Category Archives: energy

The coolest paint

It’s the ‘est’ of it all. The coolest, the whitest, the blackest … Scientists and artists are both pursuing the ‘est’. (More about the pursuit later in this posting.)

In this case, scientists have developed the coolest, whitest paint yet. From an April 16, 2021 news item on Nanowerk,

In an effort to curb global warming, Purdue University engineers have created the whitest paint yet. Coating buildings with this paint may one day cool them off enough to reduce the need for air conditioning, the researchers say.

In October [2020], the team created an ultra-white paint that pushed limits on how white paint can be. Now they’ve outdone that. The newer paint not only is whiter but also can keep surfaces cooler than the formulation that the researchers had previously demonstrated.

“If you were to use this paint to cover a roof area of about 1,000 square feet, we estimate that you could get a cooling power of 10 kilowatts. That’s more powerful than the central air conditioners used by most houses,” said Xiulin Ruan, a Purdue professor of mechanical engineering.

Caption: Xiulin Ruan, a Purdue University professor of mechanical engineering, holds up his lab’s sample of the whitest paint on record. Credit: Purdue University/Jared Pike

This is nicely done. Researcher Xiulin Ruan is standing close to a structure that could be said to resemble the sun while in shirtsleeves and sunglasses and holding up a sample of his whitest paint in April (not usually a warm month in Indiana).

An April 15, 2021 Purdue University news release (also on EurkeAlert), which originated the news item, provides more detail about the work and hints about its commercial applications both civilian and military,

The researchers believe that this white may be the closest equivalent of the blackest black, “Vantablack,” [emphasis mine; see comments later in this post] which absorbs up to 99.9% of visible light. The new whitest paint formulation reflects up to 98.1% of sunlight – compared with the 95.5% of sunlight reflected by the researchers’ previous ultra-white paint – and sends infrared heat away from a surface at the same time.

Typical commercial white paint gets warmer rather than cooler. Paints on the market that are designed to reject heat reflect only 80%-90% of sunlight and can’t make surfaces cooler than their surroundings.

The team’s research paper showing how the paint works publishes Thursday (April 15 [2021]) as the cover of the journal ACS Applied Materials & Interfaces.

What makes the whitest paint so white

Two features give the paint its extreme whiteness. One is the paint’s very high concentration of a chemical compound called barium sulfate [emphasis mine] which is also used to make photo paper and cosmetics white.

“We looked at various commercial products, basically anything that’s white,” said Xiangyu Li, a postdoctoral researcher at the Massachusetts Institute of Technology who worked on this project as a Purdue Ph.D. student in Ruan’s lab. “We found that using barium sulfate, you can theoretically make things really, really reflective, which means that they’re really, really white.”

The second feature is that the barium sulfate particles are all different sizes in the paint. How much each particle scatters light depends on its size, so a wider range of particle sizes allows the paint to scatter more of the light spectrum from the sun.

“A high concentration of particles that are also different sizes gives the paint the broadest spectral scattering, which contributes to the highest reflectance,” said Joseph Peoples, a Purdue Ph.D. student in mechanical engineering.

There is a little bit of room to make the paint whiter, but not much without compromising the paint.”Although a higher particle concentration is better for making something white, you can’t increase the concentration too much. The higher the concentration, the easier it is for the paint to break or peel off,” Li said.

How the whitest paint is also the coolest

The paint’s whiteness also means that the paint is the coolest on record. Using high-accuracy temperature reading equipment called thermocouples, the researchers demonstrated outdoors that the paint can keep surfaces 19 degrees Fahrenheit cooler than their ambient surroundings at night. It can also cool surfaces 8 degrees Fahrenheit below their surroundings under strong sunlight during noon hours.

The paint’s solar reflectance is so effective, it even worked in the middle of winter. During an outdoor test with an ambient temperature of 43 degrees Fahrenheit, the paint still managed to lower the sample temperature by 18 degrees Fahrenheit.

This white paint is the result of six years of research building on attempts going back to the 1970s to develop radiative cooling paint as a feasible alternative to traditional air conditioners.

Ruan’s lab had considered over 100 different materials, narrowed them down to 10 and tested about 50 different formulations for each material. Their previous whitest paint was a formulation made of calcium carbonate, an earth-abundant compound commonly found in rocks and seashells.

The researchers showed in their study that like commercial paint, their barium sulfate-based paint can potentially handle outdoor conditions. The technique that the researchers used to create the paint also is compatible with the commercial paint fabrication process.

Patent applications for this paint formulation have been filed through the Purdue Research Foundation Office of Technology Commercialization. This research was supported by the Cooling Technologies Research Center at Purdue University and the Air Force Office of Scientific Research [emphasis mine] through the Defense University Research Instrumentation Program (Grant No.427 FA9550-17-1-0368). The research was performed at Purdue’s FLEX Lab and Ray W. Herrick Laboratories and the Birck Nanotechnology Center of Purdue’s Discovery Park.

Here’s a link to and a citation for the paper,

Ultrawhite BaSO4 Paints and Films for Remarkable Daytime Subambient Radiative Cooling by Xiangyu Li, Joseph Peoples, Peiyan Yao, and Xiulin Ruan. ACS Appl. Mater. Interfaces 2021, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acsami.1c02368 Publication Date:April 15, 2021 © 2021 American Chemical Society

This paper is behind a paywall.

Vantablack and the ongoing ‘est’ of blackest

Vantablack’s 99.9% light absorption no longer qualifies it for the ‘blackest black’. A newer standard for the ‘blackest black’ was set by the US National Institute of Standards and Technology at 99.99% light absorption with its N.I.S.T. ultra-black in 2019, although that too seems to have been bested.

I have three postings covering the Vantablack and blackest black story,

The third posting (December 2019) provides a brief summary of the story along with what was the latest from the US National Institute of Standards and Technology. There’s also a little bit about the ‘The Redemption of Vanity’ an art piece demonstrating the blackest black material from the Massachusetts Institute of Technology, which they state has 99.995% (at least) absorption of light.

From a science perspective, the blackest black would be useful for space exploration.

I am surprised there doesn’t seem to have been an artistic rush to work with the whitest white. That impression may be due to the fact that the feuds get more attention than quiet work.

Dark side to the whitest white?

Andrew Parnell, research fellow in physics and astronomy at the University of Sheffield (UK), mentions a downside to obtaining the material needed to produce this cooling white paint in a June 10, 2021 essay on The Conversation (h/t Fast Company), Note: Links have been removed,

… this whiter-than-white paint has a darker side. The energy required to dig up raw barite ore to produce and process the barium sulphite that makes up nearly 60% of the paint means it has a huge carbon footprint. And using the paint widely would mean a dramatic increase in the mining of barium.

Parnell ends his essay with this (Note: Links have been removed),

Barium sulphite-based paint is just one way to improve the reflectivity of buildings. I’ve spent the last few years researching the colour white in the natural world, from white surfaces to white animals. Animal hairs, feathers and butterfly wings provide different examples of how nature regulates temperature within a structure. Mimicking these natural techniques could help to keep our cities cooler with less cost to the environment.

The wings of one intensely white beetle species called Lepidiota stigma appear a strikingly bright white thanks to nanostructures in their scales, which are very good at scattering incoming light. This natural light-scattering property can be used to design even better paints: for example, by using recycled plastic to create white paint containing similar nanostructures with a far lower carbon footprint. When it comes to taking inspiration from nature, the sky’s the limit.

Technology for mopping up oil spills

It’s a little disheartening to write about technology for mopping up oils spills as there doesn’t to be much improvement in the situation as Adele Peters notes in her June 4, 2021 article (A decade after Deepwater Horizon, we’re still cleaning up oil spills the same way) for Fast Company (Note: Links have been removed),

Off the coastline of Sri Lanka, where a burning cargo ship has been spilling toxic chemicals and plastic pellets over the past two weeks, the government is preparing for the next possible stage of the disaster: As the ship sinks, it may also spill some of the hundreds of tons of oil in its fuel tanks.

The government is readying oil dispersants, booms, and oil skimmers, all tools that were used in the massive Deepwater Horizon oil spill in the Gulf of Mexico in 2010. They didn’t work perfectly then—more than 1,000 miles of shoreline were polluted—and more than a decade later, they’re still commonly used. But solutions that might work better are under development, including reusable sponges that can suck up oil both on the surface and underwater.

Dispersants, one common tool now, are chemicals designed to break up the oil into tiny droplets so that, in theory, microorganisms in the water can break down the oil more easily. But at least one study found that dispersant could harm those organisms. Deep-sea coral also appears to suffer more from the mix of dispersant and oil than oil alone. Booms are designed to contain oil on the surface so it can be scraped off with a skimmer, but that only works if the water’s relatively calm, and it doesn’t deal with oil below the surface. The oil on the surface can also be burned, but it creates a plume of thick black smoke. “That does get rid of the oil from the water, but then it turns a water pollution problem into an air pollution problem,” says Seth Darling, a senior scientist at Argonne National Laboratory who developed an alternative called the Oleo Sponge [emphasis mine].

… a team from two German universities that developed a system of wood chips that can be dropped in the water to collect oil even in rough weather, when current tools don’t work well. The system is ready for deployment if a spill happens in the Baltic Sea. Another earlier-stage solution proposes using a robot to detect and capture oil.

I’m glad to see at least one new oil spill cleanup technology being readied for deployment in Peters’ June 4, 2021 article, we should be preparing for more spills as the Arctic melts and plans are made to develop new shipping routes.

Amongst other oil spill cleanup technologies, Peters mentions the ‘Oleo Sponge’, which was featured here in a March 30, 2017 posting when researchers were looking for investors to commercialize the product. According to Peters the oleo sponge hasn’t yet made it to market; it’s a fate many of these technologies are destined to meet. Meanwhile, scientists continue to develop new methods and techniques for mopping up oil spills as safely as possible. For example, there’s an oil spill sucking robot mentioned in my October 30, 2020 posting, which features yet another article by Peters.

In the summer of 2020 there were two major oil spills, one in the Russian Arctic and one in an ecologically sensitive area near Mauritius. For more about those events, there’s an August 14, 2020 posting, which starts with news of an oil spill technology featuring dog fur and then focuses primarily on the oil spill in the Russian Arctic with a brief mention of the spill near Mauritius in June 2020 (scroll down to the ‘Exceptionally warm weather’ subhead and see the paragraph above it for the mention and a link to a story).

Carbon nanotubes can scavenge energy from environment to generate electricity

A June 7, 2021 news item on phys.org announces research into a new method for generating electricity (Note: A link has been removed),

MIT [Massachusetts Institute of Technology] engineers have discovered a new way of generating electricity using tiny carbon particles that can create a current simply by interacting with liquid surrounding them.

The liquid, an organic solvent, draws electrons out of the particles, generating a current that could be used to drive chemical reactions or to power micro- or nanoscale robots, the researchers say.

“This mechanism is new, and this way of generating energy is completely new,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “This technology is intriguing because all you have to do is flow a solvent through a bed of these particles. This allows you to do electrochemistry, but with no wires.”

A June 7, 2021 MIT news release (also on EurekAlert), which generated the news item, delves further into the research,

In a new study describing this phenomenon, the researchers showed that they could use this electric current to drive a reaction known as alcohol oxidation — an organic chemical reaction that is important in the chemical industry.

Strano is the senior author of the paper, which appears today [June 7, 2021] in Nature Communications. The lead authors of the study are MIT graduate student Albert Tianxiang Liu and former MIT researcher Yuichiro Kunai. Other authors include former graduate student Anton Cottrill, postdocs Amir Kaplan and Hyunah Kim, graduate student Ge Zhang, and recent MIT graduates Rafid Mollah and Yannick Eatmon.

Unique properties

The new discovery grew out of Strano’s research on carbon nanotubes — hollow tubes made of a lattice of carbon atoms, which have unique electrical properties. In 2010, Strano demonstrated, for the first time, that carbon nanotubes can generate “thermopower waves.” When a carbon nanotube is coated with layer of fuel, moving pulses of heat, or thermopower waves, travel along the tube, creating an electrical current.

That work led Strano and his students to uncover a related feature of carbon nanotubes. They found that when part of a nanotube is coated with a Teflon-like polymer, it creates an asymmetry that makes it possible for electrons to flow from the coated to the uncoated part of the tube, generating an electrical current. Those electrons can be drawn out by submerging the particles in a solvent that is hungry for electrons.

To harness this special capability, the researchers created electricity-generating particles by grinding up carbon nanotubes and forming them into a sheet of paper-like material. One side of each sheet was coated with a Teflon-like polymer, and the researchers then cut out small particles, which can be any shape or size. For this study, they made particles that were 250 microns by 250 microns.

When these particles are submerged in an organic solvent such as acetonitrile, the solvent adheres to the uncoated surface of the particles and begins pulling electrons out of them.

“The solvent takes electrons away, and the system tries to equilibrate by moving electrons,” Strano says. “There’s no sophisticated battery chemistry inside. It’s just a particle and you put it into solvent and it starts generating an electric field.”

Particle power

The current version of the particles can generate about 0.7 volts of electricity per particle. In this study, the researchers also showed that they can form arrays of hundreds of particles in a small test tube. This “packed bed” reactor generates enough energy to power a chemical reaction called an alcohol oxidation, in which an alcohol is converted to an aldehyde or a ketone. Usually, this reaction is not performed using electrochemistry because it would require too much external current.

“Because the packed bed reactor is compact, it has more flexibility in terms of applications than a large electrochemical reactor,” Zhang says. “The particles can be made very small, and they don’t require any external wires in order to drive the electrochemical reaction.”

In future work, Strano hopes to use this kind of energy generation to build polymers using only carbon dioxide as a starting material. In a related project, he has already created polymers that can regenerate themselves using carbon dioxide as a building material, in a process powered by solar energy. This work is inspired by carbon fixation, the set of chemical reactions that plants use to build sugars from carbon dioxide, using energy from the sun.

In the longer term, this approach could also be used to power micro- or nanoscale robots. Strano’s lab has already begun building robots at that scale, which could one day be used as diagnostic or environmental sensors. The idea of being able to scavenge energy from the environment to power these kinds of robots is appealing, he says.

“It means you don’t have to put the energy storage on board,” he says. “What we like about this mechanism is that you can take the energy, at least in part, from the environment.”

Here’s a link to and a citation for the paper,

Solvent-induced electrochemistry at an electrically asymmetric carbon Janus particle by Albert Tianxiang Liu, Yuichiro Kunai, Anton L. Cottrill, Amir Kaplan, Ge Zhang, Hyunah Kim, Rafid S. Mollah, Yannick L. Eatmon & Michael S. Strano. Nature Communications volume 12, Article number: 3415 (2021) DOI: https://doi.org/10.1038/s41467-021-23038-7Published 07 June 2021

This paper is open access.

Salt ‘creatures’ could help unclog industrial pipes

I love the video (wish the narrator had a more conversational style rather than the ‘read aloud’ style so many of us adopted in school),

Joel Goldberg’s April 28, 2021 news article (short read) in Science magazine online describes the research (Note: A link has been removed),

Behold the salt monsters. These twisted mineral crystals—formed from the buildup of slightly salty water in power plant pipes—come in many shapes and sizes. But the tiny monsters are a big problem: Each year, they cost the world’s power plants at least $100 billion because workers have to purge the pipes and scrub the crystals from filters.

Now, a solution may be at hand. Engineers can reduce the damage by coating the insides of the pipes with textured, water-repellant [hydrophobic] surfaces …

Here’s a link to and a citation for the paper,

Crystal critters: Self-ejection of crystals from heated, superhydrophobic surfaces by Samantha A. McBride, Henri-Louis Girard, and Kripa K. Varanasi. Science Advances 28 Apr 2021: Vol. 7, no. 18, eabe6960 DOI: 10.1126/sciadv.abe6960

This paper is open access. As research papers go, this is quite readable, from the Introduction (Note: Links have been removed),

Many of the uses for water are intimately familiar to us. Drinking water, wash water, water for agriculture, and even water used for recreation have an omnipresent and essential impact on our lives. However, water’s impact and importance extend far beyond these everyday uses. In many developed countries, thermoelectric power production is one of the largest sources of water consumption (1), where it is used to cool reactors and transport heat. In 2015, 41% of all surface water withdrawals in the United States went toward cooling in thermoelectric power plants (2). Thermoelectric power accounts for 90% of all electricity generated within the United States and encompasses many forms of power production, including nuclear, coal, natural gas, and oil.

There you go.

Litus, a University of Calgary spin-off company, and its lithium extraction process

This company is very secretive. Other than some information about the technology everything else is a mystery. From an April 28, 2021 news item on mining.com,

Litus announced the launching of LiNC, a patent-pending lithium extraction solution initially developed at the University of Calgary in Alberta, Canada.

In a press release, the company said that the nanotechnology composite material within LiNC has very strong ionic affinity and lithium selectivity in the presence of high concentrations of competing ions such as sodium, magnesium and calcium. 

According to Litus, its technology is able to efficiently and sustainably extract more lithium from brine sources than similar methods.

“Demand for lithium is growing at a rate that current production methods and technologies simply can’t meet. Through the application of LiNC, mining companies have an opportunity to not only increase the reserves and production of their existing assets but should be able to open up new sources of lithium that have been either uneconomic or too environmentally sensitive to be practical with previous extraction technology,” the firm’s statement reads.

There is another company which also extracts lithium from the brine in oil wells; their claim to fame is a ‘greener’ extraction method (see my February 23, 2021 posting about Summit Nanotech, which is also located in Calgary, Alberta.)

Getting back to the mysterious Litus,I found this on the About Us section of their homepage,

The Company was formed in 2019 on research originally conducted at the University of Calgary. 

Litus is passionate about developing and supporting technology products that inspire its customers and partners to create energy solutions that are more abundant, more accessible, cleaner, safer, and more efficient. 

The Company is currently applying its leadership in nanotechnology and chemical processing to help companies produce lithium more efficiently and cleanly than previously possible.

THE TEAM

Litus is led by an exceptional group of professional chemists, nanotechnologists, and chemical process engineers, as well as experienced entrepreneurial business professionals. The team has a proven track record of success with both scientific achievements, and in scaling new technologies to become industrially and commercially successful solutions.

You can check out the company’s LinkedIn profile but it’s not particularly useful. There are apparently nine employees but none are identified and the description of the company’s technology is the same as what can be found on their website’s homepage.

Should you be interested in the ‘lithium extraction from brine’ industry, Gabriel Friedman’s February 9, 2021 article for the Financial Post provides some insight into the competitiveness and volatility of this still niche market.

Graphene-based material for high-performance supercapacitors

Researchers from Russia and France have developed a new material, based on graphene, that would allow supercapacitors to store more energy according to a January 15, 2021 news item on Nanowerk,

Scientists of Tomsk Polytechnic University jointly with colleagues from the University of Lille (Lille, France) synthetized a new material based on reduced graphene oxide (rGO) for supercapacitors, energy storage devices. The rGO modification method with the use of organic molecules, derivatives of hypervalent iodine, allowed obtaining a material that stores 1.7 times more electrical energy.

Photo: modified rGO supercapacitor electrodes. Courtesy: Tomsk University

A January 15, 2020 Tomsk Polytechnic University press release (also on EurekAlert), which originated the news item, provides more details,

A supercapacitor is an electrochemical device for storage and release of electric charge. Unlike batteries, they store and release energy several times faster and do not contain lithium.

A supercapacitor is an element with two electrodes separated by an organic or inorganic electrolyte. The electrodes are coated with an electric charge accumulating material. The modern trend in science is to use various materials based on graphene, one of the thinnest and most durable materials known to man. The researchers of TPU and the University of Lille used reduced graphene oxide (rGO), a cheap and available material.

“Despite their potential, supercapacitors are not wide-spread yet. For further development of the technology, it is required to enhance the efficiency of supercapacitors. One of the key challenges here is to increase the energy capacity.

It can be achieved by expanding the surface area of an energy storage material, rGO in this particular case. We found a simple and quite fast method. We used exceptionally organic molecules under mild conditions and did not use expensive and toxic metals,” Pavel Postnikov, Associate Professor of TPU Research School of Chemistry and Applied Biomedical Science and the research supervisor says.

Reduced graphene oxide in a powder form is deposited on electrodes. As a result, the electrode becomes coated with hundreds of nanoscale layers of the substance. The layers tend to agglomerate, in other words, to sinter. To expand the surface area of a material, the interlayer spacing should be increased.

“For this purpose, we modified rGO with organic molecules, which resulted in the interlayer spacing increase. Insignificant differences in interlayer spacing allowed increasing energy capacity of the material by 1.7 times. That is, 1 g of the new material can store 1.7 times more energy in comparison with a pristine reduced graphene oxide,” Elizaveta Sviridova, Junior Research Fellow of TPU Research School of Chemistry and Applied Biomedical Sciences and one of the authors of the article explains.

The reaction proceeded through the formation of active arynes from iodonium salts. They kindle scientists` interest due to their property to form a single layer of new organic groups on material surfaces. The TPU researchers have been developing the chemistry of iodonium salts for many years.

“The modification reaction proceeds under mild conditions by simply mixing the solution of iodonium salt with reduced graphene oxide. If we compare it with other methods of reduced graphene oxide functionalization, we have achieved the highest indicators of material energy capacity increase,” Elizaveta Sviridova says.

Here’s a link to and a citation for the paper,

Aryne cycloaddition reaction as a facile and mild modification method for design of electrode materials for high-performance symmetric supercapacitor by Elizaveta Sviridova, Min Li, Alexandre Barras, Ahmed Addad, Mekhman S.Yusubov, Viktor V. Zhdankin, Akira Yoshimura, Sabine Szunerits, Pavel S. Postnikov, Rabah Boukherroub. Electrochimica Acta Volume 369, 10 February 2021, 137667 DOI: https://doi.org/10.1016/j.electacta.2020.137667

This paper is behind a paywall.

‘Greener’ lithium mining in Canada

A February 19, 2021 article by Pamela Fieber for CBC (Canadian Broadcasting Corporation) news online features news of a Calgary (Alberta) company, Summit Nanotech, and a greener way to mine lithium (Note: A link has been removed),

Amanda Hall was on top of a mountain in Tibet when inspiration struck. 

“I saw a Tibetan monk reach into his robe and pull out an iPhone,” Hall told the Calgary Eyeopener [CBC radio programme].

“If there’s an iPhone at the top of a mountain in Tibet, where isn’t there an iPhone on this planet? And then it just got me thinking about batteries and battery technology and energy and how we store that energy.”

On her return to Calgary, the accomplished geophysicist began looking into a better, greener way to mine lithium — the essential ingredient in lithium-ion batteries, which power electric cars and smartphones.

This led to her founding the company, Summit Nanotech in 2018 and developing nanotechnology, which works with materials at the molecular or atomic level to selectively filter lithium out of the wasted saltwater brine used in oil wells.

It’s completely different from the way lithium is traditionally mined.

Sarah Offin’s November 12, 2020 article for Global TV News offers insight into the technology developed by Hall’s company (Note: Links have been removed),

Since the downturn in the oil and gas industry, there have been repeated calls for Alberta to diversify its economy. The province invests hundreds of millions of dollars every year to help grow both the tech and green energy sectors, industries that could have a bright future in a province rich with talent.

Amanda Hall is a prime example of that. She was able to draw on her experience in resource extraction with Alberta’s oil and gas industry, developing green technology to be used in energy storage.

Hall developed the only female-led mining technology company in the world: Summit Nanotech Corp. Using nanotechnology, Hall and her team say they have created an improved method of lithium-ion resource extraction from produced brine water.

“We’ve come up with a much more elegant approach — I say, feminine, approach — at bringing a resource out of the ground, and then giving it to the electric vehicle sector,” Hall said.

Using sponges developed through nanoscience, Hall and her team have created technology that will allow producers to extract lithium directly from the wellhead without the need for expansive ponds and toxic chemicals. The process is expected to reduce costs and decrease chemical waste by 90 per cent.

The firm’s website touts that its process is the most “green lithium extraction in the world.”

“The sponge has lithium selective cavities in it, just the exact size of a lithium-ion. And so, as if you put a fluid in against this sponge, it will only suck up lithium, nothing else, and it holds on to it. And then when you wash it, you wash the lithium off the sponge just by changing the environment it’s in. So we don’t have to use any acids,” Hall said.

Hall and her team have spent the last two-and-a-half years in the lab perfecting their design and are now building the company’s first full-scale 12-metre tall unit. “It’s our baby, but it’s huge,” Hall said. “It’s a mini-refinery, essentially.”

That “mini-refinery” will then be sent via shipping container to the first of the company’s three pilot partners: Lithium Chile.

The other two partners are Saskatchewan-based Prairie Lithium and 3 Proton Lithium (3PL) Operating Inc. in Nevada.

For anyone interested in the business and investment aspects (there’s mention of Elon Musk in both stories) check out Fieber’s February 19, 2021 article and Offin’s November 12, 2020 article.

You can find Summit Nanotech here. I found a little more information about the company’s technology on the Lithium webpage,

denaLi 1.0
Direct Lithium Extraction
(DLE) Process

Summit Nanotech has designed an innovative new method to generate battery grade lithium compounds from brine fluids, named denaLi. This process is the most green lithium extraction technology in the world. Lithium carbonate and lithium hydroxide can be sold at market value to supply the growing demand from electric vehicle battery manufacturers. 

Interconnected modules using nanoporous membranes in a unique arrangement are synthesized with specific filtration functions. Carbon dioxide is used to initiate end product precipitation. Discrete power generation modules are selected to work together to harvest and store available geothermal, solar, wind, and hydroelectric power from the system’s environment.

Prairie Lithium, the Saskatchewan-based company mentioned in Offin’s article, co-founded a joint venture specifically dedicated to lithium extraction from brine (to begin with) in 2020 according to Jonathan Guignard in a June 3, 2020 article for Global TV news (Note: Links have been removed),

Saskatchewan will soon be home to a new lithium production project.

The Prairie-LiEP Critical Mineral (PLCM) joint venture is being undertaken by Prairie Lithium Corp. and LiEP Energy Ltd [headquarted in Calgary, Alberta].

Their two-stage pilot project will produce lithium hydroxide from some of the province’s oilfield brines.

The first stage of the project is based in Regina and is set to being in July. The second stage is set for the second half of 2021, with field operations in southern parts of the province.

“PLCM Joint Venture is excited to begin Stage 1 of the pilot operation in Saskatchewan this summer,” said Prairie president and CEO Zach Maurer and LiEP president and CEO Haafiz Hasham.

I can’t find any mention of the PLCM joint venture on the Prairie Lithium website but there is what appears to be a June 3, 2020 news release announcing the venture on the LiEP Energy website but there is no further information on that website.

On another front, Lithium Chile, which seems to be headquartered in Calgary with extensive lithium mining projects in Chile, has a brief mention of their partnership with Summit Nanotech in a December 24, 2020 posting (on the News webpage) by Steve (Cochrane; president and chief executive officer),

Lastly our partnership with Summit continues to move forward and we are very happy to be working with them. I have attached our recently negotiated LOI [letter of intent] for our JV [joint venture] pilot project in Chile. We should have the definitive agreement signed early in the new year. They plan to have their pilot unit completed and shipped by July of 2021 so a planned test is scheduled for late summer next year. This gives us the time to get back on one or more of our lithium prospects to prepare for our pilot project. They continue to see great results in the lab and hope this is the breakthrough we all want to see for an efficient cost and environmentally effective method of producing lithium from brines.

I cannot find any further mention on the Lithium Chile website about their joint venture with Summit Nanotech.

The big question is whether or not this technology can be scaled for industrial use. I wish them good luck with the effort.

All this talk about lithium extraction and other natural resource extraction brought to mind Harold Innis and his staples theory of Canadian history, culture, and economy. From the Harold Innis Wikipedia entry (Note: Links have been removed),

Harold Adams Innis FRSC (1894 – 1952) was a Canadian professor of political economy at the University of Toronto and the author of seminal works on media, communication theory, and Canadian economic history. He helped develop the staples thesis, [emphasis mine] which holds that Canada’s culture, political history, and economy have been decisively influenced by the exploitation and export of a series of “staples” such as fur, fishing, lumber, wheat, mined metals [emphasis mine], and coal. The staple thesis dominated economic history in Canada from the 1930s to 1960s, and continues to be a fundamental part of the Canadian political economic tradition.[8]

There you have it.

Carbon nanotubes (CNTs) in 466 colours

Caption: A color map illustrates the inherent colors of 466 types of carbon nanotubes with unique (n,m) designations based their chiral angle and diameter. Credit: Image courtesy of Kauppinen Group/Aalto University

This is, so to speak, a new angle on carbon nanotubes (CNTs). It’s also the first time I’ve seen two universities place identical news releases on EurekAlert under their individual names.

From the Dec. 14, 2020 Rice University (US) news release or the Dec. 14, 2020 Aalto University (Finland) press release on EurekAlert,

Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes.

The nanotube color atlas is detailed in a study in Advanced Materials about a new method to predict the specific colors of thin films made by combining any of the 466 varieties. The research was conducted by researchers from Aalto University in Finland, Rice University and Peking University in China.

“Carbon, which we see as black, can appear transparent or take on any color of the rainbow,” said Aalto physicist Esko Kauppinen, the corresponding author of the study. “The sheet appears black if light is completely absorbed by carbon nanotubes in the sheet. If less than about half of the light is absorbed in the nanotubes, the sheet looks transparent. When the atomic structure of the nanotubes causes only certain colors of light, or wavelengths, to be absorbed, the wavelengths that are not absorbed are reflected as visible colors.”

Carbon nanotubes are long, hollow carbon molecules, similar in shape to a garden hose but with sides just one atom thick and diameters about 50,000 times smaller than a human hair. The outer walls of nanotubes are made of rolled graphene. And the wrapping angle of the graphene can vary, much like the angle of a roll of holiday gift wrap paper. If the gift wrap is rolled carefully, at zero angle, the ends of the paper will align with each side of the gift wrap tube. If the paper is wound carelessly, at an angle, the paper will overhang on one end of the tube.

The atomic structure and electronic behavior of each carbon nanotube is dictated by its wrapping angle, or chirality, and its diameter. The two traits are represented in a “(n,m)” numbering system that catalogs 466 varieties of nanotubes, each with a characteristic combination of chirality and diameter. Each (n,m) type of nanotube has a characteristic color.

Kauppinen’s research group has studied carbon nanotubes and nanotube thin films for years, and it previously succeeded in mastering the fabrication of colored nanotube thin films that appeared green, brown and silver-grey.

In the new study, Kauppinen’s team examined the relationship between the spectrum of absorbed light and the visual color of various thicknesses of dry nanotube films and developed a quantitative model that can unambiguously identify the coloration mechanism for nanotube films and predict the specific colors of films that combine tubes with different inherent colors and (n,m) designations.

Rice engineer and physicist Junichiro Kono, whose lab solved the mystery of colorful armchair nanotubes in 2012, provided films made solely of (6,5) nanotubes that were used to calibrate and verify the Aalto model. Researchers from Aalto and Peking universities used the model to calculate the absorption of the Rice film and its visual color. Experiments showed that the measured color of the film corresponded quite closely to the color forecast by the model.

The Aalto model shows that the thickness of a nanotube film, as well as the color of nanotubes it contains, affects the film’s absorption of light. Aalto’s atlas of 466 colors of nanotube films comes from combining different tubes. The research showed that the thinnest and most colorful tubes affect visible light more than those with larger diameters and faded colors.

“Esko’s group did an excellent job in theoretically explaining the colors, quantitatively, which really differentiates this work from previous studies on nanotube fluorescence and coloration,” Kono said.

Since 2013, Kono’s lab has pioneered a method for making highly ordered 2D nanotube films. Kono said he had hoped to supply Kauppinen’s team with highly ordered 2D crystalline films of nanotubes of a single chirality.

“That was the original idea, but unfortunately, we did not have appropriate single-chirality aligned films at that time,” Kono said. “In the future, our collaboration plans to extend this work to study polarization-dependent colors in highly ordered 2D crystalline films.”

The experimental method the Aalto researchers used to grow nanotubes for their films was the same as in their previous studies: Nanotubes grow from carbon monoxide gas and iron catalysts in a reactor that is heated to more than 850 degrees Celsius. The growth of nanotubes with different colors and (n,m) designations is regulated with the help of carbon dioxide that is added to the reactor.

“Since the previous study, we have pondered how we might explain the emergence of the colors of the nanotubes,” said Nan Wei, an assistant research professor at Peking University who previously worked as a postdoctoral researcher at Aalto. “Of the allotropes of carbon, graphite and charcoal are black, and pure diamonds are colorless to the human eye. However, now we noticed that single-walled carbon nanotubes can take on any color: for example, red, blue, green or brown.”

Kauppinen said colored thin films of nanotubes are pliable and ductile and could be useful in colored electronics structures and in solar cells.

“The color of a screen could be modified with the help of a tactile sensor in mobile phones, other touch screens or on top of window glass, for example,” he said.

Kauppinen said the research can also provide a foundation for new kinds of environmentally friendly dyes.

Here’s a link to and a citation for the paper,

Colors of Single‐Wall Carbon Nanotubes by Nan Wei, Ying Tian, Yongping Liao, Natsumi Komatsu, Weilu Gao, Alina Lyuleeva‐Husemann, Qiang Zhang, Aqeel Hussain, Er‐Xiong Ding, Fengrui Yao, Janne Halme. Kaihui Liu, Junichiro Kono, Hua Jiang, Esko I. Kauppinen. Advanced Materials DOI: https://doi.org/10.1002/adma.202006395 First published: 14 December 2020

Thi8s paper is open access.

Spinach could help power fuel cells.

By Source (WP:NFCC#4), Fair use, https://en.wikipedia.org/w/index.php?curid=65303730

I was surprised to see a reference to the cartoon character, Popeye, in the headline (although it’s not carried forward into the text) for this October 5, 2020 news item on ScienceDaily about research into making fuel cells more efficient,

Spinach: Good for Popeye and the planet

“Eat your spinach,” is a common refrain from many people’s childhoods. Spinach, the hearty, green vegetable chock full of nutrients, doesn’t just provide energy in humans. It also has potential to help power fuel cells, according to a new paper by researchers in AU’s Department of Chemistry. Spinach, when converted from its leafy, edible form into carbon nanosheets, acts as a catalyst for an oxygen reduction reaction in fuel cells and metal-air batteries.

An October 5, 2020 American University news release (also on EurekAlert) by Rebecca Basu, which originated the news item, provides more detail about the research,

An oxygen reduction reaction is one of two reactions in fuel cells and metal-air batteries and is usually the slower one that limits the energy output of these devices. Researchers have long known that certain carbon materials can catalyze the reaction. But those carbon-based catalysts don’t always perform as good or better than the traditional platinum-based catalysts. The AU researchers wanted to find an inexpensive and less toxic preparation method for an efficient catalyst by using readily available natural resources. They tackled this challenge by using spinach.

“This work suggests that sustainable catalysts can be made for an oxygen reduction reaction from natural resources,” said Prof. Shouzhong Zou, chemistry professor at AU and the paper’s lead author. “The method we tested can produce highly active, carbon-based catalysts from spinach, which is a renewable biomass. In fact, we believe it outperforms commercial platinum catalysts in both activity and stability. The catalysts are potentially applicable in hydrogen fuel cells and metal-air batteries.” Zou’s former post-doctoral students Xiaojun Liu and Wenyue Li and undergraduate student Casey Culhane are the paper’s co-authors.

Catalysts accelerate an oxygen reduction reaction to produce sufficient current and create energy. Among the practical applications for the research are fuel cells and metal-air batteries, which power electric vehicles and types of military gear. Researchers are making progress in the lab and in prototypes with catalysts derived from plants or plant products such as cattail grass or rice. Zou’s work is the first demonstration using spinach as a material for preparing oxygen reduction reaction-catalysts. Spinach is a good candidate for this work because it survives in low temperatures, is abundant and easy to grow, and is rich in iron and nitrogen that are essential for this type of catalyst.

Zou and his students created and tested the catalysts, which are spinach-derived carbon nanosheets. Carbon nanosheets are like a piece of paper with the thickness on a nanometer scale, a thousand times thinner than a piece of human hair. To create the nanosheets, the researchers put the spinach through a multi-step process that included both low- and high-tech methods, including washing, juicing and freeze-drying the spinach, manually grinding it into a fine powder with a mortar and pestle, and “doping” the resulting carbon nanosheet with extra nitrogen to improve its performance. The measurements showed that the spinach-derived catalysts performed better than platinum-based catalysts that can be expensive and lose their potency over time.

The next step for the researchers is to put the catalysts from the lab simulation into prototype devices, such as hydrogen fuel cells, to see how they perform and to develop catalysts from other plants. Zou would like to also improve sustainability by reducing the energy consumption needed for the process.

Here’s a link to and a citation for the paper,

Spinach-Derived Porous Carbon Nanosheets as High-Performance Catalysts for Oxygen Reduction Reaction by Xiaojun Liu, Casey Culhane, Wenyue Li, and Shouzhong Zou. ACS Omega 2020, 5, 38, 24367–24378 DOI: https://doi.org/10.1021/acsomega.0c02673 Publication Date:September 15, 2020 Copyright © 2020 American Chemical Society

This paper appears to be open access.

Brain cell-like nanodevices

Given R. Stanley Williams’s presence on the author list, it’s a bit surprising that there’s no mention of memristors. If I read the signs rightly the interest is shifting, in some cases, from the memristor to a more comprehensive grouping of circuit elements referred to as ‘neuristors’ or, more likely, ‘nanocirucuit elements’ in the effort to achieve brainlike (neuromorphic) computing (engineering). (Williams was the leader of the HP Labs team that offered proof and more of the memristor’s existence, which I mentioned here in an April 5, 2010 posting. There are many, many postings on this topic here; try ‘memristors’ or ‘brainlike computing’ for your search terms.)

A September 24, 2020 news item on ScienceDaily announces a recent development in the field of neuromorphic engineering,

In the September [2020] issue of the journal Nature, scientists from Texas A&M University, Hewlett Packard Labs and Stanford University have described a new nanodevice that acts almost identically to a brain cell. Furthermore, they have shown that these synthetic brain cells can be joined together to form intricate networks that can then solve problems in a brain-like manner.

“This is the first study where we have been able to emulate a neuron with just a single nanoscale device, which would otherwise need hundreds of transistors,” said Dr. R. Stanley Williams, senior author on the study and professor in the Department of Electrical and Computer Engineering. “We have also been able to successfully use networks of our artificial neurons to solve toy versions of a real-world problem that is computationally intense even for the most sophisticated digital technologies.”

In particular, the researchers have demonstrated proof of concept that their brain-inspired system can identify possible mutations in a virus, which is highly relevant for ensuring the efficacy of vaccines and medications for strains exhibiting genetic diversity.

A September 24, 2020 Texas A&M University news release (also on EurekAlert) by Vandana Suresh, which originated the news item, provides some context for the research,

Over the past decades, digital technologies have become smaller and faster largely because of the advancements in transistor technology. However, these critical circuit components are fast approaching their limit of how small they can be built, initiating a global effort to find a new type of technology that can supplement, if not replace, transistors.

In addition to this “scaling-down” problem, transistor-based digital technologies have other well-known challenges. For example, they struggle at finding optimal solutions when presented with large sets of data.

“Let’s take a familiar example of finding the shortest route from your office to your home. If you have to make a single stop, it’s a fairly easy problem to solve. But if for some reason you need to make 15 stops in between, you have 43 billion routes to choose from,” said Dr. Suhas Kumar, lead author on the study and researcher at Hewlett Packard Labs. “This is now an optimization problem, and current computers are rather inept at solving it.”

Kumar added that another arduous task for digital machines is pattern recognition, such as identifying a face as the same regardless of viewpoint or recognizing a familiar voice buried within a din of sounds.

But tasks that can send digital machines into a computational tizzy are ones at which the brain excels. In fact, brains are not just quick at recognition and optimization problems, but they also consume far less energy than digital systems. Hence, by mimicking how the brain solves these types of tasks, Williams said brain-inspired or neuromorphic systems could potentially overcome some of the computational hurdles faced by current digital technologies.

To build the fundamental building block of the brain or a neuron, the researchers assembled a synthetic nanoscale device consisting of layers of different inorganic materials, each with a unique function. However, they said the real magic happens in the thin layer made of the compound niobium dioxide.

When a small voltage is applied to this region, its temperature begins to increase. But when the temperature reaches a critical value, niobium dioxide undergoes a quick change in personality, turning from an insulator to a conductor. But as it begins to conduct electric currents, its temperature drops and niobium dioxide switches back to being an insulator.

These back-and-forth transitions enable the synthetic devices to generate a pulse of electrical current that closely resembles the profile of electrical spikes, or action potentials, produced by biological neurons. Further, by changing the voltage across their synthetic neurons, the researchers reproduced a rich range of neuronal behaviors observed in the brain, such as sustained, burst and chaotic firing of electrical spikes.

“Capturing the dynamical behavior of neurons is a key goal for brain-inspired computers,” said Kumar. “Altogether, we were able to recreate around 15 types of neuronal firing profiles, all using a single electrical component and at much lower energies compared to transistor-based circuits.”

To evaluate if their synthetic neurons [neuristor?] can solve real-world problems, the researchers first wired 24 such nanoscale devices together in a network inspired by the connections between the brain’s cortex and thalamus, a well-known neural pathway involved in pattern recognition. Next, they used this system to solve a toy version of the viral quasispecies reconstruction problem, where mutant variations of a virus are identified without a reference genome.

By means of data inputs, the researchers introduced the network to short gene fragments. Then, by programming the strength of connections between the artificial neurons within the network, they established basic rules about joining these genetic fragments. The jigsaw puzzle-like task for the network was to list mutations in the virus’ genome based on these short genetic segments.

The researchers found that within a few microseconds, their network of artificial neurons settled down in a state that was indicative of the genome for a mutant strain.

Williams and Kumar noted this result is proof of principle that their neuromorphic systems can quickly perform tasks in an energy-efficient way.

The researchers said the next steps in their research will be to expand the repertoire of the problems that their brain-like networks can solve by incorporating other firing patterns and some hallmark properties of the human brain like learning and memory. They also plan to address hardware challenges for implementing their technology on a commercial scale.

“Calculating the national debt or solving some large-scale simulation is not the type of task the human brain is good at and that’s why we have digital computers. Alternatively, we can leverage our knowledge of neuronal connections for solving problems that the brain is exceptionally good at,” said Williams. “We have demonstrated that depending on the type of problem, there are different and more efficient ways of doing computations other than the conventional methods using digital computers with transistors.”

If you look at the news release on EurekAlert, you’ll see this informative image is titled: NeuristerSchematic [sic],

Caption: Networks of artificial neurons connected together can solve toy versions the viral quasispecies reconstruction problem. Credit: Texas A&M University College of Engineering

(On the university website, the image is credited to Rachel Barton.) You can see one of the first mentions of a ‘neuristor’ here in an August 24, 2017 posting.

Here’s a link to and a citation for the paper,

Third-order nanocircuit elements for neuromorphic engineering by Suhas Kumar, R. Stanley Williams & Ziwen Wang. Nature volume 585, pages518–523(2020) DOI: https://doi.org/10.1038/s41586-020-2735-5 Published: 23 September 2020 Issue Date: 24 September 2020

This paper is behind a paywall.