Category Archives: sscience education

Explaining topological insulators with dance

This must have been some high school physics class. A November 5, 2024 news item on ScienceDaily explains how physics topological insulators and dance intersected for three classes,

Science can be difficult to explain to the public. In fact, any subfield of science can be difficult to explain to another scientist who studies in a different area. Explaining a theoretical science concept to high school students requires a new way of thinking altogether.

This is precisely what researchers at the University of California San Diego did when they orchestrated a dance with high school students at Orange Glen High School in Escondido as a way to explain topological insulators.

The experiment, led by former graduate student Matthew Du and UC San Diego Associate Professor of Chemistry and Biochemistry Joel Yuen-Zhou, was published in Science Advances.

A November 5, 2024 University of California at San Diego (UC San Diego) news release (also on EurekAlert), which originated the news item, provides more detail about how the researchers employed dance to teach physics concepts, Note: A link has been removed,

“I think the concept is simple,” stated Yuen-Zhou. “But the math is much harder. We wanted to show that these complex ideas in theoretical and experimental physics and chemistry are actually not as impossible to understand as you might initially think.”

Topological insulators are a relatively new type of quantum material that has insulating properties on the inside, but have conductive properties on the outside. To use a Southern California staple, if a topological insulator was a burrito, the filling would be insulating and the tortilla would be conducting.

Since topological insulators are able to withstand some disorder and deformation, they can be synthesized and used under conditions where imperfections can arise. For this reason, they hold promise in the areas of quantum computing and lasers, and in creating more efficient electronics.

To bring these quantum materials to life, the researchers made a dance floor (topological insulator) by creating a grid with pieces of blue and red tape. Then to choreograph the dance, Du created a series of rules that governed how individual dancers moved.

These rules are based on what is known as a Hamiltonian in quantum mechanics. Electrons obey rules given by a Hamiltonian, which represents the total energy of a quantum system, including kinetic and potential energy. The Hamiltonian encodes the interactions of the electron in the potential energy of the material.

Each dancer (electron) had a pair of flags and was given a number that corresponded to a movement:

  •  1 = wave flags with arms pointing up
  •  0 = stand still
  • -1 = wave flags with arms pointing down

Subsequent moves were based on what a neighboring dancer did and the color of the tape on the floor. A dancer would mimic a neighbor with blue tape, but do the opposite of a neighbor with red tape. Individual mistakes or dancers leaving the floor didn’t disrupt the overall dance, exhibiting the robustness of topological insulators.

In addition to topology, Yuen-Zhou’s lab also studies chemical processes and photonics, and it was in thinking of light waves that they realized the movement of a group of people also resembled a wave. This gave Yuen-Zhou the idea of using dance to explain a complex topic like topological insulators. Implementing this idea seemed like a fun challenge to Du, who is currently a postdoctoral scholar at the University of Chicago and takes salsa lessons in his free time.

Du, who comes from a family of educators and is committed to scientific outreach, says the project gave him an appreciation for being able to distill science into its simplest elements.

“We wanted to demystify these concepts in a way that was unconventional and fun,” he stated. “Hopefully, the students were able to see that science can be made understandable and enjoyable by relating it to everyday life.”   

Full list of authors: Matthew Du, Juan B. Pérez-Sánchez, Jorge A. Campos-Gonzalez-Angulo, Arghadip Koner, Federico Mellini, Sindhana Pannir-Sivajothi, Yong Rui Poh, Kai Schwennicke, Kunyang Sun, Stephan van den Wildenberg, Alec Barron and Joel Yuen-Zhou (all UC San Diego); and Dylan Karzen (Orange Glen High School).

This research was supported by an National Science Foundation CAREER grant (CHE 1654732).

Here’s what it looked like,

series of overhead images of dancers on dance floor grid
Snapshots showing dancers on the edge of the topological insulator moving in a clockwise direction. Courtesy of University of California at San Diego

You may find this helps you to understand what’s happening in the pictures,

Before getting to a link and citation for the paper, here’s the paper’s abstract,

Topological insulators are insulators in the bulk but feature chiral energy propagation along the boundary. This property is topological in nature and therefore robust to disorder. Originally discovered in electronic materials, topologically protected boundary transport has since been observed in many other physical systems. Thus, it is natural to ask whether this phenomenon finds relevance in a broader context. We choreograph a dance in which a group of humans, arranged on a square grid, behave as a topological insulator. The dance features unidirectional flow of movement through dancers on the lattice edge. This effect persists when people are removed from the dance floor. Our work extends the applicability of wave physics to dance. [emphasis mine]

I wonder if we’re going to see some ‘wave physics’ inspired dance performances.

Finally, here’s a link to and a citation for the paper,

Chiral edge waves in a dance-based human topological insulator by Matthew Du, Juan B. Pérez-Sánchez, Jorge A. Campos-Gonzalez-Angulo, Arghadip Koner, Federico Mellini, Sindhana Pannir-Sivajothi, Yong Rui Poh, Kai Schwennicke, Kunyang Sun, Stephan van den Wildenberg, Dylan Karzen, Alec Barron, and Joel Yuen-Zhou. Science Advances 28 Aug 2024 Vol 10, Issue 35 DOI: 10.1126/sciadv.adh7810

This paper is open access.

I think this is the first year I’ve stumbled across two stories about physics and dance in one year. Here’s the other one, “Happy Canada Day! Breakdancing at the 2024 Paris Summer Olympics: physics in action + heat, mosquitoes, and sports” in a July 1, 2024 posting.

FrogHeart’s 2024 comes to an end as 2025 comes into view

First, thank you to anyone who’s dropped by to read any of my posts. Second, I didn’t quite catch up on my backlog in what was then the new year (2024) despite my promises. (sigh) I will try to publish my drafts in a more timely fashion but I start this coming year as I did 2024 with a backlog of two to three months. This may be my new normal.

As for now, here’s an overview of FrogHeart’s 2024. The posts that follow are loosely organized under a heading but many of them could fit under other headings as well. After my informal review, there’s some material on foretelling the future as depicted in an exhibition, “Oracles, Omens and Answers,” at the Bodleian Libraries, University of Oxford.

Human enhancement: prosthetics, robotics, and more

Within a year or two of starting this blog I created a tag ‘machine/flesh’ to organize information about a number of converging technologies such as robotics, brain implants, and prosthetics that could alter our concepts of what it means to be human. The larger category of human enhancement functions in much the same way also allowing a greater range of topics to be covered.

Here are some of the 2024 human enhancement and/or machine/flesh stories on this blog,

Other species are also being rendered ‘machine/flesh’,

The year of the hydrogel?

It was the year of the hydrogel for me (btw, hydrogels are squishy materials; I have more of a description after this list),

As for anyone who’s curious about hydrogels, there’s this from an October 20, 2016 article by D.C.Demetre for ScienceBeta, Note: A link has been removed,

Hydrogels, materials that can absorb and retain large quantities of water, could revolutionise medicine. Our bodies contain up to 60% water, but hydrogels can hold up to 90%.

It is this similarity to human tissue that has led researchers to examine if these materials could be used to improve the treatment of a range of medical conditions including heart disease and cancer.

These days hydrogels can be found in many everyday products, from disposable nappies and soft contact lenses to plant-water crystals. But the history of hydrogels for medical applications started in the 1960s.

Scientists developed artificial materials with the ambitious goal of using them in permanent contact applications , ones that are implanted in the body permanently.

For anyone who wants a more technical explanation, there’s the Hydrogel entry on Wikipedia.

Science education and citizen science

Where science education is concerned I’m seeing some innovative approaches to teaching science, which can include citizen science. As for citizen science (also known as, participatory science) I’ve been noticing heightened interest at all age levels.

Artificial intelligence

It’s been another year where artificial intelligence (AI) has absorbed a lot of energy from nearly everyone. I’m highlighting the more unusual AI stories I’ve stumbled across,

As you can see, I’ve tucked in two tangentially related stories, one which references a neuromorphic computing story ((see my Neuromorphic engineering category or search for ‘memristors’ in the blog search engine for more on brain-like computing topics) and the other is intellectual property. There are many, many more stories on these topics

Art/science (or art/sci or sciart)

It’s a bit of a surprise to see how many art/sci stories were published here this year, although some might be better described as art/tech stories.

There may be more 2024 art/sci stories but the list was getting long. In addition to searching for art/sci on the blog search engine, you may want to try data sonification too.

Moving off planet to outer space

This is not a big interest of mine but there were a few stories,

A writer/blogger’s self-indulgences

Apparently books can be dangerous and not in a ‘ban [fill in the blank] from the library’ kind of way,

Then, there are these,

New uses for electricity,

Given the name for this blog, it has to be included,

  • Frog saunas published September 15, 2024, this includes what seems to be a mild scientific kerfuffle

I’ve been following Lomiko Metals (graphite mining) for a while,

Who would have guessed?

Another bacteria story,

New crimes,

Origins of life,

Dirt

While no one year features a large number of ‘dirt’ stories, it has been a recurring theme here throughout the years,

Regenerative medicine

In addition to or instead of using the ‘regenerative medicine’ tag, I might use ’tissue engineering’ or ’tissue scaffolding’,

To sum it up

It was an eclectic year.

Peering forward into 2025 and futurecasting

I expect to be delighted, horrified, thrilled, and left shaking my head by science stories in 2025. Year after year the world of science reveals a world of wonder.

More mundanely, I can state with some confidence that my commentary (mentioned in the future-oriented subsection of my 2023 review and 2024 look forward) on Quantum Potential, a 2023 report from the Council of Canadian Academies, will be published early in this new year as I’ve almost finished writing it.

As for more about the future, I’ve got this, from a December 3, 2024 essay (Five ways to predict the future from around the world – from spider divination to bibliomancy) about an exhibition by Michelle Aroney (Research Fellow in Early Modern History, University of Oxford) and David Zeitlyn (Professor of Social Anthropology, University of Oxford) in The Conversation (h/t December 3, 2024 news item on phys.org), Note: Links have been removed

Some questions are hard to answer and always have been. Does my beloved love me back? Should my country go to war? Who stole my goats?

Questions like these have been asked of diviners around the world throughout history – and still are today. From astrology and tarot to reading entrails, divination comes in a wide variety of forms.

Yet they all address the same human needs. They promise to tame uncertainty, help us make decisions or simply satisfy our desire to understand.

Anthropologists and historians like us study divination because it sheds light on the fears and anxieties of particular cultures, many of which are universal. Our new exhibition at Oxford’s Bodleian Library, Oracles, Omens & Answers, explores these issues by showcasing divination techniques from around the world.

1. Spider divination

In Cameroon, Mambila spider divination (ŋgam dù) addresses difficult questions to spiders or land crabs that live in holes in the ground.

Asking the spiders a question involves covering their hole with a broken pot and placing a stick, a stone and cards made from leaves around it. The diviner then asks a question in a yes or no format while tapping the enclosure to encourage the spider or crab to emerge. The stick and stone represent yes or no, while the leaf cards, which are specially incised with certain meanings, offer further clarification.

2. Palmistry

Reading people’s palms (palmistry) is well known as a fairground amusement, but serious forms of this divination technique exist in many cultures. The practice of reading the hands to gather insights into a person’s character and future was used in many ancient cultures across Asia and Europe.

In some traditions, the shape and depth of the lines on the palm are richest in meaning. In others, the size of the hands and fingers are also considered. In some Indian traditions, special marks and symbols appearing on the palm also provide insights.

Palmistry experienced a huge resurgence in 19th-century England and America, just as the science of fingerprints was being developed. If you could identify someone from their fingerprints, it seemed plausible to read their personality from their hands.

3. Bibliomancy

If you want a quick answer to a difficult question, you could try bibliomancy. Historically, this DIY [do-it-yourself] divining technique was performed with whatever important books were on hand.

Throughout Europe, the works of Homer or Virgil were used. In Iran, it was often the Divan of Hafiz, a collection of Persian poetry. In Christian, Muslim and Jewish traditions, holy texts have often been used, though not without controversy.

4. Astrology

Astrology exists in almost every culture around the world. As far back as ancient Babylon, astrologers have interpreted the heavens to discover hidden truths and predict the future.

5. Calendrical divination

Calendars have long been used to divine the future and establish the best times to perform certain activities. In many countries, almanacs still advise auspicious and inauspicious days for tasks ranging from getting a haircut to starting a new business deal.

In Indonesia, Hindu almanacs called pawukon [calendar] explain how different weeks are ruled by different local deities. The characteristics of the deities mean that some weeks are better than others for activities like marriage ceremonies.

You’ll find logistics for the exhibition in this September 23, 2024 Bodleian Libraries University of Oxford press release about the exhibit, Note: Links have been removed,

Oracles, Omens and Answers

6 December 2024 – 27 April 2025
ST Lee Gallery, Weston Library

The Bodleian Libraries’ new exhibition, Oracles, Omens and Answers, will explore the many ways in which people have sought answers in the face of the unknown across time and cultures. From astrology and palm reading to weather and public health forecasting, the exhibition demonstrates the ubiquity of divination practices, and humanity’s universal desire to tame uncertainty, diagnose present problems, and predict future outcomes.

Through plagues, wars and political turmoil, divination, or the practice of seeking knowledge of the future or the unknown, has remained an integral part of society. Historically, royals and politicians would consult with diviners to guide decision-making and incite action. People have continued to seek comfort and guidance through divination in uncertain times — the COVID-19 pandemic saw a rise in apps enabling users to generate astrological charts or read the Yijing [I Ching], alongside a growth in horoscope and tarot communities on social media such as ‘WitchTok’. Many aspects of our lives are now dictated by algorithmic predictions, from e-health platforms to digital advertising. Scientific forecasters as well as doctors, detectives, and therapists have taken over many of the societal roles once held by diviners. Yet the predictions of today’s experts are not immune to criticism, nor can they answer all our questions.

Curated by Dr Michelle Aroney, whose research focuses on early modern science and religion, and Professor David Zeitlyn, an expert in the anthropology of divination, the exhibition will take a historical-anthropological approach to methods of prophecy, prediction and forecasting, covering a broad range of divination methods, including astrology, tarot, necromancy, and spider divination.

Dating back as far as ancient Mesopotamia, the exhibition will show us that the same kinds of questions have been asked of specialist practitioners from around the world throughout history. What is the best treatment for this illness? Does my loved one love me back? When will this pandemic end? Through materials from the archives of the Bodleian Libraries alongside other collections in Oxford, the exhibition demonstrates just how universally human it is to seek answers to difficult questions.

Highlights of the exhibition include: oracle bones from Shang Dynasty China (ca. 1250-1050 BCE); an Egyptian celestial globe dating to around 1318; a 16th-century armillary sphere from Flanders, once used by astrologers to place the planets in the sky in relation to the Zodiac; a nineteenth-century illuminated Javanese almanac; and the autobiography of astrologer Joan Quigley, who worked with Nancy and Ronald Reagan in the White House for seven years. The casebooks of astrologer-physicians in 16th- and 17th-century England also offer rare insights into the questions asked by clients across the social spectrum, about their health, personal lives, and business ventures, and in some cases the actions taken by them in response.

The exhibition also explores divination which involves the interpretation of patterns or clues in natural things, with the idea that natural bodies contain hidden clues that can be decrypted. Some diviners inspect the entrails of sacrificed animals (known as ‘extispicy’), as evidenced by an ancient Mesopotamian cuneiform tablet describing the observation of patterns in the guts of birds. Others use human bodies, with palm readers interpreting characters and fortunes etched in their clients’ hands. A sketch of Oscar Wilde’s palms – which his palm reader believed indicated “a great love of detail…extraordinary brain power and profound scholarship” – shows the revival of palmistry’s popularity in 19th century Britain.

The exhibition will also feature a case study of spider divination practised by the Mambila people of Cameroon and Nigeria, which is the research specialism of curator Professor David Zeitlyn, himself a Ŋgam dù diviner. This process uses burrowing spiders or land crabs to arrange marked leaf cards into a pattern, which is read by the diviner. The display will demonstrate the methods involved in this process and the way in which its results are interpreted by the card readers. African basket divination has also been observed through anthropological research, where diviners receive answers to their questions in the form of the configurations of thirty plus items after they have been tossed in the basket.

Dr Michelle Aroney and Professor David Zeitlyn, co-curators of the exhibition, say:

Every day we confront the limits of our own knowledge when it comes to the enigmas of the past and present and the uncertainties of the future. Across history and around the world, humans have used various techniques that promise to unveil the concealed, disclosing insights that offer answers to private or shared dilemmas and help to make decisions. Whether a diviner uses spiders or tarot cards, what matters is whether the answers they offer are meaningful and helpful to their clients. What is fun or entertainment for one person is deadly serious for another.

Richard Ovenden, Bodley’s [a nickname? Bodleian Libraries were founded by Sir Thomas Bodley] Librarian, said:

People have tried to find ways of predicting the future for as long as we have had recorded history. This exhibition examines and illustrates how across time and culture, people manage the uncertainty of everyday life in their own way. We hope that through the extraordinary exhibits, and the scholarship that brings them together, visitors to the show will appreciate the long history of people seeking answers to life’s biggest questions, and how people have approached it in their own unique way.

The exhibition will be accompanied by the book Divinations, Oracles & Omens, edited by Michelle Aroney and David Zeitlyn, which will be published by Bodleian Library Publishing on 5 December 2024.

Courtesy: Bodleian Libraries, University of Oxford

I’m not sure why the preceding image is used to illustrate the exhibition webpage but I find it quite interesting. Should you be in Oxford, UK and lucky enough to visit the exhibition, there are a few more details on the Oracles, Omens and Answers event webpage, Note: There are 26 Bodleian Libraries at Oxford and the exhibition is being held in the Weston Library,

EXHIBITION

Oracles, Omens and Answers

6 December 2024 – 27 April 2025

ST Lee Gallery, Weston Library

Free admission, no ticket required

Note: This exhibition includes a large continuous projection of spider divination practice, including images of the spiders in action.

Exhibition tours

Oracles, Omens and Answers exhibition tours are available on selected Wednesdays and Saturdays from 1–1.45pm and are open to all.

These free gallery tours are led by our dedicated volunteer team and places are limited. Check available dates and book your tickets.

You do not need to book a tour to visit the exhibition. Please meet by the entrance doors to the exhibition at the rear of Blackwell Hall.

Happy 2025! And, once again, thank you.

Back to school: Stanford University (California) brings nanoscience to teachers and Ingenium brings STEAM to school

I have two stories that fit into the ‘back to school’ theme, one from Stanford University and one from Ingenium (Canada’s Museums of Science and Innovation).

Stanford, nanoscience, and middle school teachers

h/t to Google Alert of August 27, 2024 (received via email) for information about a Stanford University programme for middle school teachers. From an August 27, 2024 article in the Stanford Report, Note: Links have been removed,

Crafting holographic chocolate, printing with the power of the sun, and seeing behind the scenes of cutting-edge research at the scale of one-billionth of a meter, educators participating in the Nanoscience Summer Institute for Middle School Teachers (NanoSIMST) got to play the role of students, for a change.

Teachers hailed from the Bay Area and Southern California – one had even come all the way from Arkansas – for the professional development program. NanoSIMST, run by nano@stanford, is designed to connect middle school teachers with activities, skills, and knowledge about science at the scale of molecules and atoms so they can incorporate it into their curriculum. NanoSIMST also prioritizes teachers from Title I schools, which are low-income schools with low-income student populations that receive federal funding to improve academic achievement.

Debbie Senesky, the site investigator and principal researcher on the nano@stanford project, highlighted the importance of nanoscience at the university. “It’s not just about focusing on research – we also have bigger impacts on entrepreneurs, start-ups, community colleges, and other educators who can use these facilities,” said Senesky, who is also an associate professor of aeronautics and astronautics and of electrical engineering. “We’re helping to train the next generation of people who can be a workforce in the nanotechnology and semiconductor industry.”

The program also supports education and outreach, including through NanoSIMST, which uniquely reaches out to middle school teachers due to the STEM education outcomes that occur at that age. According to a 2009 report by the Lemelson-MIT InvenTeam Initiative, even among teens who were interested in and felt academically prepared in their STEM studies, “nearly two-thirds of teens indicated that they may be discouraged from pursuing a career in science, technology, engineering or mathematics because they do not know anyone who works in these fields (31%) or understand what people in these fields do (28%).”

A teacher from the Oakland Unified School District, Thuon Chen, connected several other teachers from OUSD to attend NanoSIMST as a first-time group. He emphasized that young kids, especially in middle school, have a unique way of approaching new technologies. “Kids have this sense where they’re always pushing things and coming up with completely new uses, so introducing them to a new technology can give them a lot to work with.”

Over the course of four days in the summer, NanoSIMST provides teachers with an understanding of extremely small science and technology: they go through tours of the nano facilities, speak with scientists, perform experiments that can be conducted in the classroom, and learn about careers in nanotechnology and the semiconductor industry.

Tara Hodge, the teacher who flew all the way from Arkansas, was thrilled about bringing what she learned back with her. “I’m not a good virtual learner, honestly. That’s why I came here. And I’m really excited to learn about different hands-on activities. Anything I can get excited about, I know I can get my students excited about.”

They have provided a video,

One comment regarding the host, Daniella Duran, the director of education and outreach for nano@stanford, she comments about nano being everywhere and, then, says “… everything has a microchip in it.” I wish she’d been a little more careful with the wording. Granted those microchips likely have nanoscale structures.

Ingenium’s STEAM (science, technology, engineering, arts, and mathematics) programmes for teachers across Canada

An August 27, 2024 Ingenium newsletter (received via email) lists STEAM resources being made available for teachers across the country.

There appears to be a temporary copy of the August 27, 2024 Ingenium newsletter here,

STEAM lessons made simple!

Another school year is about to begin, and whether you’re an experienced teacher or leading your first class, Ingenium has what you need to make your STEAM (science, technology, engineering, arts and math) lessons fun! With three museums of science and innovation – the Canada Agriculture and Food Museum, the Canada Aviation and Space Museum and the Canada Science and Technology Museum – under one umbrella, we are uniquely positioned to help your STEAM lessons come to life.

Embark on an exciting adventure with our bilingual virtual field trips and meet the animals in our barns, explore aviation technology, and conduct amazing science experiments.

Or take advantage of our FREE lesson plans, activities and resources to simplify and animate your classroom, all available in English and French. With Ingenium, innovation is at your fingertips!

Bring the museum to your classroom with a virtual field trip!

Can’t visit in person? Don’t worry, Ingenium will bring the museum to you! All of our virtual field trips are led by engaging guides who will animate each subject with an entertaining and educational approach. Choose from an array of bilingual programs designed for all learners that cover the spectrum of STEAM subjects, including the importance of healthy soil, the genetic considerations of a dairy farm operation, the science of flight, simple machines, climate change and the various states of matter. There is so much to discover with Ingenium. Book your virtual field trip today!

Here’s a video introduction to Ingenium’s offerings,

To get a look at all the resources, check out this temporary copy of the August 27, 2024 Ingenium newsletter here.

Teaching kids to code with cultural research and embroidery machines

Caption: University of Washington researchers taught a group of high schoolers to code by combining cultural research into various embroidery traditions with “computational embroidery.” The method teaches kids to encode embroidery patterns on a computer through a coding language called Turtlestitch. Here, a student stitched plants with code, then hand-embroidered a bee. Credit: Kivuva et al./SIGCSE

Textiles and computing are more closely linked than most of us realize. It was a surprise (to me, anyway) to learn that the Jacquard loom was influential in the development of the computer (see this June 25, 2019 essay “Programming patterns: the story of the Jacquard loom” on the Science and Industry Museum in Manchester [UK] website). As for embroidery, that too has an historical link to computing (see my May 22, 2023 posting “Ada Lovelace’s skills (embroidery, languages, and more) led to her pioneering computer work in the 19th century“).

The latest embroidery link to computing was announced in a March 14, 2024 news item on phys.org, Note: A link has been removed,

Even in tech-heavy Washington state, the numbers of students with access to computer science classes aren’t higher than national averages: In the 2022–2023 school year, 48% of public high schools offered foundational CS [computer science] classes and 5% of middle school and high school students took such classes.

Those numbers have inched up, but historically marginalized populations are still less likely to attend schools teaching computer science, and certain groups—such as Latinx students and young women—are less likely than their peers to be enrolled in the classes even if the school offers them.

To reach a greater diversity of grade-school students, University of Washington researchers have taught a group of high schoolers to code by combining cultural research into various embroidery traditions—such as Mexican, Arab and Japanese—with “computational embroidery.” The method lets users encode embroidery patterns on a computer through an open-source coding language called Turtlestitch, in which they fit visual blocks together. An electronic embroidery machine then stitches the patterns into fabric.

A March 14, 2024 University of Washington news release (also on EurekAlert), which originated the news item, describes the research in more detail, Note: Links have been removed,

“We’ve come a long way as a country in offering some computer science courses in schools,” said co-lead author F. Megumi Kivuva, a UW doctoral student in the Information School. “But we’re learning that access doesn’t necessarily mean equity. It doesn’t mean underrepresented minority groups are always getting the opportunity to learn. And sometimes all it means is that if there’s one 20-student CS class, all 3,000 students at the school count as having ‘access.’ [emphases mine] Our computational embroidery class was really a way to engage diverse groups of students and show that their identities have a place in the classroom.”

In designing the course, the researchers aimed to make coding accessible to a demographically diverse group of 12 students. To make space for them to explore their curiosities, the team used a method called “co-construction” where the students had a say each week in what they learned and how they’d be assessed.

“We wanted to dispel the myth that a coder is someone sitting in a corner, not being very social, typing on their computer,” Kivuva said.

Before delving into Turtlestitch, students spent a week exploring cultural traditions in embroidery — whether those connected to their own cultures or those they were curious about. For one student, bringing his identity into the work meant taking inspiration from his Mexican heritage; for others, it meant embroidering an image of bubble tea because it’s her favorite drink, or stitching a corgi.

Students also spent a week learning to embroider by hand. The craft is an easy fit for coding because both rely on structures of repetition. But embroidery is tactile, so students were able to see their code move from the screen into the physical world. They were also able to augment what they coded with hand stitching, letting them distinguish what the human and the machine were good at. For instance, one student decided to code the design for a flower, then add a bee by hand.

“There’s a long history of overlooking crafts that have traditionally been perceived as feminized,” said co-lead author Jayne Everson, a UW doctoral student in the Paul G. Allen School of Computer Science & Engineering. “So combining this overlooked art that is deeply technical with computing was really fun, because I don’t see computing as more or less technical than embroidery.”

The class ran for six weeks over the summer, and researchers were impressed by the interest it elicited. In fact, one of the main drawbacks researchers found was that six weeks felt too short, given the curiosity the students showed. Since the technology is affordable — the embroidery machine is $400 and the software is free — Kivuva plans to tailor the course to be approachable for kindergarteners to 5th-grade refugee students. Since they were so pleased with the high student engagement, Kivuva and Everson will also run a workshop on their method at the Computer Science Teachers Association [CSTA] conference this summer.

“I was constantly blown away by the way students were engaging when they were given freedom. Some were staying after class to keep working,” said Everson. “I come from a math and science teaching background. To get students to stick around after class is kind of like, ‘Alright, we’ve done it. That’s all I want.’”

Additional co-authors on the paper were Camilo Montes De Haro, a UW undergraduate researcher in the iSchool, and Amy J. Ko, a UW professor in the iSchool. This research was funded by the National Science Foundation, Micorosoft, Adobe and Google.

I wanted to know a little more about equity and access and found this in the introduction to the paper (link to and citation for the paper follow or there’s the PDF of the paper),

Efforts to broaden participation in computing at the K-12 level have
led to an increasing number of schools (53%) offering CS, however,
participation is low. Code.org reports that 6% of high school, 3.9%
of middle school, and 7.3% of primary school students are enrolled
[ 4]. Furthermore, historically marginalized populations are also
underrepresented in K-12 CS [4 , 9]. Prior work suggests that there
are systemic barriers like sexism, racism, and classism that lead to
inequities in primary and secondary computing education [9].

Here’s a link to and a citation for the paper,

Cultural-Centric Computational Embroidery by F. Megumi Kivuva, Jayne Everson, Camilo Montes De Haro, and Amy J. Ko. SIGCSE 2024: Proceedings of the 55th ACM [Association of Computing Machinery] Technical Symposium on Computer Science Education V. 1March 2024Pages 673–679 DOI: https://doi.org/10.1145/3626252.3630818 Published: 07 March 2024

This paper is open access.

The Computer Science Teachers Association (CSTA) 2024 conference mentioned in the news release is being held in Las Vegas, Nevada, July 16 -19, 2024.

Latest Canadian students’ math and reading scores drop, the 2022 PISA (Programme for International Student Assessment]) scorecard

It took a while (until December 2023) for the OECD’s (Organization for Economic Cooperation Development) to release its latest (2022) PISA (Programme for International Student Assessment) scores.

Where Canada is concerned the scores seem to be a case of ‘the same old same old as per my October 9, 2013 posting about Canada’s then latest PISA scores, “What happened? 2009 report says Canadian students are leaders in reading, math, and science; 2013 report says Canadian students are dropping out of maths and sciences.”

Onto the 2022 results: you can find the OECD’s November 5, 2023 press release, “Decline in educational performance only partly attributable to the COVID-19 pandemic,” announcing the latest PISA result and there’s this December 5, 2023 CBC (Canadian Broadcasting Corporation) online news item, which contrasts the 2022 results with the 2018 results, Note: A link has been removed,

Math and reading scores of Canadian students continue to decline steeply, matching a global trend, according to a new study.

The state of global education was given a bleak appraisal in the Program for International Student Assessment (PISA), which is the first study to examine the academic progress of 15-year-old students in dozens of countries during the pandemic.

Released Tuesday [December 5, 2023], it finds the average international math score fell by the equivalent of 15 points compared to 2018 scores, while reading scores fell 10 points.

The study found Canada’s overall math scores declined 15 points between 2018 and 2022. According to PISA, which defines a drop of 20 points as losing out on a fully year of learning, that means Canada’s math score dropped by an equivalent of three-quarters of a year of learning.

During that same time period, reading scores of Canadian students dropped by 13 points and science by three.

Only 12 per cent of Canadian students were high math achievers, scoring at Level 5 or 6. That’s fewer than some of the top Asian countries and economies: In Singapore, 41 per cent of students performed at the top level; in Hong Kong, 27 per cent; and in Japan and Korea, 23 per cent.

Louis Volante, a professor of education governance at Brock University in St. Catharines, Ont., believes the pandemic had more of a negative effect on math learning than reading and science.

‘Some provinces declining more than others’

Anna Stokke, a math professor at the University of Winnipeg, notes that math scores in Canada have been trending in the wrong direction since 2003, “with some provinces declining more than others.”

According to the study, the provinces with the largest drop in math scores since 2018 were Newfoundland Labrador with 29, Nova Scotia with 24, New Brunswick with 23 and Manitoba with 22. Meanwhile, Alberta’s score only dropped by seven and B.C.’s just eight.

“I do think part of the problem is the philosophy of how to teach math,” Stokke told CBC News.

“First of all, we’re not spending enough time on math in schools. And second of all, kids just aren’t getting good instruction in a lot of cases. They’re not getting explicit instruction. They’re not getting enough practice. And that really needs to change.”

A survey of students found about half faced closures of more than three months, but it didn’t always lead to lower scores. There was “no clear difference” in performance trends between countries that had limited closures, including Iceland and Sweden, and those with longer closures, including Brazil and Ireland, according to the report.

Canada still in top 10

Singapore, long seen as an education powerhouse, had the highest scores by far in every subject. It was joined in the upper echelons by other East Asian countries, including Japan and China.

Despite the declines across the subjects, Canada did well compared to the other countries in the report, placing ninth in math, sixth in reading and seventh in science.

Usually given every three years, the latest test was delayed a year because of the pandemic. It was administered in 2022 to a sample of 15-year-olds in 37 countries that are OECD members, plus 44 other partner countries. The test has been conducted since 2000.

In 2022, 81 countries participated, with 23,000 Canadian high school students writing the test.

If you don’t have time to read all of the December 5, 2023 CBC online news item, there’s Quinn Henderson’s succinct December 6, 2023 article for the Daily Hive,

Wendy Hughes (then PhD student) and Sarfaroz Niyozov (then associate professor) both associated with the University of Toronto, presented a critique of PISA in their June 4, 2019 essay on The Conversation,

The Program for International Student Assessment (PISA) — the Organization for Economic Co-operation and Development’s (OECD) global standardized test of student achievement — is frequently used by commentators to compare and rank national or provincial education systems.

PISA, which has now spread into 80 countries as a best education practice, presents itself as a tool to help countries make their systems more inclusive leading to equitable outcomes. But PISA is far more ambiguous and controversial.

Many academics and educators critique PISA as an economic measurement, not an educational one. The media generally use PISA results to blame and shame school systems. And the way that some politicians, policy-makers and researchers have used PISA is more closely aligned to a political process than an educational one.

You can find the PISA 2022 results here.

Black Girls Do Engineer (BGDE) and the US National Security Agency plus some Canadian Black Scientists Network news

This April 24, 2024 Black Girls Do Engineer (BGDE) news release popped up in my email with an abbreviation I haven’t seen in a while, HBCU (Historically Black Colleges and Universities),

Black Girls Do Engineer recently signed an Education Partnership Agreement (EPA) with the [US] National Security Agency in an effort to continue playing a key role in developing science and technology talent for possible national security challenges.

The National Security Agency (NSA) partners with select universities and nonprofit organizations as part of the Agency’s Minority Serving Institution (MSI) Hacking 4 Intelligence (H4I) program. It is a program where the U.S. Government and industry partners, collaborate to solve national security problems. The program engages HBCU students and college bound students studying STEM [science, technology, engineering, and mathematics] disciplines. Black Girls Do Engineer, a 501c3 nonprofit organization that provides access, education and resources to Black students K-12 in STEM was selected to participate because of its stellar reputation in hosting cohorts of students through various STEM subjects including co-ed HBCU and High School programs, utilizing Microsoft technology to do so.

The NSA’s collaborative H4I program is for students to have the opportunity to cultivate essential skills by deconstructing and analyzing NSA and Microsoft problem sets, all while collaborating and networking with government and industry partners. Students will form interdisciplinary teams and work to solve real-world NSA and Microsoft problem sets. At the end of a 12-week cohort, students exit the program with a minimum viable product ready for deployment.

“This partnership with NSA will allow our program to provide our cybersecurity resources and curriculum to Higher Education institutions through our developed BGDE digital infrastructure enhanced by Microsoft tools,” states Kara Branch the Founder and CEO of Black Girls Do Engineer.

Black Girls Do Engineer‘s licensed STEM curriculum is committed to excellence in cyber defense education and research. Some of its programs include cybersecurity, artificial intelligence, data science and a host of technical training. Higher education programs include their design Badge A Thon event offered for college students.

“This collaboration will allow our national impact to reach new heights with higher education students,” concludes Kara Branch, Founder and CEO of Black Girls Do Engineer.

About Black Girls Do Engineer
As the fastest growing nationwide program for Black girls in STEM., BGDE has been dubbed “The Ivy League of Nonprofits.” The program is application-based and offers full-time membership-based STEM camps and workshops to Black girls in grades K through 12, with mentorship and individual workshops offered to college students up through age 21. The program currently has a 100% college acceptance rate and 100% job placement rate among its members. Since its launch in 2019, BGDE has served 4,000 girls though its program. The nonprofit has also helped secure its members $44,000 in STEM-related college scholarships.

BGDE futuristic programs of study include: A.I., Energy, Audio/Visual, Aerospace, Engineering, Medical, Robotics and Coding. Mentoring includes: College Prep, Financial Literacy, Upskilling, and Mentorship from professionals working in these fields offering real life experience.

I wandered onto the BGDE website and found this, (click on About and select Our Program from the dropdown menu),

Black Girls Do Engineering

Given the organization’s focus on futuristic programs, I find the use of a tree to illustrate their range a little amusing. I was also impressed because I’ve had contact, a few times, with people whose children are no longer satisfied with the fun science outreach programmes but are too young for some of the more challenging programmes available for high schoolers and/or aren’t fortunate enough to have connections to researchers who are will to help/mentor an interested young person. Brava for not leaving any gaps!

Also, congratulations on the partnership with the US National Security Agency!

Canadian Black Scientists Network (CBSN)

The last time the Canadian Black Scientists Network (CBSN) was mentioned here was in a February 1, 2022 posting, which coincidentally also featured my first mention of HBCU (Historically Black Colleges and Universities). Now onto the Canadian news.

The CBSN will be holding its Black Excellence Science, Technology, Engineering, Mathematics, Medicine and Health (BE-STEMM) conference from July 30 – August 1, 2024 in Ottawa, Ontario.

It’s a little late but there’s still time to respond to the call for abstract submissions in English or French for the upcoming 3rd annual conference, Note: There is a discrepancy between the July 30,2024 date on the poster (above) and the conference’s start date on the submission page, See the explanation below the submission information,

Abstract submissions are now open for the 3rd annual national conference for Black Excellence in STEMM.

July 29 – August 1, 2024, Ottawa, Ontario

Les soumissions de résumés sont maintenant ouvertes pour la 3e conférence nationale annuelle pour l’excellence noire en STEMM.
29 juillet – 1er août 2024, Ottawa, Ontario

Abstract submission is open from March 20, 2024 through May 4, 2024. More information & Conference Registration will be shared in April!

La soumission des résumés est ouverte du 20 mars 2024 au 4 mai 2024.Plus d’informations et l’inscription à la conférence seront partagées en avril !

Please share this invitation with your networks/ Merci de partager cette invitation avec vos réseaux(pdf): EN / FR

The Canadian Black Scientists Network / Réseau Canadien des Scientifiques Noirs invite tous les participants de l’écosystème canadien de recherche et d’innovation à BESTEMM 2024, la Conférence nationale pour l’excellence des Noirs en sciences, technologies, ingénierie, mathématiques, médecine et santé.

The Canadian Black Scientists Network / Réseau Canadien des Scientifiques Noirs Invites all participants in the Canadian Research & Innovation Ecosystem to BESTEMM 2024, the National Conference for Black Excellence in Science Technology, Engineering, Mathematics, Medicine and Health.

Now in its third year, BE-STEMM 2024 will bring together leading minds, talents, and innovators to share their ground-breaking research, and to work with Allies to dismantle barriers to Black success in STEMM.

Held as a successful online event in 2022 and 2023, BE-STEMM 2024 will be hosted in person for the first time this year, at the National Library & Public Archives Canada, with key events shared online, including a closing ceremony on Emancipation Day. BE-STEMM 2024 is a unique opportunity for Community members, policy-makers, and employers to connect with Black professionals in STEMM research & innovation.

The program will include:

Keynote talks
Contributed (Platform) talks
Lightning Talk Sessions
Poster Sessions
Career Fair
Networking receptions
A Public Panel Discussion
Science Fair Project Displays
Awards and prizes

BE-STEMM 2024 conference date discrepancy

After a little detective work (I used a search engine), I found this page on the CBSN website which offers information that explains the discrepancy,

Save the Date! BE-STEMM 2024 National Conference

All are welcome!

DATES:

*July 29th, 2024 (arrival day)
*July 30th – August 1, 2024 (full conference days)
*August 2, 2024 (departure day)

There you have it.

Five more stories complete the 3rd Frontiers for Young Minds collection of stories by Nobel Laureates

A January 31, 2024 Frontiers (publishers) news release on EurekAlert announces more stories by Nobel Laureates for volume 3 of Frontiers for Young Minds,

Frontiers for Young Minds, a non-profit, open-access scientific journal for kids, has published five new articles written by Nobel Prize-winners. The articles complete the third volume of the Nobel collection, bringing the number of featured Laureates and their discoveries to 30.  

The authors were awarded the Nobel Prize for their contributions to the fields of economics, physiology, and medicine. Within each article, the authors explain their ground-breaking work and the practical or future applications of their science.  

The articles are:  

  • Game Theory— More Than Just Games, written by Robert Aumann, awarded the Nobel Prize in Economics in 2005.  
    Game theory is not just about games. It deals with real-life situations like business, politics, war, or even sharing donuts. Robert Aumann enhanced conflict resolution using game theory – the logic which helps us understand how to improve our decisions, specifically in situations where people might disagree.  
  • Can We Use Math to Design a Brighter Future? written by Eric Maskin, awarded the Nobel Prize in Economics in 2007.  
    Math helps to develop new technologies and engineering techniques that advance our society. Eric Maskin laid the foundations of mechanism design theory, a branch of economics that can shape economies to reach social goals such as reducing pollution and establishing fair voting systems. 
  • T Killer T Cells: Immune System Heroes, written by Peter Doherty, awarded the Nobel Prize in Physiology or Medicine in 1996.  
    Our immune system keeps our body healthy by fighting microbes and protecting us from infections. Peter Doherty discovered how the immune system recognizes virus-infected cells and the clever way our T-cells identify and kill them. This knowledge could develop new treatments for autoimmune diseases and cancer. 
  • Can Grid Cells Help Us Understand the Brain? written by Edvard Moser, awarded the Nobel Prize in Physiology or Medicine in 2014.  
    Grid cells are special brain cells that play a key role in the brain’s navigation system. Edvard Moser co-discovered that these cells generate a positioning system that allows us to navigate our environment and estimate distance. Rapidly developing research on grid cells could eventually help us understand how cognition works. 
  • Hot Chili Peppers Help Uncover the Secrets of Pain, written by David Julius, awarded the Nobel Prize in Physiology or Medicine in 2021.  
    Receptors are small sensing structures present on cell membranes that react to stimuli from the environment or from within the body. David Julius identified a sensor in the nerve endings of the skin that responds to pain and heat. Using chili peppers to study how receptors relate to pain could help develop better drugs for intense and long-term (chronic) pain. 

Launched in 2013, Frontiers for Young Minds publishes accessible and engaging articles in collaboration with exceptional researchers to inspire the next generation of scientists. It provides reliable and up-to-date information on various topics in science, including in technology, engineering, mathematics, and medicine (STEMM). The unique Frontiers for Young Minds review process gives kids confidence and communication skills to engage with leading researchers worldwide and empowers them to ask questions and think critically before they validate the scientific information they read.  

Commenting on the new articles, head of program Laura Henderson says: “Since launching our Nobel Collection volume 1 in 2021, we have been blown away by the impact it has made. With over 1.8 million views and downloads worldwide, we are reaching science enthusiasts all over the world as part of our mission to inspire and engage kids with accessible scientific content. To now have a total of 30 Nobel Prize winners helping us to communicate scientific concepts to young minds is a huge achievement for all our team. I look forward to reaching even more young learners with these articles and our new partner collections coming later this year.” 

Discover all the Nobel Collections here: 

Volume one 
Volume two 
Volume three 

The first half of Volume three was announced here in my November 9, 2023 posting.