Category Archives: energy

Comments on today’s (September 20, 2023) media briefing for the US National Science Foundation’s (NSF) inaugural Global Centers Competition awards

I almost missed the briefing but the folks at the US National Science Foundation (NSF) kindly allowed me to join the meeting despite being 10 minutes late. Before launching into my comments, here’s what we were discussing,

From a September 20, 2023 NSF media briefing (received via email),

U. S. National Science Foundation Media Briefing on the Inaugural Global Centers Awards  

Please join the U.S. National Science Foundation this Wednesday September 20th from 12:30 – 1:30 p.m. EST for a discussion and Q&A on the inaugural Global Centers Competition awards. Earlier this week, NSF along with partner funding agencies from Australia, Canada, and the United Kingdom — announced awards totaling $76.4 million for the inaugural Global Centers Competition. These international, interdisciplinary collaborative research centers will apply best practices of broadening participation and community engagement to develop use-inspired research on climate change and clean energy. The centers will also create and promote opportunities for students and early-career researchers to gain education and training in world-class research while enhancing diversity, equity, inclusion, and accessibility.

NSF will have a panel of experts on hand to discuss and answer questions about these new Global Centers and how they will sync talent across the globe to generate the discoveries and solutions needed to empower resilient communities everywhere.

What: Panel discussion and Q&A on NSF’s Global Centers

When: 12:30 – 1:30 p.m. EST, Wednesday, September 20th, 2023

Where: This briefing [is over.]

Who: Scheduled panelists include…

Anne Emig is the Section Chief for the Programs and Analysis Section in the National Science Foundation Office of International Science and Engineering

Dr. Tanya Berger-Wolf is the Principal Investigator for the Global Centers Track 1 project on AI and Biodiversity Change as well as the Director of the Translational Data Analytics Institute and a Professor of Computer Science Engineering, Electrical and Computer Engineering, as well as Evolution, Ecology, and Organismal Biology at the Ohio State University

Dr. Meng Tao is the Principal Investigator for the Global Centers Track 1 project Global Hydrogen Production Technologies Center as well as a Professor, School of Electrical, Computer and Energy Engineering at Arizona State University

Dr. Ashish Sharma is the Principal Investigator for the Global Centers Track 1 project Clean Energy and Equitable Transportation Solutions as well as the Climate and Urban Sustainability Lead at the Discovery Partners Institute, University of Illinois System

Note: This briefing is only open to members of the media

I’m glad to have learned about this effort and applaud the NSF for its outreach efforts. By comparison, Canadian agencies (I’m looking at you, Natural Sciences and Engineering Council of Canada [NSERC] and Social Science and Humanities Research Council of Canada [SSHRC]) have a lot to learn.

There’s a little more about the Global Centers Competition awards in a September 18, 2023 NSF news release,

Today [September 18, 2023], the U.S. National Science Foundation — along with partner funding agencies from Australia, Canada, and the United Kingdom — announced awards totaling $76.4 million for the inaugural Global Centers Competition. These international, interdisciplinary collaborative research centers will apply best practices of broadening participation and community engagement to develop use-inspired research on climate change and clean energy. The centers will also create and promote opportunities for students and early-career researchers to gain education and training in world-class research while enhancing diversity, equity, inclusion, and accessibility.

“NSF builds capacity and advances its priorities through these centers of research excellence by uniting diverse teams from around the world,” said NSF Director Sethuraman Panchanathan. “Global Centers will sync talent across the globe to generate the discoveries and solutions needed to empower resilient communities everywhere.”

Global Centers are sponsored in part by a multilateral funding activity led by NSF and four partner funding organizations: Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO), Canada’s Natural Sciences and Engineering Research Council (NSERC) and Social Science and Humanities Research Council (SSHRC), and the United Kingdom’s UK Research and Innovation (UKRI).

Both collectively and independently, the centers will support convergent interdisciplinary research collaborations focused on assessing and mitigating the impacts of climate change on society, people, and communities. Outcomes from Global Centers’ activities will inform and catalyze the development of innovative solutions and technologies to address climate change. Examples include: enhancing awareness of critical information; advancing and advocating for decarbonization efforts; creating climate change adaptation plans tailored to specific localities and groups; using artificial intelligence to study responses of nature to climate change; transboundary water issues; and scaling the production of next-generation technologies aimed at achieving net zero. Several projects include partnerships with tribal groups or historically Black colleges and universities that will broaden participation.

“The National Science Foundation Global Centres initiative provides students and researchers a platform to advance innovative and interdisciplinary research and gain education and training opportunities in world-class research while also enhancing diversity, equity, inclusion and accessibility,” said NSERC President Alejandro Adem. “We at NSERC look forward to seeing the outcomes of the work being done by some of Canada and the world’s best and brightest minds to tackle one of the biggest issues of our time.”

The awards are divided into two tracks. Track 1 are Implementation grants with co-funding from international partners. Track 2 are Design grants meant to provide seed funding to develop the teams and the science for future competitions. Many additional countries are involved in Track 2 and will increase global engagement.

There are seven Track 1 Global Centers that involve research partnerships with Australia, Canada, and the U.K. Each Track 1 Global Center will be implemented by internationally dispersed teams consisting of U.S. and foreign researchers. U.S. researchers will be supported by NSF up to $5 million over four to five years, while foreign researchers will be supported by their respective country’s funding agency (CSIRO, NSERC, SSHRC and UKRI) with a comparable amount of funds.

There are 14 Track 2 Global Centers that are at the community-driven design stage. These centers’ teams involve U.S. researchers in partnerships with foreign researchers from any country. NSF will provide the U.S. researchers up to $250,000 of seed funding over a two-year period. These multidisciplinary, international teams will coordinate the research and education efforts needed to become competitive for Track-1 funding in the future.

“Our combined investment in Global Centers enables exciting researcher and innovation-led international and interdisciplinary collaboration to drive the energy transition,” said UKRI CEO, Dame Ottoline Leyser. “I look forward to seeing the creative solutions developed through these global collaborations.”

Kirsten Rose, Acting Chief Executive of CSIRO, said as Australia’s national science agency, CSIRO is proud to be part of a strong national contribution to solving this critical global challenge. “Partnering with the NSF’s Global Centers means Australia remains at the global forefront of work to build a clean hydrogen industry, build integrated and equitable energy systems, and partnering with regions and industries for a low emissions future.”

Track 1 (Implementation)

  • Global Hydrogen Production Technologies (HyPT) Center
    Grant number: 2330525
    Arizona State University and U.S. partner institutions: University of Michigan, Stanford University and Navajo Technical University.
    Quadrilateral research partnership with Australia, Canada, and the U.K.
    Critical and Emerging Tech: green hydrogen (renewable energy generation).
     
  • Electric Power Innovation for a Carbon-free Society (EPICS)
    Grant number: 2330450
    The Johns Hopkins University and U.S. partner institutions: Georgia Institute of Technology, University of California, Davis, and Resources for the Future.
    Trilateral research partnership with Australia and the U.K.
    Critical and Emerging Tech: renewable energy storage.
     
  • Global Nitrogen Innovation Center for Clean Energy and Environment (NICCEE)
    Grant number: 2330502
    University of Maryland Center for Environmental Sciences and U.S. partner institutions: New York University and University of Massachusetts Amherst.
    Trilateral research partnership with Canada and the U.K.
    Critical & Emerging Tech: green ammonia (bioeconomy + agriculture).
     
  • Understanding Climate Change Impacts on Transboundary Waters
    Grant number: 2330317
    University of Michigan and U.S. partner institutions: Cornell University, College of the Menominee Nation, Red Lake Nation and University of Wisconsin–Madison.
    Bilateral research partnership with Canada.
    Critical and Emerging Tech: N/A.
     
  • AI and Biodiversity Change (ABC)
    Grant number: 2330423 
    The Ohio State University and U.S. partner institutions: University of Pittsburgh and Massachusetts Institute of Technology.
    Bilateral Research partnership with Canada.
    Critical and Emerging Tech: AI.
     
  • U.S.-Canada Center on Climate-Resilient Western Interconnected Grid
    Grant number: 2330582                
    The University of Utah and U.S. partner institutions: University of California San Diego, The University of New Mexico, and The Nevada System of Higher Education.     
    Bilateral Research partnership with Canada.
    Critical and Emerging Tech: AI.
     
  • Clean Energy and Equitable Transportation Solutions
    Grant number: 2330565
    University of Illinois at Urbana-Champaign and U.S. partner institutions: University Corporation for Atmospheric Research and Arizona State University.
    Bilateral Research partnership with the U.K.
    Critical and Emerging Tech: N/A
     

Track 2 (Design)

  • Developing Solutions to Decarbonize Emissions and Fuels
    Grant number: 2330509              
    University of Maryland, College Park.
    International collaboration with Japan, Israel, and Ghana.             
     
  • Enhanced Wind Turbine Blade Durability
    Grant number: 2329911              
    Cornell University.
    International collaboration with Canada, the UK, Norway, Denmark, and Spain.
     
  • Building the Global Center for Forecasting Freshwater Futures
    Grant number: 2330211
    Virginia Tech.
    International collaboration with Australia.
     
  • Climate Risk and Resilience: Southeast Asia as a Living Lab (SEALL)
    Grant number: 2330308
    University of Illinois at Urbana-Champaign.
    International collaboration with Vietnam, Thailand, Singapore, and India.
     
  • Climate-Smart Food-Energy-Water Nexus in Small Farms
    Grant number: 2330505              
    The University of Tennessee Institute of Agriculture.        
    International collaboration with Argentina, Brazil, Guatemala, Panama, Cambodia, and Uganda.
     
  • Center for Household Energy and Thermal Resilience (HEaTR)
    Grant number: 2330533              
    Cornell University.
    International collaboration with India, the U.K, Ghana, and Singapore.
     
  • Enabling interdisciplinary wildfire research for community resilience
    Grant number: 2330343              
    Oregon State University.
    International collaborations with Australia and the U.K.
     
  • SuReMin: Sustainable, resilient, responsible global minerals supply chain
    Grant number: 2330041              
    Northwestern University.
    International collaboration with Chile.
     
  • Nature-based Urban Hydrology Center
    Grant number: 2330413              
    Villanova University.
    International collaboration with Canada, the U.K, Switzerland, Ireland, Australia, Chile, and Turkey.
     
  • A multi-disciplinary framework to combat climate-induced desert locust upsurges, outbreaks, and plagues in East Africa
    Grand number: 2330452
    Georgia State University.
    International collaboration with Ethiopia.
     
  • US-Africa Research Center for Clean Energy
    Grant number: 2330437
    Georgia Institute of Technology.
    International collaborations with Rwanda.
     
  • Equitable and User-Centric Energy Market for Resilient Grid-interactive Communities
    Grant number: 2330504
    Santa Clara University.
    International collaboration with Canada.
     
  • Energy Sovereignty for Indigenous Peoples (ESIP)
    Grant number: 2330387
    University of North Dakota.
    International collaboration with Canada.
     
  • Blue Climate Solutions
    Grant number: 2330518              
    University of Rhode Island.
    International collaboration with Indonesia.

For Canadian researchers who are interested, there’s a National Science Foundation Global Centres webpage on the NSERC website, which answers a lot of questions about the programme from a Canadian perspective. The application deadline for both tracks was May 10, 2023 and there’s no information (as of September 20, 2023) about future competitions. Nice to see the social science and humanities included in the form of a funding agency. (I think this might be the one compliment I deliver to a Canadian funding initiative this year. 🙂

For American researchers, there’s the NSF’s Global Centers webpage; for UK researchers, there’s the United Kingdom’s Research and Innovation’s Global Centres in clean energy and climate change webpage; and for Australian researchers, there’s the CSIRO’s National Science Foundation Global Centers webpage. Application deadlines have passed for all of these competitions and there’s no information (as of September 20, 2023) about future competitions.

A few comments

News about local and international affairs (see Seth Borenstein’s September 20, 2023 Associated Press article “UN chief warns of ‘gates of hell’ in climate summit, but carbon polluting nations stay silent”) and one’s own personal experience with climate issues can be discouraging at times so it’s heartening to see these efforts. Kudos to the organizers of the Global Centers programme and I wish all the researchers success.

Given how new these centers are, it’s understandable that the panelists would be a little fuzzy about specific although they’ve clearly considered and are attempting to address issues such as sharing data, trust, and outreach to various stakeholders and communities.

I wish I’d asked about cybersecurity when they were talking about data. Ah well, there was my question about outreach to people over the age of 50 or 55 as so much of their planning was focused on youth. The panelists who responded (Dr. Tanya Berger-Wolf, Dr. Meng Tao, and Dr. Ashish Sharma) did not seem to have done much thinking about seniors/elders/older people.

I believe bird watching (as mentioned by one of the panelists) does tend to attract older people but citizen science or other hobbies/programmes mentioned may or may not be a good source for seniors outreach. Almost all science outreach tilts to youth including citizen science.

With the planet is not doing so well and with the aging populations in Canada, the US, many European countries, China, Japan, and I’m sure many others perhaps some new thinking about ‘inclusivity’ might be in order. One suggestion, start thinking about age groups. In the same way that 20 is not 30, is not 40, so 55 is not 65, is not 75. One more thing, perhaps take into account life experience. Something that gets forgotten is that a lot of the programmes that people take for granted and a lot of the technology people use today was developed in the 1960s (e.g. Internet). That old person? Maybe it’s someone who founded the UN’s Environment Program (I was teaching a nanotechnology course in a seniors programme and asked students about themselves; I was intimidated by her credentials).

In the end, this Global Center initiative is heartening news.

Sign up for Nano4EARTH’s Roundtable Discussion (Batteries and Energy Storage): September 26, 2023 (online or in person)

Given that Nano4Earth was first announced by the US government in October 2022 (see my November 28, 2022 posting), the initiative has been quite active (see my February 27, 2023 posting, “Nano4EARTH workshop recordings available online“).

Now for the latest, from the National Nanotechnology Initiative (NNI) webpage for the batteries and storage roundtable discussion,

Nano4EARTH Roundtable Discussion on Batteries and Energy Storage

September 26, 2023
9:30 a.m. to 3:30 p.m. ET
Online and L’Enfant Plaza SW, Washington, D.C.

The Nano4EARTH roundtable discussion on batteries and energy storage aims to identify fundamental knowledge gaps, needs, and opportunities to advance current electrification goals. By convening stakeholders from different sectors, backgrounds, and expertise the goal of this roundtable is to identify applicable lessons across the spectrum of technologies, discuss system-specific needs, scalability and commercialization challenges, and potential paths forward. These needs could have a near-term impact on energy efficiency, sustainable development, and climate change. The moderated discussion will tackle all aspects of the topic – ranging from exciting R&D opportunities to commercialization challenges – by featuring a small group of experts from different sectors and backgrounds.

This roundtable is a critical part of the Nano4EARTH National Nanotechnology Challenge, which aims to leverage recent investments in understanding and controlling matter at the nanoscale to develop technologies and industries that address climate change. Nano4EARTH focuses on facilitating opportunities for members of the nanotechnology community to convene, collaborate, and share resources. Nano4EARTH also strives to provide mechanisms that support technology development and commercialization of nanotechnology-enabled climate solutions.

The topic of this roundtable was identified at the Nano4EARTH kick-off workshop (summary readout and video archive) as a particularly promising area that could have an impact in a short time frame (four years or less). This roundtable is the second of four.

MEETING LOCATION:

Online and the National Nanotechnology Coordination Office: Suite 8001, 470 L’Enfant Plaza SW, Washington, DC 20024. Directions are available here.

Registration is now open and you can find the links to online or in person registration on the National Nanotechnology Initiative (NNI) webpage for the batteries and storage roundtable discussion

h/t JD Supra blog’s August 23, 2023 posting

Single chip mimics human vision and memory abilities

A June 15, 2023 RMIT University (Australia) press release (also on EurekAlert but published June 14, 2023) announces a neuromorphic (brainlike) computer chip, which mimics human vision and ‘creates’ memories,

Researchers have created a small device that ‘sees’ and creates memories in a similar way to humans, in a promising step towards one day having applications that can make rapid, complex decisions such as in self-driving cars.

The neuromorphic invention is a single chip enabled by a sensing element, doped indium oxide, that’s thousands of times thinner than a human hair and requires no external parts to operate.

RMIT University engineers in Australia led the work, with contributions from researchers at Deakin University and the University of Melbourne.

The team’s research demonstrates a working device that captures, processes and stores visual information. With precise engineering of the doped indium oxide, the device mimics a human eye’s ability to capture light, pre-packages and transmits information like an optical nerve, and stores and classifies it in a memory system like the way our brains can.

Collectively, these functions could enable ultra-fast decision making, the team says.

Team leader Professor Sumeet Walia said the new device can perform all necessary functions – sensing, creating and processing information, and retaining memories – rather than relying on external energy-intensive computation, which prevents real-time decision making.

“Performing all of these functions on one small device had proven to be a big challenge until now,” said Walia from RMIT’s School of Engineering.

“We’ve made real-time decision making a possibility with our invention, because it doesn’t need to process large amounts of irrelevant data and it’s not being slowed down by data transfer to separate processors.”

What did the team achieve and how does the technology work?

The new device was able to demonstrate an ability to retain information for longer periods of time, compared to previously reported devices, without the need for frequent electrical signals to refresh the memory. This ability significantly reduces energy consumption and enhances the device’s performance.

Their findings and analysis are published in Advanced Functional Materials.

First author and RMIT PhD researcher Aishani Mazumder said the human brain used analog processing, which allowed it to process information quickly and efficiently using minimal energy.

“By contrast, digital processing is energy and carbon intensive, and inhibits rapid information gathering and processing,” she said.

“Neuromorphic vision systems are designed to use similar analog processing to the human brain, which can greatly reduce the amount of energy needed to perform complex visual tasks compared with today’s technologies

What are the potential applications?

The team used ultraviolet light as part of their experiments, and are working to expand this technology even further for visible and infrared light – with many possible applications such as bionic vision, autonomous operations in dangerous environments, shelf-life assessments of food and advanced forensics.

“Imagine a self-driving car that can see and recognise objects on the road in the same way that a human driver can or being able to able to rapidly detect and track space junk. This would be possible with neuromorphic vision technology.”

Walia said neuromorphic systems could adapt to new situations over time, becoming more efficient with more experience.

“Traditional computer vision systems – which cannot be miniaturised like neuromorphic technology – are typically programmed with specific rules and can’t adapt as easily,” he said.

“Neuromorphic robots have the potential to run autonomously for long periods, in dangerous situations where workers are exposed to possible cave-ins, explosions and toxic air.”

The human eye has a single retina that captures an entire image, which is then processed by the brain to identify objects, colours and other visual features.

The team’s device mimicked the retina’s capabilities by using single-element image sensors that capture, store and process visual information on one platform, Walia said.

“The human eye is exceptionally adept at responding to changes in the surrounding environment in a faster and much more efficient way than cameras and computers currently can,” he said.

“Taking inspiration from the eye, we have been working for several years on creating a camera that possesses similar abilities, through the process of neuromorphic engineering.” 

Here’s a link to and a citation for the paper,

Long Duration Persistent Photocurrent in 3 nm Thin Doped Indium Oxide for Integrated Light Sensing and In-Sensor Neuromorphic Computation by Aishani Mazumder, Chung Kim Nguyen, Thiha Aung, Mei Xian Low, Md. Ataur Rahman, Salvy P. Russo, Sherif Abdulkader Tawfik, Shifan Wang, James Bullock, Vaishnavi Krishnamurthi. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202303641 First published: 14 June 2023

This paper is open access.

Wearable screen (flexible display) from the University of British Columbia (UBC)

If I read this correctly, the big selling point for UBC’s flexible, wearable display screen is energy efficiency. From a July 10, 2023 University of British Columbia (UBC) news release on EurekAlert,

Imagine a wearable patch that tracks your vital signs through changes in the colour display, or shipping labels that light up to indicate changes in temperature or sterility of food items.

These are among the potential uses for a new flexible display created by UBC researchers and announced recently in ACS Applied Materials and Interfaces.

“This device is capable of fast, realtime and reversible colour change,” says researcher Claire Preston, who developed the device as part of her master’s in electrical and computer engineering at UBC. “It can stretch up to 30 per cent without losing performance. It uses a colour-changing technology that can be used for visual monitoring. And it is relatively cheap to manufacture.”

Previous attempts at creating stretchable displays have involved complex designs and materials, limiting their stretchability and optical quality. In this new research, scientists leaned on electrochromic displays—which are able to reversibly change colour, while requiring low power consumption—to overcome these limitations. [emphasis mine]

“We used PEDOT:PSS, an electrochromic material that consists of a conductive polymer combined with an ionic liquid, resulting in a stretchable electrode that acts as both the electrochromic element and the ion storage layer. This simplifies the device’s architecture and eliminates the need for a separate stretchable conductor,” says Ms. Preston.

The display is transparent and feels like a stiff rubber band. To support the thin layers of PEDOT and allow them to elongate without breaking, the team added a solid polymer electrolyte and a stretchable encapsulation material called styrene-ethylene-butylene-styrene (SEBS).

“The potential uses for this stretchable display are significant. It could be integrated into wearable devices for biometric monitoring, allowing for real-time visual feedback on vital signs. The displays could also be used in robotic skin, enabling robots to display information and interact more intuitively with humans,” noted senior author Dr. John Madden, a professor of electrical and computer engineering who supervised the work.

Additionally, the low power consumption and cost-effectiveness of this technology make it attractive for use in disposable applications such as indicator patches for medical purposes or smart packaging labels for sensitive shipments. It could also be used to actively change the colour of jackets, hats and other garments.

“While there is need for more work to integrate this device into everyday devices, this breakthrough brings us one step closer to a future where flexible and stretchable displays are a common part of our daily lives,” Dr. Madden added.

Here’s a link to and a citation for the paper,

Intrinsically Stretchable Integrated Passive Matrix Electrochromic Display Using PEDOT:PSS Ionic Liquid Composite by Claire Preston, Yuta Dobashi, Ngoc Tan Nguyen, Mirza Saquib Sarwar, Daniel Jun, Cédric Plesse, Xavier Sallenave, Frédéric Vidal, Pierre-Henri Aubert, and John D. W. Madden. ACS Appl. Mater. Interfaces 2023, 15, 23, 28288–28299 DOI: https://doi.org/10.1021/acsami.3c02902 Publication Date: June 5, 2023 Copyright © 2023 The Authors. Published by American Chemical Society

This paper is open access.

A structural colour solution for energy-saving paint (thank the butterflies)

The UCF-developed plasmonic paint uses nanoscale structural arrangement of colorless materials — aluminum and aluminum oxide — instead of pigments to create colors. Here the plasmonic paint is applied to the wings of metal butterflies, the insect that inspired the research. Credit: University of Central Florida

A March 9, 2023 news item on Nanowerk announces research into multicolour energy-saving coating/paint, so, this is a structural colour story, Note: Links have been removed,

University of Central Florida researcher Debashis Chanda, a professor in UCF’s NanoScience Technology Center, has drawn inspiration from butterflies to create the first environmentally friendly, large-scale and multicolor alternative to pigment-based colorants, which can contribute to energy-saving efforts and help reduce global warming.

A March 8, 2023 University of Central Florida (UCF) news release (also on EurekAlert) by Katrina Cabansay, which originated the news item, provides more context and more details,

“The range of colors and hues in the natural world are astonishing — from colorful flowers, birds and butterflies to underwater creatures like fish and cephalopods,” Chanda says. “Structural color serves as the primary color-generating mechanism in several extremely vivid species where geometrical arrangement of typically two colorless materials produces all colors. On the other hand, with manmade pigment, new molecules are needed for every color present.”

Based on such bio-inspirations, Chanda’s research group innovated a plasmonic paint, which utilizes nanoscale structural arrangement of colorless materials — aluminum and aluminum oxide — instead of pigments to create colors.

While pigment colorants control light absorption based on the electronic property of the pigment material and hence every color needs a new molecule, structural colorants control the way light is reflected, scattered or absorbed based purely on the geometrical arrangement of nanostructures.

Such structural colors are environmentally friendly as they only use metals and oxides, unlike present pigment-based colors that use artificially synthesized molecules.

The researchers have combined their structural color flakes with a commercial binder to form long-lasting paints of all colors.

“Normal color fades because pigment loses its ability to absorb photons,” Chanda says. “Here, we’re not limited by that phenomenon. Once we paint something with structural color, it should stay for centuries.”

Additionally, because plasmonic paint reflects the entire infrared spectrum, less heat is absorbed by the paint, resulting in the underneath surface staying 25 to 30 degrees Fahrenheit cooler than it would if it were covered with standard commercial paint, the researcher says.

“Over 10% of total electricity in the U.S. goes toward air conditioner usage,” Chanda says. “The temperature difference plasmonic paint promises would lead to significant energy savings. Using less electricity for cooling would also cut down carbon dioxide emissions, lessening global warming.”

Plasmonic paint is also extremely lightweight, the researcher says.

This is due to the paint’s large area-to-thickness ratio, with full coloration achieved at a paint thickness of only 150 nanometers, making it the lightest paint in the world, Chanda says.

The paint is so lightweight that only about 3 pounds of plasmonic paint could cover a Boeing 747, which normally requires more than 1,000 pounds of conventional paint, he says.

Chanda says his interest in structural color stems from the vibrancy of butterflies.

“As a kid, I always wanted to build a butterfly,” he says. “Color draws my interest.”

Future Research

Chanda says the next steps of the project include further exploration of the paint’s energy-saving aspects to improve its viability as commercial paint.

“The conventional pigment paint is made in big facilities where they can make hundreds of gallons of paint,” he says. “At this moment, unless we go through the scale-up process, it is still expensive to produce at an academic lab.”

“We need to bring something different like, non-toxicity, cooling effect, ultralight weight, to the table that other conventional paints can’t.” Chanda says.

Licensing Opportunity

For more information about licensing this technology, please visit the Inorganic Paint Pigment for Vivid Plasmonic Color technology sheet.

Researcher’s Credentials

Chanda has joint appointments in UCF’s NanoScience Technology Center, Department of Physics and College of Optics and Photonics. He received his doctorate in photonics from the University of Toronto and worked as a postdoctoral fellow at the University of Illinois at Urbana-Champaign. He joined UCF in Fall 2012.

Here’s a link to and a citation for the paper,

Ultralight plasmonic structural color paint by Pablo Cencillo-Abad, Daniel Franklin, Pamela Mastranzo-Ortega, Javier Sanchez-Mondragon, and Debashis Chanda. Science Advances 8 Mar 2023 Vol 9, Issue 10 DOI: 10.1126/sciadv.adf7207

This paper is open access.

Here’s the researcher with one of ‘his butterflies’ (I may be reading a little too much into this but it looks like he’s uncomfortable having his photo taken but game to do it for work that he’s proud of),

Caption: Debashis Chanda, a professor in UCF’s NanoScience Technology Center, drew inspiration from butterflies to create the innovative new plasmonic paint, shown here applied to metal butterfly wings. Credit: University of Central Florida

‘Polar bear wear’: 30% lighter than cotton and much warmer

For the same reason some people like ‘Christmas in July’ events, I like to occasionally feature a nonseasonal story. Especially since the area where I live is going through an unseasonal cold snap and will be followed shortly by anomalously hot temperatures. So, more or less fittingly, an April 10, 2023 news item announces a new fabric,

Three engineers at the University of Massachusetts Amherst have invented a fabric that concludes the 80-year quest to make a synthetic textile modeled on Polar bear fur. The results, published recently in the journal ACS Applied Materials and Interfaces, are already being developed into commercially available products. [ACS is American Chemical Society.]

Caption: Inspired by polar bears, this new textile creates an on-body “greenhouse” effect to keep you warm. Credit: Viola et al., 10.1021/acsami.2c23075

Nice to see a properly drawn polar bear. Back to the research, an April 10, 2023 University of Massachusetts Amherst news release (also on EurekAlert), which originated the news item, provides a brief history of the research and a few technical details about the current work, Note: Links have been removed,

Polar bears live in some of the harshest conditions on earth, shrugging off Arctic temperatures as low as -50 Fahrenheit. While the bears have many adaptations that allow them to thrive when the temperature plummets, since the 1940s scientists have focused on one in particular: their fur. How, the scientific community has asked, does a polar bear’s fur keep them warm?

Typically, we think that the way to stay warm is to insulate ourselves from the weather. But there’s another way: One of the major discoveries of the last few decades is that many polar animals actively use the sunlight to maintain their temperature, and polar bear fur is a well-known case in point.

Scientists have known for decades that part of the bears’ secret is their white fur. One might think that black fur would be better at absorbing heat, but it turns out that the polar bears’ fur is extremely effective at transmitting solar radiation toward the bears’ skin.

“But the fur is only half the equation,” says the paper’s senior author,  Trisha L. Andrew, associate professor of chemistry and adjunct in chemical engineering at UMass Amherst. “The other half is the polar bears’ black skin.”

As Andrew explains it, polar bear fur is essentially a natural fiberoptic, conducting sunlight down to the bears’ skin, which absorbs the light, heating the bear. But the fur is also exceptionally good at preventing the now-warmed skin from radiating out all that hard-won warmth. When the sun shines, it’s like having a thick blanket that warms itself up, and then traps that warmth next to your skin.

What Andrew and her team have done is to engineer a bilayer fabric whose top layer is composed of threads that, like polar bear fur, conduct visible light down to the lower layer, which is made of nylon and coated with a dark material called PEDOT [Poly(3,4-ethylenedioxythiophene)]. PEDOT, like the polar bears’ skin, warms efficiently.

So efficiently, in fact, that a jacket made of such material is 30% lighter than the same jacket made of cotton yet will keep you comfortable at temperatures 10 degrees Celsius colder than the cotton jacket could handle, as long as the sun is shining or a room is well lit.

“Space heating consumes huge amounts of energy that is mostly fossil fuel-derived,” says Wesley Viola, the paper’s lead author, who completed his Ph.D. in chemical engineering at UMass and is now at Andrew’s startup, Soliyarn, LLC. “While our textile really shines as outerwear on sunny days, the light-heat trapping structure works efficiently enough to imagine using existing indoor lighting to directly heat the body. By focusing energy resources on the ‘personal climate’ around the body, this approach could be far more sustainable than the status quo.”

The research, which was supported by the National Science Foundation, is already being applied, and  Soliyarn has begun production of the PEDOT-coated cloth.

Here’s a link to and a citation for the paper,

Solar Thermal Textiles for On-Body Radiative Energy Collection Inspired by Polar Animals by Wesley Viola, Peiyao Zhao, and Trisha L. Andrew. ACS Appl. Mater. Interfaces 2023, 15, 15, 19393–19402 DOI: https://doi.org/10.1021/acsami.2c23075 Publication Date: April 5, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

You can find Soliyarn here.

Enabling a transparent wood battery that stores heat and regulates indoor temperature with lemons and coconuts

i’ve had transparent wood stories here before but this time it was the lemons and coconuts which captured my attention.

Peter Olsén and Céline Montanari, researchers in the Department of Biocomposites at KTH Royal Institute of Technology in Stockholm, say the new wood composite uses components of lemon and coconuts to both heat and cool homes. (Photo: David Callahan) Courtesy: KTH Royal Institute of Technology

From a March 30, 2023 news item on Nanowerk,

A building material that combines coconuts, lemons and modified wood could one day be enough to heat and cool your home. The three renewable sources provide the key components of a wood composite thermal battery, which was developed by researchers at KTH Royal Institute of Technology in Stockholm.

Researchers reported the development in the scientific journal, Small (“Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood”). Peter Olsén, researcher in the Department of Biocomposites at KTH, says the material is capable of storing both heat and cold. If used in housing construction, the researchers say that 100 kilos of the material can save about 2.5 kWh per day in heating or cooling—given an ambient temperature of 24 °C.

KTH researcher Céline Montanari says that besides sunlight, any heat source can charge the battery. “The key is that the temperature fluctuates around the transition temperature, 24 °C, which can of course be tailored depending on the application and location,” she says.

A March 30, 2023 KTH Royal Institute of Technology press release, which originated the news item, describes the roles that lemons and coconuts play,

The process starts with removing lignin from wood, which creates open pores in the wood cells walls, and removes color. Later the wood structure is filled with a citrus-based molecule—limonene acrylate—and coconut based molecule. Limonene acrylate transforms into a bio-based polymer when heated, restoring the wood’s strength and allowing light to permeate. When this happens the coconut molecule are trapped within the material, enabling the storage and release of energy.

“The elegance is that the coconut molecules can transition from a solid-to-liquid which absorbs energy; or from liquid-to-solid which releases energy, in much the same way that water freezes and melts,” Montanari says. But in the transparent wood, that transition happens at a more comfortable 24C

“Through this transition, we can heat or cool our surroundings, whichever is needed,” Olsén says

Olsén says that potential uses include exterior and interior building material for both transparency and energy saving – in exteriors and interiors. The first application of the product would be for interior spaces to regulate temperatures around the 24C mark to cool and to heat. More study is needed to develop it for exterior use.

And it’s not just for homes or buildings. “Why not as a future material in greenhouses?” he says. “When the sun shines, the wood becomes transparent and stores more energy, while at night it becomes cloudy and releases the heat stored during the day. That would help reduce energy consumption for heating and at the same time provide improved growth.”

A close-up look at the material produced in the study. Courtesy: KTH Royal Institute of Technology

Here’s a link to and a citation for the paper,

Sustainable Thermal Energy Batteries from Fully Bio-Based Transparent Wood by Céline Montanari, Hui Chen, Matilda Lidfeldt, Josefin Gunnarsson, Peter Olsén, Lars A. Berglund. Small Online Version of Record before inclusion in an issue 2301262 DOI: https://doi.org/10.1002/smll.202301262 First published online: 27 March 2023

This paper is open access.

Combining silicon with metal oxide memristors to create powerful, low-energy intensive chips enabling AI in portable devices

In this one week, I’m publishing my first stories (see also June 13, 2023 posting “ChatGPT and a neuromorphic [brainlike] synapse“) where artificial intelligence (AI) software is combined with a memristor (hardware component) for brainlike (neuromorphic) computing.

Here’s more about some of the latest research from a March 30, 2023 news item on ScienceDaily,

Everyone is talking about the newest AI and the power of neural networks, forgetting that software is limited by the hardware on which it runs. But it is hardware, says USC [University of Southern California] Professor of Electrical and Computer Engineering Joshua Yang, that has become “the bottleneck.” Now, Yang’s new research with collaborators might change that. They believe that they have developed a new type of chip with the best memory of any chip thus far for edge AI (AI in portable devices).

A March 29, 2023 University of Southern California (USC) news release (also on EurekAlert), which originated the news item, contextualizes the research and delves further into the topic of neuromorphic hardware,

For approximately the past 30 years, while the size of the neural networks needed for AI and data science applications doubled every 3.5 months, the hardware capability needed to process them doubled only every 3.5 years. According to Yang, hardware presents a more and more severe problem for which few have patience. 

Governments, industry, and academia are trying to address this hardware challenge worldwide. Some continue to work on hardware solutions with silicon chips, while others are experimenting with new types of materials and devices.  Yang’s work falls into the middle—focusing on exploiting and combining the advantages of the new materials and traditional silicon technology that could support heavy AI and data science computation. 

Their new paper in Nature focuses on the understanding of fundamental physics that leads to a drastic increase in memory capacity needed for AI hardware. The team led by Yang, with researchers from USC (including Han Wang’s group), MIT [Massachusetts Institute of Technology], and the University of Massachusetts, developed a protocol for devices to reduce “noise” and demonstrated the practicality of using this protocol in integrated chips. This demonstration was made at TetraMem, a startup company co-founded by Yang and his co-authors  (Miao Hu, Qiangfei Xia, and Glenn Ge), to commercialize AI acceleration technology. According to Yang, this new memory chip has the highest information density per device (11 bits) among all types of known memory technologies thus far. Such small but powerful devices could play a critical role in bringing incredible power to the devices in our pockets. The chips are not just for memory but also for the processor. And millions of them in a small chip, working in parallel to rapidly run your AI tasks, could only require a small battery to power it. 

The chips that Yang and his colleagues are creating combine silicon with metal oxide memristors in order to create powerful but low-energy intensive chips. The technique focuses on using the positions of atoms to represent information rather than the number of electrons (which is the current technique involved in computations on chips). The positions of the atoms offer a compact and stable way to store more information in an analog, instead of digital fashion. Moreover, the information can be processed where it is stored instead of being sent to one of the few dedicated ‘processors,’ eliminating the so-called ‘von Neumann bottleneck’ existing in current computing systems.  In this way, says Yang, computing for AI is “more energy efficient with a higher throughput.”

How it works: 

Yang explains that electrons which are manipulated in traditional chips, are “light.” And this lightness, makes them prone to moving around and being more volatile.  Instead of storing memory through electrons, Yang and collaborators are storing memory in full atoms. Here is why this memory matters. Normally, says Yang, when one turns off a computer, the information memory is gone—but if you need that memory to run a new computation and your computer needs the information all over again, you have lost both time and energy.  This new method, focusing on activating atoms rather than electrons, does not require battery power to maintain stored information. Similar scenarios happen in AI computations, where a stable memory capable of high information density is crucial. Yang imagines this new tech that may enable powerful AI capability in edge devices, such as Google Glasses, which he says previously suffered from a frequent recharging issue.

Further, by converting chips to rely on atoms as opposed to electrons, chips become smaller.  Yang adds that with this new method, there is more computing capacity at a smaller scale. And this method, he says, could offer “many more levels of memory to help increase information density.” 

To put it in context, right now, ChatGPT is running on a cloud. The new innovation, followed by some further development, could put the power of a mini version of ChatGPT in everyone’s personal device. It could make such high-powered tech more affordable and accessible for all sorts of applications. 

Here’s a link to and a citation for the paper,

Thousands of conductance levels in memristors integrated on CMOS by Mingyi Rao, Hao Tang, Jiangbin Wu, Wenhao Song, Max Zhang, Wenbo Yin, Ye Zhuo, Fatemeh Kiani, Benjamin Chen, Xiangqi Jiang, Hefei Liu, Hung-Yu Chen, Rivu Midya, Fan Ye, Hao Jiang, Zhongrui Wang, Mingche Wu, Miao Hu, Han Wang, Qiangfei Xia, Ning Ge, Ju Li & J. Joshua Yang. Nature volume 615, pages 823–829 (2023) DOI: https://doi.org/10.1038/s41586-023-05759-5 Issue Date: 30 March 2023 Published: 29 March 2023

This paper is behind a paywall.

ChatGPT and a neuromorphic (brainlike) synapse

I was teaching an introductory course about nanotechnology back in 2014 and, at the end of a session, stated (more or less) that the full potential for artificial intelligence (software) wasn’t going to be perceived until the hardware (memistors) was part of the package. (It’s interesting to revisit that in light of the recent uproar around AI (covered in my May 25, 2023 posting, which offered a survey of the situation.)

One of the major problems with artificial intelligence is its memory. The other is energy consumption. Both problems could be addressed by the integration of memristors into the hardware, giving rise to neuromorphic (brainlike) computing. (For those who don’t know, the human brain in addition to its capacity for memory is remarkably energy efficient.)

This is the first time I’ve seen research into memristors where software has been included. Disclaimer: There may be a lot more research of this type; I just haven’t seen it before. A March 24, 2023 news item on ScienceDaily announces research from Korea,

ChatGPT’s impact extends beyond the education sector and is causing significant changes in other areas. The AI language model is recognized for its ability to perform various tasks, including paper writing, translation, coding, and more, all through question-and-answer-based interactions. The AI system relies on deep learning, which requires extensive training to minimize errors, resulting in frequent data transfers between memory and processors. However, traditional digital computer systems’ von Neumann architecture separates the storage and computation of information, resulting in increased power consumption and significant delays in AI computations. Researchers have developed semiconductor technologies suitable for AI applications to address this challenge.

A March 24, 2023 Pohang University of Science & Technology (POSTECH) press release (also on EurekAlert), which originated the news item, provides more detail,

A research team at POSTECH, led by Professor Yoonyoung Chung (Department of Electrical Engineering, Department of Semiconductor Engineering), Professor Seyoung Kim (Department of Materials Science and Engineering, Department of Semiconductor Engineering), and Ph.D. candidate Seongmin Park (Department of Electrical Engineering), has developed a high-performance AI semiconductor device [emphasis mine] using indium gallium zinc oxide (IGZO), an oxide semiconductor widely used in OLED [organic light-emitting diode] displays. The new device has proven to be excellent in terms of performance and power efficiency.

Efficient AI operations, such as those of ChatGPT, require computations to occur within the memory responsible for storing information. Unfortunately, previous AI semiconductor technologies were limited in meeting all the requirements, such as linear and symmetric programming and uniformity, to improve AI accuracy.

The research team sought IGZO as a key material for AI computations that could be mass-produced and provide uniformity, durability, and computing accuracy. This compound comprises four atoms in a fixed ratio of indium, gallium, zinc, and oxygen and has excellent electron mobility and leakage current properties, which have made it a backplane of the OLED display.

Using this material, the researchers developed a novel synapse device [emphasis mine] composed of two transistors interconnected through a storage node. The precise control of this node’s charging and discharging speed has enabled the AI semiconductor to meet the diverse performance metrics required for high-level performance. Furthermore, applying synaptic devices to a large-scale AI system requires the output current of synaptic devices to be minimized. The researchers confirmed the possibility of utilizing the ultra-thin film insulators inside the transistors to control the current, making them suitable for large-scale AI.

The researchers used the newly developed synaptic device to train and classify handwritten data, achieving a high accuracy of over 98%, [emphasis mine] which verifies its potential application in high-accuracy AI systems in the future.

Professor Chung explained, “The significance of my research team’s achievement is that we overcame the limitations of conventional AI semiconductor technologies that focused solely on material development. To do this, we utilized materials already in mass production. Furthermore, Linear and symmetrical programming characteristics were obtained through a new structure using two transistors as one synaptic device. Thus, our successful development and application of this new AI semiconductor technology show great potential to improve the efficiency and accuracy of AI.”

This study was published last week [March 2023] on the inside back cover of Advanced Electronic Materials [paper edition] and was supported by the Next-Generation Intelligent Semiconductor Technology Development Program through the National Research Foundation, funded by the Ministry of Science and ICT [Information and Communication Technologies] of Korea.

Here’s a link to and a citation for the paper,

Highly Linear and Symmetric Analog Neuromorphic Synapse Based on Metal Oxide Semiconductor Transistors with Self-Assembled Monolayer for High-Precision Neural Network Computatio by Seongmin Park, Suwon Seong, Gilsu Jeon, Wonjae Ji, Kyungmi Noh, Seyoung Kim, Yoonyoung Chun. Volume 9, Issue 3 March 2023 2200554 DOI: https://doi.org/10.1002/aelm.202200554 First published online: 29 December 2022

This paper is open access.

Also, there is another approach to using materials such as indium gallium zinc oxide (IGZO) for a memristor. That would be using biological cells as my June 6, 2023 posting, which features work on biological neural networks (BNNs), suggests in relation to creating robots that can perform brainlike computing.

Insect-inspired microphones

I was hoping that there would be some insect audio files but this research is more about their role as inspiration for a new type of microphone than the sounds they make themselves. From a May 10, 2023 Acoustical Society of America news release (also on EurekAlert),

What can an insect hear? Surprisingly, quite a lot. Though small and simple, their hearing systems are highly efficient. For example, with a membrane only 2 millimeters across, the desert locust can decompose frequencies comparable to human capability. By understanding how insects perceive sound and using 3D-printing technology to create custom materials, it is possible to develop miniature, bio-inspired microphones.

The displacement of the wax moth Acroia grisella membrane, which is one of the key sources of inspiration for designing miniature, bio-inspired microphones. Credit: Andrew Reid

Andrew Reid of the University of Strathclyde in the U.K. will present his work creating such microphones, which can autonomously collect acoustic data with little power consumption. His presentation, “Unnatural hearing — 3D printing functional polymers as a path to bio-inspired microphone design,” will take place Wednesday, May 10 [2023], at 10:05 a.m. Eastern U.S. in the Northwestern/Ohio State room, as part of the 184th Meeting of the Acoustical Society of America running May 8-12 at the Chicago Marriott Downtown Magnificent Mile Hotel.

“Insect ears are ideal templates for lowering energy and data transmission costs, reducing the size of the sensors, and removing data processing,” said Reid.

Reid’s team takes inspiration from insect ears in multiple ways. On the chemical and structural level, the researchers use 3D-printing technology to fabricate custom materials that mimic insect membranes. These synthetic membranes are highly sensitive and efficient acoustic sensors. Without 3D printing, traditional, silicon-based attempts at bio-inspired microphones lack the flexibility and customization required.

“In images, our microphone looks like any other microphone. The mechanical element is a simple diaphragm, perhaps in a slightly unusual ellipsoid or rectangular shape,” Reid said. “The interesting bits are happening on the microscale, with small variations in thickness and porosity, and on the nanoscale, with variations in material properties such as the compliance and density of the material.”

More than just the material, the entire data collection process is inspired by biological systems. Unlike traditional microphones that collect a range of information, these microphones are designed to detect a specific signal. This streamlined process is similar to how nerve endings detect and transmit signals. The specialization of the sensor enables it to quickly discern triggers without consuming a lot of energy or requiring supervision.

The bio-inspired sensors, with their small size, autonomous function, and low energy consumption, are ideal for applications that are hazardous or hard to reach, including locations embedded in a structure or within the human body.

Bio-inspired 3D-printing techniques can be applied to solve many other challenges, including working on blood-brain barrier organoids or ultrasound structural monitoring.

Here’s a link to and a citation for the paper,

Unnatural hearing—3D printing functional polymers as a path to bio-inspired microphone design by Andrew Reid. J Acoust Soc Am 153, A195 (2023) or JASA (Journal of the Acoustical Sociey of America) Volume 153, Issue 3_supplement March 2023 DOI: https://doi.org/10.1121/10.0018636

You will find the abstract but I wish you good luck with finding the paper online; I wasn’t able and am guessing it’s available on paper only.