create debris and updates the classes of orbits to be used for the retirement of satellites, even allowing for the new exotic idea of passive disposal through gravitational resonances (similar phenomena have left their mark on the asteroid belt between Mars and Jupiter). The revised guidelines, however, do not make major changes, and leave intact the 25-year time frame for end-of-life disposal of low-Earth orbit satellites, a period many now believe to be far too long with the ever increasing orbital traffic in near-Earth space. In this talk, I will discuss various approaches to cleaning up or containing space junk, such as a recent exciting activity in Australia to use laser photo pressure to nudge inactive debris to safe orbits.

Dr. Aaron J. Rosengren is an Assistant Professor in the College of Engineering at the University of Arizona and Member of the Interdisciplinary Graduate Program in Applied Mathematics. Prior to joining UA in 2017, he spent one year at the Aristotle University of Thessaloniki in Greece working in the Department of Physics, as part of the European Union H2020 Project ReDSHIFT. He has also served as a member of the EU Asteroid and Space Debris Network, Stardust, working for two years at the Institute of Applied Physics Nello Carrara of the Italian National Research Council. His research interests include space situational awareness, orbital debris, celestial mechanics, and planetary science. Aaron is currently part of the Space Situational Awareness (SSA)-Arizona initiative at the University of Arizona, a member of the Outer Space Institute (OSI) for the sustainable development of Space at the University of British Columbia, and a research affiliate of the Center for Orbital Debris Education and Research (CODER) at the University of Maryland.

*Choose between either the 7:30pm or 9:00pm planetarium show when purchasing your ticket.*

This is a 19+ event. All attendees will be required to provide photo ID upon entry.

Date and Time

Thu, 23 January 2020
6:30 PM – 10:00 PM PST

Location

H.R. MacMillan Space Centre
1100 Chestnut Street
Vancouver, BC V6J 3J9

Cosmic Nights is the name for a series of talks about space and astronomy and an opportunity to socialize with your choice of beer or wine for purchase.

Canada-wide 2nd Canadian DIY Biology Summit (live audio and webcast)

This is a January 22, 2020 event accessible Canada-wide. For anyone on Pacific Time, it does mean being ready to check-in at 5 am. The first DIY Biology (‘do-it-yourself’ biology) Summit was held in 2016.

Here’s more about the event from its Open Science Network events page on Meetup,

Organizers of Community Biolabs across Canada are converging on Ottawa this Wednesday for the second Canadian DIY Biology Summit organized by the Public Health Agency of Canada (PHAC). OSN [Open Science Network] President & Co-Founder, Scott Pownall, has been invited to talk about the Future of DIY/Community Biology in Canada.

The agenda was just released. Times are East Standard Time.
https://www.opensciencenet.org/wp-content/uploads/2020/01/2020-2nd-Canadian-DYI-Biology-Summit-Agenda.pdf

You can join in remotely via WebEx or audio conferencing.

WebEx Link: https://gts-ee.webex.com/webappng/sites/gts-ee/meeting/info/1144bc57660846349f15cf6e80a6a35f

A few points of clarification: DIYbio YVR has been renamed Open Science Network on Meetup and, should you wish to attend the summit virtually, there is information about passwords and codes on the agenda, which presumably will help you to get access.

Nerd Nite v. 49: Waterslides, Oil Tankers, and Predator-Prey Relationships on January 22, 2020 in Vancouver

Here’s more about Nerd Nite Vancouver v.49 from its event posting,

When you were young, did you spend your summers zooming down waterslides? We remember days where our calves ached from climbing stairs, and sore bums from well… you know. And, if you were like us, you also stared at those slides and thought “How are these things made? And, is it going to disassemble while I’m on it?”. Today, we spend more of our summer days staring out at the oil tankers lining the shore, or watching seagulls dive down to retrieve waste left behind by tourists on Granville Island, but we maintain that curiousity about the things around us! So, splash into a New Year with us to learn about all three: waterslides, oil tankers, and predator-prey relationships.

Hosted by: Kaylee Byers and Michael Unger

Where: The Fox Cabaret

When: Wednesday January 22nd; Doors @ 7, show starts @ 7:30

Tickets: Eventbrite

Poster by: Armin Mortazavi

Music by: DJ Burger

1. Ecology

Zachary Sherker 

Zachary is completing an MSc at UBC investigating freshwater and estuarine predation on juvenile salmon during their out-migration from natal rivers and works as a part-time contract biologist in the lower mainland. Prior to coming out west, Zach completed an interdisciplinary BSc in Aquatic Resources and Biology at St. F.X. University in Antigonish, N.S. During his undergraduate degree, Zach ran field and lab experiments to explore predator-induced phenotypic plasticity in intertidal blue mussels exposed to the waterborne cues of a drilling predator snail. He also conducted biological surveys on lobster fishing boats and worked as a fisheries observer for the offshore commercial snow crab fleet.

2. Waterslides

Shane Jensen

Shane is a professional mechanical engineer whose career transitioned from submarine designer to waterslide tester. He is currently a product manager for waterslides at WhiteWater West.

3. Oil Tankers 101

Kayla Glynn 

Kayla is an ocean enthusiast. She earned her Masters in Marine Management at Dalhousie University, studying compensation for environmental damage caused by ship-source oil spills. Passionate about sharing her knowledge of the ocean with others, Kayla’s shifted her focus to the realm of science communication to help more people foster a deeper relationship with science and the ocean. Kayla now works as a producer at The Story Collider, a non-profit dedicated to sharing true, personal stories about science, where she hosts live storytelling events and leads workshops on behalf of the organization. Follow her at @kaylamayglynn and catch her live on the Story Collider stage on February 11th, 2020!

There you have it.

Desalination with nanowood

A new treatment for wood could make renewable salt-separating membranes. Courtesy: University of Maryland

An August 6, 2019 article by Adele Peters for Fast Company describes a ‘wooden’approach to water desalinization (also known as desalination),

“We are trying to develop a new type of membrane material that is nature-based,” says Z. Jason Ren, an engineering professor at Princeton University and one of the coauthors of a new paper in Science Advances about that material, which is made from wood. It’s designed for use in a process called membrane distillation, which heats up saltwater and uses pressure to force the water vapor through a membrane, leaving the salt behind and creating pure water. The membranes are usually made from a type of plastic. Using “nanowood” membranes instead can both improve the energy efficiency of the process and avoid the environmental problems of plastic.

An August 2, 2019 University of Maryland (UMD) news release provides more detail about the research,

A membrane made of a sliver of wood could be the answer to renewably sourced water cleaning. Most membranes that are currently used to distill fresh water from salty are made of polymers based on fossil fuels.

Inspired by the intricate system of water circulating in a tree, a research team from the University of Maryland, Princeton University, and the University of Colorado Boulder have figured out how to use a thin slice of wood as a membrane through which water vapor can evaporate, leaving behind salt or other contaminants.

“This work demonstrates another exciting energy/water application of nanostructured wood, as a high-performance membrane material,” said Liangbing Hu, a professor of materials science and engineering at UMD’s A. James Clark School of Engineering, who co-led the study.

The team chemically treated the wood to become hydrophobic, so that it more efficiently allows water vapor through, driven by a heat source like solar energy.

“This study discovered a new way of using wood materials’ unique properties as both an excellent insulator and water vapor transporter,” said Z. Jason Ren, a professor in environmental engineering who recently moved from CU Boulder to Princeton, and the other co-leader of the team that performed the study.

The researchers treat the wood so that it loses its lignin, the part of the wood that makes it brown and rigid, and its hemicellulose, which weaves in and out between cellulose to hold it in place. The resulting “nanowood” is treated with silane, a compound used to make silicon for computer chips. The semiconducting nature of the compound maintains the wood’s natural nanostructures of cellulose, and clings less to water vapor molecules as they pass through. Silane is also used in solar cell manufacturing.

The membrane looks like a thin piece of wood, seemingly bleached white, that is suspended above a source of water vapor. As the water heats and passes into the gas phase, the molecules are small enough to fit through the tiny channels lining the walls of the leftover cell structure. Water collected on the other side is now free of large contaminants like salt.
To test it, the researchers distilled water through it and found that it performed 1.2 times better than a conventional membrane.

“The wood membrane has very high porosity, which promotes water vapor transport and prevents heat loss,” said first author Dianxun Hou, who was a student at CU Boulder.
Inventwood, a UMD spinoff company of Hu’s research group, is working on commercializing wood based nanotechnologies.

Here’s a link to and a citation for the paper,

Hydrophobic nanostructured wood membrane for thermally efficient distillation by Dianxun Hou, Tian Li, Xi Chen, Shuaiming He, Jiaqi Dai, Sohrab A. Mofid, Deyin Hou, Arpita Iddya, David Jassby, Ronggui Yang, Liangbing Hu, and Zhiyong Jason Ren. Science Advances 02 Aug 2019: Vol. 5, no. 8, eaaw3203 DOI: 10.1126/sciadv.aaw3203

This paper appears to be open access.

In my brief survey of the paper, I noticed that the researchers were working with cellulose nanofibrils (CNF), a term which should be familiar for anyone following the nanocellulose story, such as it.

Gold sheets that are two atoms thick

The gold sheets in question are effectively 2D. I’m surprised they haven’t named them ‘goldene’ as everything else that’s 2D seems to have an ‘ene’ suffix (e.g. graphene, germanene, tellurene).

Of course, these gold sheets are not composed of single atoms but of two according to an August 6, 2019 news item on Nanowerk,

Scientists at the University of Leeds [UK] have created a new form of gold which is just two atoms thick – the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres – that is one million times thinner than a human finger nail. The material is regarded as 2D because it comprises just two layers of atoms sitting on top of one another. All atoms are surface atoms – there are no ‘bulk’ atoms hidden beneath the surface.

Caption: Image shows gold nanosheets that are just two atoms thick Credit: University of Leeds

I’m pretty sure they’ve added colour to those images and not just in the background; they’ve likely added a gold colour to the gold.

An August 6, 2019 University of Leeds press release (also on EurekAlert), which originated the news item, gives some insight into the scientists’ ambitions and some technical details about the work,

The material could have wide-scale applications in the medical device and electronics industries – and also as a catalyst to speed up chemical reactions in a range of industrial processes.

Laboratory tests show that the ultra-thin gold is 10 times more efficient as a catalytic substrate than the currently used gold nanoparticles, which are 3D materials with the majority of atoms residing in the bulk rather than at the surface.

Scientists believe the new material could also form the basis of artificial enzymes that could be applied in rapid, point-of-care medical diagnostic tests and in water purification systems.

The announcement that the ultra-thin metal had been successfully synthesised was made in the journal Advanced Science.

The lead author of the paper, Dr Sunjie Ye, from Leeds’ Molecular and Nanoscale Physics Group and the Leeds Institute of Medical Research, said: “This work amounts to a landmark achievement.

“Not only does it open up the possibility that gold can be used more efficiently in existing technologies, it is providing a route which would allow material scientists to develop other 2D metals.

“This method could innovate nanomaterial manufacturing.”

The research team are looking to work with industry on ways of scaling-up the process.

Synthesising the gold nanosheet takes place in an aqueous solution and starts with chloroauric acid, an inorganic substance that contains gold. It is reduced to its metallic form in the presence of a ‘confinement agent’ – a chemical that encourages the gold to form as a sheet, just two atoms thick.

Because of the gold’s nanoscale dimensions, it appears green in water – and given its shape, the researchers describe it as gold nanoseaweed.

Images taken from an electron microscope reveal the way the gold atoms have formed into a highly organised lattice. Other images show gold nanoseaweed that has been artificially coloured. The images are available for download: https://drive.google.com/drive/folders/
1-jxr7KW_RW4vF4-zReh9rnfOQMesb6MI?usp=sharing

Professor Stephen Evans, head of the Leeds’ Molecular and Nanoscale Research Group who supervised the research, said the considerable gains that could be achieved from using these ultra-thin gold sheets are down to their high surface-area to volume ratio.

He said: “Gold is a highly effective catalyst. Because the nanosheets are so thin, just about every gold atom plays a part in the catalysis. It means the process is highly efficient.”

Standard benchmark tests revealed that gold nanoscale sheets were ten times more efficient than the gold nanoparticles conventionally used in industry.

Professor Evans said: “Our data suggests that industry could get the same effect from using a smaller amount of gold, and this has economic advantages when you are talking about a precious metal.”

Similar benchmark tests revealed that the gold sheets could act as highly effective artificial enzymes.

The flakes are also flexible, meaning they could form the basis of electronic components for bendable screens, electronic inks and transparent conducting displays.

Professor Evans thinks there will inevitably be comparisons made between the 2D gold and the very first 2D material ever created – graphene, which was fabricated at the University of Manchester in 2004.

He said: “The translation of any new material into working products can take a long time and you can’t force it to do everything you might like to. With graphene, people have thought that it could be good for electronics or for transparent coatings – or as carbon nanotubes that could make an elevator to take us into space because of its super strength.

“I think with 2D gold we have got some very definite ideas about where it could be used, particularly in catalytic reactions and enzymatic reactions. We know it will be more effective than existing technologies – so we have something that we believe people will be interested in developing with us.”

Here’s a link to and a citation for the paper,

Sub‐Nanometer Thick Gold Nanosheets as Highly Efficient Catalysts by Sunjie Ye, Andy P. Brown, Ashley C. Stammers, Neil H. Thomson, Jin Wen, Lucien Roach, Richard J. Bushby, Patricia Louise Coletta, Kevin Critchley, Simon D. Connell, Alexander F. Markham, Rik Brydson, Stephen D. Evans. Advnaced Science https://doi.org/10.1002/advs.201900911 First published: 06 August 2019

This paper is open access.

Make electricity by flowing water over nanolayers of metal

Scientists at Northwestern University (Chicago, Illinois) and the California Institute of Technology (CalTech) have developed what could be a more sustainable way to produce electricity. From a July 31, 2019 news item on Nanowerk,

Scientists from Northwestern University and Caltech have produced electricity by simply flowing water over extremely thin layers of inexpensive metals, including iron, that have oxidized. These films represent an entirely new way of generating electricity and could be used to develop new forms of sustainable power production.

A July 31, 2019 Northwester University news release (also on EurekAlert) by Megan Fellman, which originated the news item, provides details that suggest this discovery could prove beneficial in medical implants, as well as, in solar cells,

The films have a conducting metal nanolayer (10 to 20 nanometers thick) that is insulated with an oxide layer (2 nanometers thick). Current is generated when pulses of rainwater and ocean water alternate and move across the nanolayers. The difference in salinity drags the electrons along in the metal below.

“It’s the oxide layer over the nanometal that really makes this device go,” said Franz M. Geiger, the Dow Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences. “Instead of corrosion, the presence of the oxides on the right metals leads to a mechanism that shuttles electrons.”

The films are transparent, a feature that could be taken advantage of in solar cells. The researchers intend to study the method using other ionic liquids, including blood. Developments in this area could lead to use in stents and other implantable devices.

“The ease of scaling up the metal nanolayer to large areas and the ease with which plastics can be coated gets us to three-dimensional structures where large volumes of liquids can be used,” Geiger said. “Foldable designs that fit, for instance, into a backpack are a possibility as well. Given how transparent the films are, it’s exciting to think about coupling the metal nanolayers to a solar cell or coating the outside of building windows with metal nanolayers to obtain energy when it rains.”

The study, titled “Energy Conversion via Metal Nanolayers,” was published this week [on July 29, 2019] in the journal Proceedings of the National Academy of Sciences (PNAS).

Geiger is the study’s corresponding author; his Northwestern team conducted the experiments. Co-author Thomas Miller, professor of chemistry at Caltech, led a team that conducted atomistic simulations to study the device’s behavior at the atomic level.

The new method produces voltages and currents comparable to graphene-based devices reported to have efficiencies of around 30% — similar to other approaches under investigation (carbon nanotubes and graphene) but with a single-step fabrication from earth-abundant elements instead of multistep fabrication. This simplicity allows for scalability, rapid implementation and low cost. Northwestern has filed for a provisional patent.

Of the metals studied, the researchers found that iron, nickel and vanadium worked best. They tested a pure rust sample as a control experiment; it did not produce a current.

The mechanism behind the electricity generation is complex, involving ion adsorption and desorption, but it essentially works like this: The ions present in the rainwater/saltwater attract electrons in the metal beneath the oxide layer; as the water flows, so do those ions, and through that attractive force, they drag the electrons in the metal along with them, generating an electrical current.

“There are interesting prospects for a variety of energy and sustainability applications, but the real value is the new mechanism of oxide-metal electron transfer,” Geiger said. “The underlying mechanism appears to involve various oxidation states.”

The team used a process called physical vapor deposition (PVD), which turns normally solid materials into a vapor that condenses on a desired surface. PVD allowed them to deposit onto glass metal layers only 10 to 20 nanometers thick. An oxide layer then forms spontaneously in air. It grows to a thickness of 2 nanometers and then stops growing.

“Thicker films of metal don’t succeed — it’s a nano-confinement effect,” Geiger said. “We have discovered the sweet spot.”

When tested, the devices generated several tens of millivolts and several microamps per centimeter squared.

“For perspective, plates having an area of 10 square meters each would generate a few kilowatts per hour — enough for a standard U.S. home,” Miller said. “Of course, less demanding applications, including low-power devices in remote locations, are more promising in the near term.”

Here’s a link to and a citation for the paper,

Energy conversion via metal nanolayers by Mavis D. Boamah, Emilie H. Lozier, Jeongmin Kim, Paul E. Ohno, Catherine E. Walker, Thomas F. Miller III, and Franz M. Geiger. PNAS DOI: https://doi.org/10.1073/pnas.1906601116 First published July 29, 2019

This paper is behind a paywall.

New ingredient for computers: water!

A July 25, 2019 news item on Nanowerk provides a description of Moore`s Law and some ‘watery’ research that may upend it,

Moore’s law – which says the number of components that could be etched onto the surface of a silicon wafer would double every two years – has been the subject of recent debate. The quicker pace of computing advancements in the past decade have led some experts to say Moore’s law, the brainchild of Intel co-founder Gordon Moore in the 1960s, no longer applies. Particularly of concern, next-generation computing devices require features smaller than 10 nanometers – driving unsustainable increases in fabrication costs.

Biology creates features at sub-10nm scales routinely, but they are often structured in ways that are not useful for applications like computing. A Purdue University group has found ways of transforming structures that occur naturally in cell membranes to create other architectures, like parallel 1nm-wide line segments, more applicable to computing.

Inspired by biological cell membranes, Purdue researchers in the Claridge Research Group have developed surfaces that act as molecular-scale blueprints for unpacking and aligning nanoscale components for next-generation computers. The secret ingredient? Water, in tiny amounts.

A July 25, 2019 Purdue University news release (also on EurekAlert), expands on the theme,

“Biology has an amazing tool kit for embedding chemical information in a surface,” said Shelley Claridge, a recently tenured faculty member in chemistry and biomedical engineering at Purdue, who leads a group of nanomaterials researchers. “What we’re finding is that these instructions can become even more powerful in nonbiological settings, where water is scarce.”

In work just published in Chem, sister journal to Cell, the group has found that stripes of lipids can unpack and order flexible gold nanowires with diameters of just 2 nm, over areas corresponding to many millions of molecules in the template surface.

“The real surprise was the importance of water,” Claridge said. “Your body is mostly water, so the molecules in your cell membranes depend on it to function. Even after we transform the membrane structure in a way that’s very nonbiological and dry it out, these molecules can pull enough water out of dry winter air to do their job.”

Their work aligns with Purdue’s Giant Leaps celebration, celebrating the global advancements in sustainability as part of Purdue’s 150th anniversary. Sustainability is one of the four themes of the yearlong celebration’s Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

The research team is working with the Purdue Research Foundation Office of Technology Commercialization to patent their work. They are looking for partners for continued research and to take the technology to market. [emphasis mine]

I wonder how close they are to taking this work to market. Usually they say it will be five to 10 years but perhaps we’ll see water-based computers in the near future. In the meantime, here’s a link to and a citation for the paper,

1-nm-Wide Hydrated Dipole Arrays Regulate AuNW Assembly on Striped Monolayers in Nonpolar Solvent by Ashlin G. Porter, Tianhong Ouyang, Tyler R. Hayes, John Biechele-Speziale, Shane R. Russell, Shelley A. Claridge. Chem DOI: DOI:https://doi.org/10.1016/j.chempr.2019.07.002 Published online:July 25, 2019

This paper is behind a paywall.

My love is a black, black rose that purifies water

Cockrell School of Engineering, The University of Texas at Austin

The device you see above was apparently inspired by a rose. Personally, Ill need to take the scientists’ word for this image brings to my mind, lava lamps like the one you see below.

A blue lava lamp Credit: Risa1029 – Own work [downloaded from https://en.wikipedia.org/wiki/Lava_lamp#/media/File:Blue_Lava_lamp.JPG]

In any event, the ‘black rose’ collects and purifies water according to a May 29, 2019 University of Texas at Austin news release (also on EurekAlert),

The rose may be one of the most iconic symbols of the fragility of love in popular culture, but now the flower could hold more than just symbolic value. A new device for collecting and purifying water, developed at The University of Texas at Austin, was inspired by a rose and, while more engineered than enchanted, is a dramatic improvement on current methods. Each flower-like structure costs less than 2 cents and can produce more than half a gallon of water per hour per square meter.

A team led by associate professor Donglei (Emma) Fan in the Cockrell School of Engineering’s Walker Department of Mechanical Engineering developed a new approach to solar steaming for water production – a technique that uses energy from sunlight to separate salt and other impurities from water through evaporation.

In a paper published in the most recent issue of the journal Advanced Materials, the authors outline how an origami rose provided the inspiration for developing a new kind of solar-steaming system made from layered, black paper sheets shaped into petals. Attached to a stem-like tube that collects untreated water from any water source, the 3D rose shape makes it easier for the structure to collect and retain more liquid.

Current solar-steaming technologies are usually expensive, bulky and produce limited results. The team’s method uses inexpensive materials that are portable and lightweight. Oh, and it also looks just like a black-petaled rose in a glass jar.

Those in the know would more accurately describe it as a portable low-pressure controlled solar-steaming-collection “unisystem.” But its resemblance to a flower is no coincidence.

“We were searching for more efficient ways to apply the solar-steaming technique for water production by using black filtered paper coated with a special type of polymer, known as polypyrrole,” Fan said.

Polypyrrole is a material known for its photothermal properties, meaning it’s particularly good at converting solar light into thermal heat.

Fan and her team experimented with a number of different ways to shape the paper to see what was best for achieving optimal water retention levels. They began by placing single, round layers of the coated paper flat on the ground under direct sunlight. The single sheets showed promise as water collectors but not in sufficient amounts. After toying with a few other shapes, Fan was inspired by a book she read in high school. Although not about roses per se, “The Black Tulip” by Alexandre Dumas gave her the idea to try using a flower-like shape, and she discovered the rose to be ideal. Its structure allowed more direct sunlight to hit the photothermic material – with more internal reflections – than other floral shapes and also provided enlarged surface area for water vapor to dissipate from the material.

The device collects water through its stem-like tube – feeding it to the flower-shaped structure on top. It can also collect rain drops coming from above. Water finds its way to the petals where the polypyrrole material coating the flower turns the water into steam. Impurities naturally separate from water when condensed in this way.

“We designed the purification-collection unisystem to include a connection point for a low-pressure pump to help condense the water more effectively,” said Weigu Li, a Ph.D. candidate in Fan’s lab and lead author on the paper. “Once it is condensed, the glass jar is designed to be compact, sturdy and secure for storing clean water.”

The device removes any contamination from heavy metals and bacteria, and it removes salt from seawater, producing clean water that meets drinking standard requirements set by the World Health Organization.

“Our rational design and low-cost fabrication of 3D origami photothermal materials represents a first-of-its-kind portable low-pressure solar-steaming-collection system,” Li said. “This could inspire new paradigms of solar-steaming technologies in clean water production for individuals and homes.”

Here’s a citation and another link to the paper,

Portable Low‐Pressure Solar Steaming‐Collection Unisystem with Polypyrrole Origamis by Weigu Li, Zheng Li, Karina Bertelsmann, Donglei Emma Fan. Advanced Materials DOI: https://doi.org/10.1002/adma.201900720 First published: 28 May 2019

This paper is behind a paywall.

Biohybrid cyborgs

Cyborgs are usually thought of as people who’ve been enhanced with some sort of technology, In contemporary real life that technology might be a pacemaker or hip replacement but in science fiction it’s technology such as artificial retinas (for example) that expands the range of visible light for an enhanced human.

Rarely does the topic of a microscopic life form come up in discussion about cyborgs and yet, that’s exactly what an April 3, 2019 Nanowerk spotlight article by Michael Berger describes in relationship to its use in water remediation efforts (Note: links have been removed),

Researchers often use living systems as inspiration for the design and engineering of micro- and nanoscale propulsion systems, actuators, sensors, and robots. …

“Although microrobots have recently proved successful for remediating decontaminated water at the laboratory scale, the major challenge in the field is to scale up these applications to actual environmental settings,” Professor Joseph Wang, Chair of Nanoengineering and Director, Center of Wearable Sensors at the University California San Diego, tells Nanowerk. “In order to do this, we need to overcome the toxicity of their chemical fuels, the short time span of biocompatible magnesium-based micromotors and the small domain operation of externally actuated microrobots.”

In their recent work on self-propelled biohybrid microrobots, Wang and his team were inspired by recent developments of biohybrid cyborgs that integrate self-propelling bacteria with functionalized synthetic nanostructures to transport materials.

“These tiny cyborgs are incredibly efficient for transport materials, but the limitation that we observed is that they do not provide large-scale fluid mixing,” notes Wang. ” We wanted to combine the best properties of both worlds. So, we searched for the best candidate to create a more robust biohybrid for mixing and we decided on using rotifers (Brachionus) as the engine of the cyborg.”

These marine microorganisms, which measure between 100 and 300 micrometers, are amazing creatures as they already possess sensing ability, energetic autonomy, and provide large-scale fluid mixing capability. They are also are very resilient and can survive in very harsh environments and even are one of the few organisms that have survived via asexual reproduction.

“Taking inspiration from the science fiction concept of a cybernetic organism, or cyborg – where an organism has enhanced abilities due to the integration of some artificial component – we developed a self-propelled biohybrid microrobot, that we named rotibot, employing rotifers as their engine,” says Fernando Soto, first author of a paper on this work (Advanced Functional Materials, “Rotibot: Use of Rotifers as Self-Propelling Biohybrid Microcleaners”).

This is the first demonstration of a biohybrid cyborg used for the removal and degradation of pollutants from solution. The technical breakthrough that allowed the team to achieve this task is based on a novel fabrication mechanism based on the selective accumulation of functionalized microbeads in the microorganism’s mouth: The rotifer serves not only as a transport vessel for active material or cargo but also acting as a powerful biological pump, as it creates fluid flows directed towards its mouth

Nanowerk has made this video demonstrating a rotifer available along with a description,

“The rotibot is a rotifer (a marine microorganism) that has plastic microbeads attached to the mouth, which are functionalized with pollutant-degrading enzymes. This video illustrates a free swimming rotibot mixing tracer particles in solution. “

Here’s a link to and a citation for the paper,

Rotibot: Use of Rotifers as Self‐Propelling Biohybrid Microcleaners by Fernando Soto, Miguel Angel Lopez‐Ramirez, Itthipon Jeerapan, Berta Esteban‐Fernandez de Avila, Rupesh, Kumar Mishra, Xiaolong Lu, Ingrid Chai, Chuanrui Chen, Daniel Kupor. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.201900658 First published: 28 March 2019

This paper is behind a paywall.

Berger’s April 3, 2019 Nanowerk spotlight article includes some useful images if you are interested in figuring out how these rotibots function.

Desalination waste as a useful resource?

For anyone not familiar with the concept, it’s possible to remove salt from water to make it potable (i.e., drinkable). With growing concerns about water shortages worldwide, turning the ocean into something drinkable is seen as a reasonable solution. One of the problems associated with the solution is waste. As you can see in this post, it’s a big problem.

Illustration depicts the potential of the suggested process. Brine, which could be obtained from the waste stream of reverse osmosis (RO) desalination plants, or from industrial plants or salt mining operations, can be processed to yield useful chemicals such as sodium hydroxide (NaOH) or hydrochloric acid (HCl). Credit: Illustration courtesy of the researchers [downloaded from https://www.sciencedaily.com/releases/2019/02/190213124439.htm]

A February 13, 2019 news item on ScienceDaily announced research from MIT (Massachusetts Institute of Technology) into research on desalination and waste,

The rapidly growing desalination industry produces water for drinking and for agriculture in the world’s arid coastal regions. But it leaves behind as a waste product a lot of highly concentrated brine, which is usually disposed of by dumping it back into the sea, a process that requires costly pumping systems and that must be managed carefully to prevent damage to marine ecosystems. Now, engineers at MIT say they have found a better way.

In a new study, they show that through a fairly simple process the waste material can be converted into useful chemicals — including ones that can make the desalination process itself more efficient

A February 13, 2019 MIT news release (also on EurekAlert), which originated the news item, describes the work in detail,

The approach can be used to produce sodium hydroxide, among other products. Otherwise known as caustic soda, sodium hydroxide can be used to pretreat seawater going into the desalination plant. This changes the acidity of the water, which helps to prevent fouling of the membranes used to filter out the salty water — a major cause of interruptions and failures in typical reverse osmosis desalination plants.

The concept is described today in the journal Nature Catalysis and in two other papers by MIT research scientist Amit Kumar, professor of mechanical engineering John. [sic] H. Lienhard V, and several others. Lienhard is the Jameel Professor of Water and Food and the director of the Abdul Latif Jameel Water and Food Systems Lab.

“The desalination industry itself uses quite a lot of it,” Kumar says of sodium hydroxide. “They’re buying it, spending money on it. So if you can make it in situ at the plant, that could be a big advantage.” The amount needed in the plants themselves is far less than the total that could be produced from the brine, so there is also potential for it to be a saleable product.

Sodium hydroxide is not the only product that can be made from the waste brine: Another important chemical used by desalination plants and many other industrial processes is hydrochloric acid, which can also easily be made on site from the waste brine using established chemical processing methods. The chemical can be used for cleaning parts of the desalination plant, but is also widely used in chemical production and as a source of hydrogen.

Currently, the world produces more than 100 billion liters (about 27 billion gallons) a day of water from desalination, which leaves a similar volume of concentrated brine. [emphases mine] Much of that is pumped back out to sea, and current regulations require costly outfall systems to ensure adequate dilution of the salts. Converting the brine can thus be both economically and ecologically beneficial, especially as desalination continues to grow rapidly around the world. “Environmentally safe discharge of brine is manageable with current technology, but it’s much better to recover resources from the brine and reduce the amount of brine released,” Lienhard says.

The method of converting the brine into useful products uses well-known and standard chemical processes, including initial nanofiltration to remove undesirable compounds, followed by one or more electrodialysis stages to produce the desired end product. While the processes being suggested are not new, the researchers have analyzed the potential for production of useful chemicals from brine and proposed a specific combination of products and chemical processes that could be turned into commercial operations to enhance the economic viability of the desalination process, while diminishing its environmental impact.

“This very concentrated brine has to be handled carefully to protect life in the ocean, and it’s a resource waste, and it costs energy to pump it back out to sea,” so turning it into a useful commodity is a win-win, Kumar says. And sodium hydroxide is such a ubiquitous chemical that “every lab at MIT has some,” he says, so finding markets for it should not be difficult.

The researchers have discussed the concept with companies that may be interested in the next step of building a prototype plant to help work out the real-world economics of the process. “One big challenge is cost — both electricity cost and equipment cost,” at this stage, Kumar says.

The team also continues to look at the possibility of extracting other, lower-concentration materials from the brine stream, he says, including various metals and other chemicals, which could make the brine processing an even more economically viable undertaking.

“One aspect that was mentioned … and strongly resonated with me was the proposal for such technologies to support more ‘localized’ or ‘decentralized’ production of these chemicals at the point-of-use,” says Jurg Keller, a professor of water management at the University of Queensland in Australia, who was not involved in this work. “This could have some major energy and cost benefits, since the up-concentration and transport of these chemicals often adds more cost and even higher energy demand than the actual production of these at the concentrations that are typically used.”

The research team also included MIT postdoc Katherine Phillips and undergraduate Janny Cai, and Uwe Schroder at the University of Braunschweig, in Germany. The work was supported by Cadagua, a subsidiary of Ferrovial, through the MIT Energy Initiative.

Here’s a link to and a citation for the paper,

Direct electrosynthesis of sodium hydroxide and hydrochloric acid from brine streams by Amit Kumar, Katherine R. Phillips, Gregory P. Thiel, Uwe Schröder, & John H. Lienhard V. Nature Catalysis volume 2, pages106–113 (2019) DOI: https://doi.org/10.1038/s41929-018-0218-y Published 13 February 2019

This paper is behind a paywall.

Cleaning water with bacteria

There seems to be much interest in bacteria as collaborators as opposed to the old ‘enemy that must be destoyed’ concept. The latest collaborative effort was announced in a January 19,2019 news item on Nanowerk,

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world’s population will be living in water-stressed areas, which is why access to clean water is one of the National Academy of Engineering’s Grand Challenges. Engineers at Washington University in St. Louis [WUSTL] have designed a novel membrane technology that purifies water while preventing biofouling, or buildup of bacteria and other harmful microorganisms that reduce the flow of water.

And they used bacteria to build such filtering membranes.

A January 17, 2019 WUSTL news release by Beth Miller, which originated the news item, provides more detail,

Srikanth Singamaneni, professor of mechanical engineering & materials science, and Young-Shin Jun, professor of energy, environmental & chemical engineering, and their teams blended their expertise to develop an ultrafiltration membrane using graphene oxide and bacterial nanocellulose that they found to be highly efficient, long-lasting and environmentally friendly. If their technique were to be scaled up to a large size, it could benefit many developing countries where clean water is scarce.


Biofouling accounts for nearly half of all membrane fouling and is highly challenging to eradicate completely. Singamaneni and Jun have been tackling this challenge together for nearly five years. They previously developed other membranes using gold nanostars, but wanted to design one that used less expensive materials.

Their new membrane begins with feeding Gluconacetobacter hansenii bacteria a sugary substance so that they form cellulose nanofibers when in water. The team then incorporated graphene oxide (GO) flakes into the bacterial nanocellulose while it was growing, essentially trapping GO in the membrane to make it stable and durable.

After GO is incorporated, the membrane is treated with base solution to kill Gluconacetobacter. During this process, the oxygen groups of GO are eliminated, making it reduced GO.  When the team shone sunlight onto the membrane, the reduced GO flakes immediately generated heat, which is dissipated into the surrounding water and bacteria nanocellulose.

Ironically, the membrane created from bacteria also can kill bacteria.
“If you want to purify water with microorganisms in it, the reduced graphene oxide in the membrane can absorb the sunlight, heat the membrane and kill the bacteria,” Singamaneni said.

Singamaneni and Jun and their team exposed the membrane to E. coli bacteria, then shone light on the membrane’s surface. After being irradiated with light for just 3 minutes, the E. coli bacteria died. The team determined that the membrane quickly heated to above the 70 degrees Celsius required to deteriorate the cell walls of E. coli bacteria.

While the bacteria are killed, the researchers had a pristine membrane with a high quality of nanocellulose fibers that was able to filter water twice as fast as commercially available ultrafiltration membranes under a high operating pressure.

When they did the same experiment on a membrane made from bacterial nanocellulose without the reduced GO, the E. coli bacteria stayed alive.

“This is like 3-D printing with microorganisms,” Jun said. “We can add whatever we like to the bacteria nanocellulose during its growth. We looked at it under different pH conditions similar to what we encounter in the environment, and these membranes are much more stable compared to membranes prepared by vacuum filtration or spin-coating of graphene oxide.”

While Singamaneni and Jun acknowledge that implementing this process in conventional reverse osmosis systems is taxing, they propose a spiral-wound module system, similar to a roll of towels. It could be equipped with LEDs or a type of nanogenerator that harnesses mechanical energy from the fluid flow to produce light and heat, which would reduce the overall cost.

Here’s a link to and a citation for the paper,

Photothermally Active Reduced Graphene Oxide/Bacterial Nanocellulose Composites as Biofouling-Resistant Ultrafiltration Membranes by Qisheng Jiang, Deoukchen Ghim, Sisi Cao, Sirimuvva Tadepalli, Keng-Ku Liu, Hyuna Kwon, Jingyi Luan, Yujia Min, Young-Shin Jun, and Srikanth Singamaneni. Environ. Sci. Technol., 2019, 53 (1), pp 412–421 DOI: 10.1021/acs.est.8b02772 Publication Date (Web): September 14, print Jan. 2, 2019.

Copyright © 2018 American Chemical Society

This paper is behind a paywall.