Category Archives: energy

Climate change and black gold

A July 3, 2019 news item on Nanowerk describes research coming from India and South Korea where nano gold is turned into black nanogold (Note: A link has been removed),

One of the main cause of global warming is the increase in the atmospheric CO2 level. The main source of this CO2 is from the burning of fossil fuels (electricity, vehicles, industry and many more).

Researchers at TIFR [Tata Institute of Fundamental Research] have developed the solution phase synthesis of Dendritic Plasmonic Colloidosomes (DPCs) with varying interparticle distances between the gold Nanoparticles (AU NPs) using a cycle-by-cycle growth approach by optimizing the nucleation-growth step. These DPCs absorb the entire visible and near-infrared region of solar light, due to interparticle plasmonic coupling as well as the heterogeneity in the Au NP [gold nanoparticle] sizes, which transformed golden gold material to black gold (Chemical Science, “Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion”).

A July 3, 2019 Tata Institute of Fundamental Research (TIFR) press release on EurekAlert, which originated the news item, provides more technical detail,

Black (nano)gold was able to catalyze CO2 to methane (fuel) conversion at atmospheric pressure and temperature, using solar energy. They also observed the significant effect of the plasmonic hotspots on the performance of these DPCs for the purification of seawater to drinkable water via steam generation, temperature jump assisted protein unfolding, oxidation of cinnamyl alcohol using pure oxygen as the oxidant, and hydrosilylation of aldehydes.

This was attributed to varying interparticle distances and particle sizes in these DPCs. The results indicate the synergistic effects of EM and thermal hotspots as well as hot electrons on DPCs performance. Thus, DPCs catalysts can effectively be utilized as Vis-NIR light photo-catalysts, and the design of new plasmonic nanocatalysts for a wide range of other chemical reactions may be possible using the concept of plasmonic coupling.

Raman thermometry and SERS (Surface-enhanced Raman Spectroscopy) provided information about the thermal and electromagnetic hotspots and local temperatures which was found to be dependent on the interparticle plasmonic coupling. The spatial distribution of the localized surface plasmon modes by STEM-EELS plasmon mapping confirmed the role of the interparticle distances in the SPR (Surface Plasmon Resonance) of the material.

Thus, in this work, by using the techniques of nanotechnology, the researchers transformed golden gold to black gold, by changing the size and gaps between gold nanoparticles. Similar to the real trees, which use CO2, sunlight and water to produce food, the developed black gold acts like an artificial tree that uses CO2, sunlight and water to produce fuel, which can be used to run our cars. Notably, black gold can also be used to convert sea water into drinkable water using the heat that black gold generates after it captures sunlight.

This work is a way forward to develop “Artificial Trees” which capture and convert CO2 to fuel and useful chemicals. Although at this stage, the production rate of fuel is low, in coming years, these challenges can be resolved. We may be able to convert CO2 to fuel using sunlight at atmospheric condition, at a commercially viable scale and CO2 may then become our main source of clean energy.

Here’s an image illustrating the work

Caption: Use of black gold can get us one step closer to combat climate change. Credit: Royal Society of Chemistry, Chemical Science

A July 3, 2019 Royal Society of Chemistry Highlight features more information about the research,

A “black” gold material has been developed to harvest sunlight, and then use the energy to turn carbon dioxide (CO2) into useful chemicals and fuel.

In addition to this, the material can also be used for applications including water purification, heating – and could help further research into new, efficient catalysts.

“In this work, by using the techniques of nanotechnology, we transformed golden gold to black gold, by simply changing the size and gaps between gold nanoparticles,” said Professor Vivek Polshettiwar from Tata Institute of Fundamental Research (TIFR) in India.

Tuning the size and gaps between gold nanoparticles created thermal and electromagnetic hotspots, which allowed the material to absorb the entire visible and near-infrared region of sunlight’s wavelength – making the gold “black”.

The team of researchers, from TIFR and Seoul National University in South Korea, then demonstrated that this captured energy could be used to combat climate change.

Professor Polshettiwar said: “It not only harvests solar energy but also captures and converts CO2 to methane (fuel). Synthesis and use of black gold for CO2-to-fuel conversion, which is reported for the first time, has the potential to resolve the global CO2 challenge.

“Now, like real trees which use CO2, sunlight and water to produce food, our developed black gold acts like an artificial tree to produce fuel – which we can use to run our cars,” he added.
Although production is low at this stage, Professor Polshettiwar (who was included in the RSC’s 175 Faces of Chemistry) believes that the commercially-viable conversion of CO2 to fuel at atmospheric conditions is possible in the coming years.

He said: “It’s the only goal of my life – to develop technology to capture and convert CO2 and combat climate change, by using the concepts of nanotechnology.”

Other experiments described in the Chemical Science paper demonstrate using black gold to efficiently convert sea water into drinkable water via steam generation.

It was also used for protein unfolding, alcohol oxidation, and aldehyde hydrosilylation: and the team believe their methodology could lead to novel and efficient catalysts for a range of chemical transformations.

Here’s a link to and a citation for the paper,

Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion by Mahak Dhiman, Ayan Maity, Anirban Das, Rajesh Belgamwar, Bhagyashree Chalke, Yeonhee Lee, Kyunjong Sim, Jwa-Min Nam and Vivek Polshettiwar. Chem. Sci., 2019, Advance Article. DOI: 10.1039/C9SC02369K First published on July 3, 2019

This paper is freely available in the open access journal Chemical Science.

Preventing corrosion in oil pipelines at the nanoscale

A June 7, 2019 news item on Azonano announces research into the process of oil pipeline corrosion at the nanoscale (Note: A link has been removed),

Steel pipes tend to rust and sooner or later fail. To anticipate disasters, oil companies and others have developed computer models to foretell when replacement is necessary. However, if the models themselves are incorrect, they can be amended only through experience, an expensive problem if detection happens too late.

Currently, scientists at Sandia National Laboratories, the Department of Energy’s Center for Integrated Nanotechnologies and the Aramco Research Center in Boston, have discovered that a specific form of nanoscale corrosion is responsible for suddenly diminishing the working life of steel pipes, according to a paper recently published in Nature’s Materials Degradation journal.

A June 6, 2019 Sandia National Laboratories news release (also on EurekAlert), which originated the news item, provides more technical detail,

Using transmission electron microscopes, which shoot electrons through targets to take pictures, the researchers were able to pin the root of the problem on a triple junction formed by a grain of cementite — a compound of carbon and iron — and two grains of ferrite, a type of iron. This junction forms frequently during most methods of fashioning steel pipe.

Iron atoms slip-sliding away

The researchers found that disorder in the atomic structure of those triple junctions made it easier for the corrosive solution to remove iron atoms along that interface.
In the experiment, the corrosive process stopped when the triple junction had been consumed by corrosion, but the crevice left behind allowed the corrosive solution to attack the interior of the steel.

“We thought of a possible solution for forming new pipe, based on changing the microstructure of the steel surface during forging, but it still needs to be tested and have a patent filed if it works,” said Sandia’s principle investigator Katherine Jungjohann, a paper author and lead microscopist. “But now we think we know where the major problem is.”

Aramco senior research scientist Steven Hayden added, “This was the world’s first real-time observation of nanoscale corrosion in a real-world material — carbon steel — which is the most prevalent type of steel used in infrastructure worldwide. Through it, we identified the types of interfaces and mechanisms that play a role in the initiation and progression of localized steel corrosion. The work is already being translated into models used to prevent corrosion-related catastrophes like infrastructure collapse and pipeline breaks.”

To mimic the chemical exposure of pipe in the field, where the expensive, delicate microscopes could not be moved, very thin pipe samples were exposed at Sandia to a variety of chemicals known to pass through oil pipelines.

Sandia researcher and paper author Khalid Hattar put a dry sample in a vacuum and used a transmission electron microscope to create maps of the steel grain types and their orientation, much as a pilot in a plane might use a camera to create area maps of farmland and roads, except that Hattar’s maps had approximately 6 nanometers resolution. (A nanometer is one-billionth of a meter.)

“By comparing these maps before and after the liquid corrosion experiments, a direct identification of the first phase that fell out of the samples could be identified, essentially identifying the weakest link in the internal microstructure,” Hattar said.

Sandia researcher and paper author Paul Kotula said, “The sample we analyzed was considered a low-carbon steel, but it has relatively high-carbon inclusions of cementite which are the sites of localized corrosion attacks.

“Our transmission electron microscopes were a key piece of this work, allowing us to image the sample, observe the corrosion process, and do microanalysis before and after the corrosion occurred to identify the part played by the ferrite and cementite grains and the corrosion product.”

When Hayden first started working in corrosion research, he said, “I was daunted at how complex and poorly understood corrosion is. This is largely because realistic experiments would involve observing complex materials like steel in liquid environments and with nanoscale resolution, and the technology to accomplish such a feat had only recently been developed and yet to be applied to corrosion. Now we are optimistic that further work at Sandia and the Center for Integrated Nanotechnologies will allow us to rethink manufacturing processes to minimize the expression of the susceptible nanostructures that render the steel vulnerable to accelerated decay mechanisms.”

Invisible path of localized corrosion

Localized corrosion is different from uniform corrosion. The latter occurs in bulk form and is highly predictable. The former is invisible, creating a pathway observable only at its endpoint and increasing bulk corrosion rates by making it easier for corrosion to spread.

“A better understanding of the mechanisms by which corrosion initiates and progresses at these types of interfaces in steel will be key to mitigating corrosion-related losses,” according to the paper.

Here’s a link to and a citation for the paper,

Localized corrosion of low-carbon steel at the nanoscale by Steven C. Hayden, Claire Chisholm, Rachael O. Grudt, Jeffery A. Aguiar, William M. Mook, Paul G. Kotula, Tatiana S. Pilyugina, Daniel C. Bufford, Khalid Hattar, Timothy J. Kucharski, Ihsan M. Taie, Michele L. Ostraat & Katherine L. Jungjohann. npj Materials Degradation volume 3, Article number: 17 (2019) DOI: https://doi.org/10.1038/s41529-019-0078-1 Published 12 April 2019

This paper is open access.

Turning wasted energy back into electricity

This work comes from the King Abdullah University of Science and Technology (KAUST; Saudi Arabia). From a June 27, 2019 news item on Nanowerk (Note: A link has been removed),

Some of the vast amount of wasted energy that machines and devices emit as heat could be recaptured using an inexpensive nanomaterial developed at KAUST. This thermoelectric nanomaterial could capture the heat lost by devices, ranging from mobile phones to vehicle engines, and turn it directly back into useful electricity (Advanced Energy Materials, “Low-temperature-processed colloidal quantum dots as building blocks for thermoelectrics”).

A June 27, 2019 KAUST press release, which originated the news item, provides more detail,

The nanomaterial is made using a low-temperature solution-based production process, making it suitable for coating on flexible plastics for use almost anywhere.

“Among the many renewable energy sources, waste heat has not been widely considered,” says Mohamad Nugraha, a postdoctoral researcher in Derya Baran’s lab. Waste heat emitted by machines and devices could be recaptured by thermoelectric materials. These substances have a property that means that when one side of the material is hot and the other is cold, an electric charge builds up along the temperature gradient.

Until now, thermoelectric materials have been made using expensive and energy-intensive processes. Baran, Nugraha and their colleagues have developed a new thermoelectric material made by spin coating a liquid solution of nanomaterials called quantum dots.

The team spin coated a thin layer of lead-sulphide quantum dots on a surface and then added a solution of short linker ligands that crosslink the quantum dots together to enhance the material’s electronic properties.

After repeating the spin-coating process layer by layer to form a 200-nanometer-thick film, gentle thermal annealing dried the film and completed fabrication. “Thermoelectric research has focused on materials processed at very high temperatures, above 400 degrees Celsius,” Nugraha says. The quantum-dot-based thermoelectric material is only heated up to 175 degrees Celsius. This lower processing temperature could cut production costs and means that thermoelectric devices could be formed on a broad range of surfaces, including cheap flexible plastics.

The team’s material showed promising thermoelectric properties. One important parameter of a good thermoelectric is the Seebeck coefficient, which corresponds to the voltage generated when a temperature gradient is applied. “We found some key factors leading to the enhanced Seebeck coefficient in our materials,” Nugraha says.

The team was also able to show that an effect called the quantum confinement, which alters a material’s electronic properties when it is shrunk to the nanoscale, was important for enhancing the Seebeck coefficient. The discovery is a step toward practical high-performance, low-temperature, solution-processed thermoelectric generators, Nugraha says.

Here’s a link to and a citation for the paper,

Low‐Temperature‐Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics by Mohamad I. Nugraha, Hyunho Kim, Bin Sun, Md Azimul Haque, Francisco Pelayo Garcia de Arquer, Diego Rosas Villalva, Abdulrahman El‐Labban, Edward H. Sargent, Husam N. Alshareef, Derya Baran. Advanced Energy Materials Volume 9, Issue 13 1803049 April 4, 2019 DOI: https://doi.org/10.1002/aenm.201803049 First published [online]: 14 February 2019

This paper is behind a paywall.

Low-cost carbon sequestration and eco-friendly manufacturing for chemicals with nanobio hybrid organisms

Years ago I was asked about carbon sequestration and nanotechnology and could not come up with any examples. At last I have something for the next time the question is asked. From a June 11, 2019 news item on ScienceDaily,

University of Colorado Boulder researchers have developed nanobio-hybrid organisms capable of using airborne carbon dioxide and nitrogen to produce a variety of plastics and fuels, a promising first step toward low-cost carbon sequestration and eco-friendly manufacturing for chemicals.

By using light-activated quantum dots to fire particular enzymes within microbial cells, the researchers were able to create “living factories” that eat harmful CO2 and convert it into useful products such as biodegradable plastic, gasoline, ammonia and biodiesel.

A June 11, 2019 University of Colorado at Boulder news release (also on EurekAlert) by Trent Knoss, which originated the news item, provides a deeper dive into the research,

“The innovation is a testament to the power of biochemical processes,” said Prashant Nagpal, lead author of the research and an assistant professor in CU Boulder’s Department of Chemical and Biological Engineering. “We’re looking at a technique that could improve CO2 capture to combat climate change and one day even potentially replace carbon-intensive manufacturing for plastics and fuels.”

The project began in 2013, when Nagpal and his colleagues began exploring the broad potential of nanoscopic quantum dots, which are tiny semiconductors similar to those used in television sets. Quantum dots can be injected into cells passively and are designed to attach and self-assemble to desired enzymes and then activate these enzymes on command using specific wavelengths of light.

Nagpal wanted to see if quantum dots could act as a spark plug to fire particular enzymes within microbial cells that have the means to convert airborne CO2 and nitrogen, but do not do so naturally due to a lack of photosynthesis.

By diffusing the specially-tailored dots into the cells of common microbial species found in soil, Nagpal and his colleagues bridged the gap. Now, exposure to even small amounts of indirect sunlight would activate the microbes’ CO2 appetite, without a need for any source of energy or food to carry out the energy-intensive biochemical conversions.

“Each cell is making millions of these chemicals and we showed they could exceed their natural yield by close to 200 percent,” Nagpal said.

The microbes, which lie dormant in water, release their resulting product to the surface, where it can be skimmed off and harvested for manufacturing. Different combinations of dots and light produce different products: Green wavelengths cause the bacteria to consume nitrogen and produce ammonia while redder wavelengths make the microbes feast on CO2 to produce plastic instead.

The process also shows promising signs of being able to operate at scale. The study found that even when the microbial factories were activated consistently for hours at a time, they showed few signs of exhaustion or depletion, indicating that the cells can regenerate and thus limit the need for rotation.

“We were very surprised that it worked as elegantly as it did,” Nagpal said. “We’re just getting started with the synthetic applications.”

The ideal futuristic scenario, Nagpal said, would be to have single-family homes and businesses pipe their CO2 emissions directly to a nearby holding pond, where microbes would convert them to a bioplastic. The owners would be able to sell the resulting product for a small profit while essentially offsetting their own carbon footprint.

“Even if the margins are low and it can’t compete with petrochemicals on a pure cost basis, there is still societal benefit to doing this,” Nagpal said. “If we could convert even a small fraction of local ditch ponds, it would have a sizeable impact on the carbon output of towns. It wouldn’t be asking much for people to implement. Many already make beer at home, for example, and this is no more complicated.”

The focus now, he said, will shift to optimizing the conversion process and bringing on new undergraduate students. Nagpal is looking to convert the project into an undergraduate lab experiment in the fall semester, funded by a CU Boulder Engineering Excellence Fund grant. Nagpal credits his current students with sticking with the project over the course of many years.

“It has been a long journey and their work has been invaluable,” he said. “I think these results show that it was worth it.”

Here’s a link to and a citation for the paper,

Nanorg Microbial Factories: Light-Driven Renewable Biochemical Synthesis Using Quantum Dot-Bacteria Nanobiohybrids by Yuchen Ding, John R. Bertram, Carrie Eckert, Rajesh Reddy Bommareddy, Rajan Patel, Alex Conradie, Samantha Bryan, Prashant Nagpal. J. Am. Chem. Soc.2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/jacs.9b02549 Publication Date:June 7, 2019
Copyright © 2019 American Chemical Society

This paper is behind a paywall.

‘Smart’ windows in Vancouver (Canada): engineering issues?

This post was going to focus on the first building in Canada to feature ‘smart’ windows. In this case, they are electrochromic windows and the company, View Dynamic Glass, was mentioned here in a September 17, 2018 posting about the windows’ use at the Dallas/Fort Worth Airport. (The posting includes a link to the View Dynamic Glass report on the windows’ use and a short video.)

However, things changed but, first, let’s start with an explanation as to what electrochromic glass ir. Chris Woodford in a December 5, 2018 article on explainthatstuff.com offers a great overview which includes an explanation, a description of how they work, and more. What follows is a brief excerpt from Woodford’s overview (Note: Links have been removed),

What is electrochromic glass?

Glass is an amazing material and our buildings would be dark, dingy, cold, and damp without it. But it has its drawbacks too. It lets in light and heat even when you don’t want it to. On a blinding summer’s day, the more heat (“solar gain”) that enters your building the more you’ll need to use your air-conditioning—a horrible waste of energy that costs you money and harms the environment. That’s why most of the windows in homes and offices are fitted with curtains or blinds. If you’re into interior design and remodeling, you might think furnishings like this are neat and attractive—but in cold, practical, scientific terms they’re a nuisance. Let’s be honest about this: curtains and blinds are a technological kludge to make up for glass’s big, built-in drawback: it’s transparent (or translucent) even when you don’t want it to be.

Since the early 20th century, people have got used to the idea of buildings that are increasingly automated. We have electric clothes washing machines, dishwashers, vacuum cleaners and much more. So why not fit our homes with electric windows that can change from clear to dark automatically? Smart windows (also referred to by the names smart glass, switchable windows, and dynamic windows) do exactly that using a scientific idea called electrochromism, in which materials change color (or switch from transparent to opaque) when you apply an electrical voltage across them. Typically smart windows start off a blueish color and gradually (over a few minutes) turn transparent when the electric current passes through them.

As for the news about its Vancouver debut, I was very excited to see this April 28, 2019 article by Kenneth Chan for dailyhive.com/vancouver,

BlueSky Properties’ 10-storey office building at 988 West Broadway [in Vancouver, Canada; emphasis mine] is home to the new Vancouver offices of Industrial Alliance Financial Group, which has leased nine stories and 93,700-sq-ft of office space.



One of the building’s unique design features is its use of View Dynamic Glass technology [emphases mine] — a glass technology that controls heat and glare, reduces overall energy consumption and costs, and improves the health and wellness of individuals working inside the building.

These smart windows optimize the amount of natural light to enhance mental and physical well-being without the need for shades or blinds. The application of the technology on this building, the first of its kind in Canada, will result in energy savings of up to 20%, [emphasis mine] with the amount of sunlight streaming through automatically tinted to block glare.

Blue Sky Properties (a Bosa Family Company), the local developer for this building, was very excited about the building and the ‘smart’ glass technology, according to its April 23, 2019 news release (here for a short version and here for the full version).

Other than being happy to see the technology being employed in Vancouver, I didn’t spend a lot of time thinking about the property. That changed on reading a May 8, 2019 article by Kenneth Chan for dailyhive.com/vancouver,

A structural engineer based in Vancouver has been stripped of his license to work in British Columbia [emphasis mine] following an investigation that determined his design for a condominium tower in Surrey fell short of the provincial building code.

According to a disciplinary notice posted by Engineers and Geoscientists British Columbia Association (EGBCA) on April 30, John Bryson, a managing partner of Bryson Markulin Zickmantel Structural Engineers (BMZSE), [emphases mine] admitted to unprofessional conduct and acted contrary to the association’s code of ethics that requires its members to “hold paramount the safety, health, and welfare of the public.”

“Mr. Bryson admitted that his structural design for the building did not comply with the 2006 BC Building Code, to which he certified it had been designed, in particular with respect to seismic and wind loads,” reads the notice. [emphases mine]

BMZSE has been involved in the design work of a number of projects across Metro Vancouver, including Station Square, Rogers Arena South Tower, Lougheed Heights, River District Parcel 17, The Jervis, Harwood, Plaza 88, Solo District, Burrard Place, Centreview Place, Trump International Hotel & Tower Vancouver, Central, Sovereign, Kings Crossing, and 988 West Broadway. [emphases mine]

You can find the ‘disciplinary notice’ (it’s an account of what Bryson failed to do and the punishment for the failure) here on the Association of Professional Engineers and Geoscientists of the Province of British Columbia (also known as Engineers and Geoscientists British Columbia) website.

Presumably, all of Bryson’s projects have been reviewed since the disciplinary action.

Graphene and smart textiles

Here’s one of the more recent efforts to create fibres that are electronic and capable of being woven into a smart textile. (Details about a previous effort can be found at the end of this post.) Now for this one, from a Dec. 3, 2018 news item on ScienceDaily,

The quest to create affordable, durable and mass-produced ‘smart textiles’ has been given fresh impetus through the use of the wonder material Graphene.

An international team of scientists, led by Professor Monica Craciun from the University of Exeter Engineering department, has pioneered a new technique to create fully electronic fibres that can be incorporated into the production of everyday clothing.

A Dec. 3, 2018 University of Exeter press release (also on EurekAlert), provides more detail about the problems associated with wearable electronics and the solution being offered (Note: A link has been removed),

Currently, wearable electronics are achieved by essentially gluing devices to fabrics, which can mean they are too rigid and susceptible to malfunctioning.

The new research instead integrates the electronic devices into the fabric of the material, by coating electronic fibres with light-weight, durable components that will allow images to be shown directly on the fabric.

The research team believe that the discovery could revolutionise the creation of wearable electronic devices for use in a range of every day applications, as well as health monitoring, such as heart rates and blood pressure, and medical diagnostics.

The international collaborative research, which includes experts from the Centre for Graphene Science at the University of Exeter, the Universities of Aveiro and Lisbon in Portugal, and CenTexBel in Belgium, is published in the scientific journal Flexible Electronics.

Professor Craciun, co-author of the research said: “For truly wearable electronic devices to be achieved, it is vital that the components are able to be incorporated within the material, and not simply added to it.

Dr Elias Torres Alonso, Research Scientist at Graphenea and former PhD student in Professor Craciun’s team at Exeter added “This new research opens up the gateway for smart textiles to play a pivotal role in so many fields in the not-too-distant future.  By weaving the graphene fibres into the fabric, we have created a new technique to all the full integration of electronics into textiles. The only limits from now are really within our own imagination.”

At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for the use in wearable electronic devices in recent years.

This new research used existing polypropylene fibres – typically used in a host of commercial applications in the textile industry – to attach the new, graphene-based electronic fibres to create touch-sensor and light-emitting devices.

The new technique means that the fabrics can incorporate truly wearable displays without the need for electrodes, wires of additional materials.

Professor Saverio Russo, co-author and from the University of Exeter Physics department, added: “The incorporation of electronic devices on fabrics is something that scientists have tried to produce for a number of years, and is a truly game-changing advancement for modern technology.”

Dr Ana Neves, co-author and also from Exeter’s Engineering department added “The key to this new technique is that the textile fibres are flexible, comfortable and light, while being durable enough to cope with the demands of modern life.”

In 2015, an international team of scientists, including Professor Craciun, Professor Russo and Dr Ana Neves from the University of Exeter, have pioneered a new technique to embed transparent, flexible graphene electrodes into fibres commonly associated with the textile industry.

Here’s a link to and a citation for the paper,

Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles by Elias Torres Alonso, Daniela P. Rodrigues, Mukond Khetani, Dong-Wook Shin, Adolfo De Sanctis, Hugo Joulie, Isabel de Schrijver, Anna Baldycheva, Helena Alves, Ana I. S. Neves, Saverio Russo & Monica F. Craciun. Flexible Electronicsvolume 2, Article number: 25 (2018) DOI: https://doi.org/10.1038/s41528-018-0040-2 Published 25 September 2018

This paper is open access.

I have an earlier post about an effort to weave electronics into textiles for soldiers, from an April 5, 2012 posting,

I gather that today’s soldier (aka, warfighter)  is carrying as many batteries as weapons. Apparently, the average soldier carries a couple of kilos worth of batteries and cables to keep their various pieces of equipment operational. The UK’s Centre for Defence Enterprise (part of the Ministry of Defence) has announced that this situation is about to change as a consequence of a recently funded research project with a company called Intelligent Textiles. From Bob Yirka’s April 3, 2012 news item for physorg.com,

To get rid of the cables, a company called Intelligent Textiles has come up with a type of yarn that can conduct electricity, which can be woven directly into the fabric of the uniform. And because they allow the uniform itself to become one large conductive unit, the need for multiple batteries can be eliminated as well.

I dug down to find more information about this UK initiative and the Intelligent Textiles company but the trail seems to end in 2015. Still, I did find a Canadian connection (for those who don’t know I’m a Canuck) and more about Intelligent Textile’s work with the British military in this Sept. 21, 2015 article by Barry Collins for alphr.com (Note: Links have been removed),

A two-person firm operating from a small workshop in Staines-upon-Thames, Intelligent Textiles has recently landed a multimillion-pound deal with the US Department of Defense, and is working with the Ministry of Defence (MoD) to bring its potentially life-saving technology to British soldiers. Not bad for a company that only a few years ago was selling novelty cushions.

Intelligent Textiles was born in 2002, almost by accident. Asha Peta Thompson, an arts student at Central Saint Martins, had been using textiles to teach children with special needs. That work led to a research grant from Brunel University, where she was part of a team tasked with creating a “talking jacket” for the disabled. The garment was designed to help cerebral palsy sufferers to communicate, by pressing a button on the jacket to say “my name is Peter”, for example, instead of having a Stephen Hawking-like communicator in front of them.

Another member of that Brunel team was engineering lecturer Dr Stan Swallow, who was providing the electronics expertise for the project. Pretty soon, the pair realised the prototype waistcoat they were working on wasn’t going to work: it was cumbersome, stuffed with wires, and difficult to manufacture. “That’s when we had the idea that we could weave tiny mechanical switches into the surface of the fabric,” said Thompson.

The conductive weave had several advantages over packing electronics into garments. “It reduces the amount of cables,” said Thompson. “It can be worn and it’s also washable, so it’s more durable. It doesn’t break; it can be worn next to the skin; it’s soft. It has all the qualities of a piece of fabric, so it’s a way of repackaging the electronics in a way that’s more user-friendly and more comfortable.” The key to Intelligent Textiles’ product isn’t so much the nature of the raw materials used, but the way they’re woven together. “All our patents are in how we weave the fabric,” Thompson explained. “We weave two conductive yarns to make a tiny mechanical switch that is perfectly separated or perfectly connected. We can weave an electronic circuit board into the fabric itself.”

Intelligent Textiles’ big break into the military market came when they met a British textiles firm that was supplying camouflage gear to the Canadian armed forces. [emphasis mine] The firm was attending an exhibition in Canada and invited the Intelligent Textiles duo to join them. “We showed a heated glove and an iPod controller,” said Thompson. “The Canadians said ‘that’s really fantastic, but all we need is power. Do you think you could weave a piece of fabric that distributes power?’ We said, ‘we’re already doing it’.”Before long it wasn’t only power that the Canadians wanted transmitted through the fabric, but data.

“The problem a soldier faces at the moment is that he’s carrying 60 AA batteries [to power all the equipment he carries],” said Thompson. “He doesn’t know what state of charge those batteries are at, and they’re incredibly heavy. He also has wires and cables running around the system. He has snag hazards – when he’s going into a firefight, he can get caught on door handles and branches, so cables are a real no-no.”

The Canadians invited the pair to speak at a NATO conference, where they were approached by military brass with more familiar accents. “It was there that we were spotted by the British MoD, who said ‘wow, this is a British technology but you’re being funded by Canada’,” said Thompson. That led to £235,000 of funding from the Centre for Defence Enterprise (CDE) – the money they needed to develop a fabric wiring system that runs all the way through the soldier’s vest, helmet and backpack.

There are more details about the 2015 state of affairs, textiles-wise, in a March 11, 2015 article by Richard Trenholm for CNET.com (Note: A link has been removed),

Speaking at the Wearable Technology Show here, Swallow describes IT [Intelligent Textiles]L as a textile company that “pretends to be a military company…it’s funny how you slip into these domains.”

One domain where this high-tech fabric has seen frontline action is in the Canadian military’s IAV Stryker armoured personnel carrier. ITL developed a full QWERTY keyboard in a single piece of fabric for use in the Stryker, replacing a traditional hardware keyboard that involved 100 components. Multiple components allow for repair, but ITL knits in redundancy so the fabric can “degrade gracefully”. The keyboard works the same as the traditional hardware, with the bonus that it’s less likely to fall on a soldier’s head, and with just one glaring downside: troops can no longer use it as a step for getting in and out of the vehicle.

An armoured car with knitted controls is one thing, but where the technology comes into its own is when used about the person. ITL has worked on vests like the JTAC, a system “for the guys who call down airstrikes” and need “extra computing oomph.” Then there’s SWIPES, a part of the US military’s Nett Warrior system — which uses a chest-mounted Samsung Galaxy Note 2 smartphone — and British military company BAE’s Broadsword system.

ITL is currently working on Spirit, a “truly wearable system” for the US Army and United States Marine Corps. It’s designed to be modular, scalable, intuitive and invisible.

While this isn’t an ITL product, this video about Broadsword technology from BAE does give you some idea of what wearable technology for soldiers is like,

baesystemsinc

Uploaded on Jul 8, 2014

Broadsword™ delivers groundbreaking technology to the 21st Century warfighter through interconnecting components that inductively transfer power and data via The Spine™, a revolutionary e-textile that can be inserted into any garment. This next-generation soldier system offers enhanced situational awareness when used with the BAE Systems’ Q-Warrior® see-through display.

If anyone should have the latest news about Intelligent Textile’s efforts, please do share in the comments section.

I do have one other posting about textiles and the military, which is dated May 9, 2012, but while it does reference US efforts it is not directly related to weaving electronics into solder’s (warfighter’s) gear.

You can find CenTexBel (Belgian Textile Rsearch Centre) here and Graphenea here. Both are mentioned in the University of Exeter press release.

Unusual appetite for gold

This bacterium (bacteria being the plural) loves gold, which is lucky for anyone trying to develop artificial photosynthesis.From an October 9, 2018 news item on ScienceDaily,

A bacterium named Moorella thermoacetica won’t work for free. But UC Berkeley [University of California at Berkeley] researchers have figured out it has an appetite for gold. And in exchange for this special treat, the bacterium has revealed a more efficient path to producing solar fuels through artificial photosynthesis.

An October 5, 2018 UC Berkeley news release by Theresa Duque (also on EurekAlert but published on October 9, 2018), which originated the news item, expands on the theme,

M. thermoacetica first made its debut as the first non-photosensitive bacterium to carry out artificial photosynthesis (link is external) in a study led by Peidong Yang, a professor in UC Berkeley’s College of Chemistry. By attaching light-absorbing nanoparticles made of cadmium sulfide (CdS) to the bacterial membrane exterior, the researchers turned M. thermoacetica into a tiny photosynthesis machine, converting sunlight and carbon dioxide into useful chemicals.

Now Yang and his team of researchers have found a better way to entice this CO2-hungry bacterium into being even more productive. By placing light-absorbing gold nanoclusters inside the bacterium, they have created a biohybrid system that produces a higher yield of chemical products than previously demonstrated. The research, funded by the National Institutes of Health, was published on Oct. 1 in Nature Nanotechnology (link is external).

For the first hybrid model, M. thermoacetica-CdS, the researchers chose cadmium sulfide as the semiconductor for its ability to absorb visible light. But because cadmium sulfide is toxic to bacteria, the nanoparticles had to be attached to the cell membrane “extracellularly,” or outside the M. thermoacetica-CdS system. Sunlight excites each cadmium-sulfide nanoparticle into generating a charged particle known as an electron. As these light-generated electrons travel through the bacterium, they interact with multiple enzymes in a process known as “CO2 reduction,” triggering a cascade of reactions that eventually turns CO2 into acetate, a valuable chemical for making solar fuels.

But within the extracellular model, the electrons end up interacting with other chemicals that have no part in turning CO2 into acetate. And as a result, some electrons are lost and never reach the enzymes. So to improve what’s known as “quantum efficiency,” or the bacterium’s ability to produce acetate each time it gains an electron, the researchers found another semiconductor: nanoclusters made of 22 gold atoms (Au22), a material that M. thermoacetica took a surprising shine to.

A single nanocluster of 22 gold atoms

Figure: A single nanocluster of 22 gold atoms – Au22 – is only 1 nanometer in diameter, allowing it to easily slip through the bacterial cell wall.

“We selected Au22 because it’s ideal for absorbing visible light and has the potential for driving the CO2 reduction process, but we weren’t sure whether it would be compatible with the bacteria,” Yang said. “When we inspected them under the microscope, we discovered that the bacteria were loaded with these Au22 clusters – and were still happily alive.”

Imaging of the M. thermoacetica-Au22 system was done at UC Berkeley’s Molecular Imaging Center (link is external).

The researchers also selected Au22 ­– dubbed by the researchers as “magic” gold nanoclusters – for its ultrasmall size: A single Au22nanocluster is only 1 nanometer in diameter, allowing each nanocluster to easily slip through the bacterial cell wall.

“By feeding bacteria with Au22 nanoclusters, we’ve effectively streamlined the electron transfer process for the CO2 reduction pathway inside the bacteria, as evidenced by a 2.86 percent quantum efficiency – or 33 percent more acetate produced within the M. thermoacetica-Au22 system than the CdS model,” Yang said.

The magic gold nanocluster is the latest discovery coming out of Yang’s lab, which for the past six years has focused on using biohybrid nanostructures to convert CO2 into useful chemicals as part of an ongoing effort to find affordable, abundant resources for renewable fuels, and potential solutions to thwart the effects of climate change.

“Next, we’d like to find a way to reduce costs, improve the lifetimes for these biohybrid systems, and improve quantum efficiency,” Yang said. “By continuing to look at the fundamental aspect of how gold nanoclusters are being photoactivated, and by following the electron transfer process within the CO2 reduction pathway, we hope to find even better solutions.”

Co-authors with Yang are UC Berkeley graduate student Hao Zhang and former postdoctoral fellow Hao Liu, now at Donghua University in Shanghai, China.

Here’s a link to and a citation for the paper,

Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production by Hao Zhang, Hao Liu, Zhiquan Tian, Dylan Lu, Yi Yu, Stefano Cestellos-Blanco, Kelsey K. Sakimoto, & Peidong Yang. Nature Nanotechnologyvolume 13, pages900–905 (2018). DOI: https://doi.org/10.1038/s41565-018-0267-z Published: 01 October 2018

This paper is behind a paywall.

For lovers of animation, the folks at UC Berkeley have produced this piece about the ‘gold-loving’ bacterium,

The van Gogh-Roosegaarde path, a solar powered bike path

From YouTube, Heijmans NV Published on Nov 12, 2014 Inspired by Vincent van Gogh’s work, the cycle path combines innovation and design with cultural heritage and tourism. The Van Gogh-Roosegaarde cycle path is being constructed by Heijmans from a design by Daan Roosegaarde and forms part of the Van Gogh cycle route in Brabant.

According to other sources, the path was inspired by van Gogh’s ‘Starry Night’. From a November 21, 2014 article by Elizabeth Montalbano for Design News (Note: A link has been removed),

The Dutch are known for their love of bicycling, and they’ve also long been early adopters of green-energy and smart-city technologies. So it seems fitting that a town in which painter Vincent van Gogh once lived has given him a very Dutch-like tribute — a bike path lit by a special smart paint in the style of the artist’s “Starry Night” painting.

Designed by artist Daan Roosegaarde of Studio Roosegaarde, the van Gogh-Roosegaarde bike path — in the Dutch town of Nuenen en Eindhoven, where van Gogh lived from 1883-1885 — is a kilometer long and features technologies developed as part of the Smart Highway project, a joint venture of the studio and Dutch infrastructure company Heijmans.

A team of 12 designers and engineers worked on the project for eight months, while site production took 10 days. The opening of the path marked the official launch of the international van Gogh 2015 year.

The path uses stones painted with a smart coating that charges by the heat of the sun during the day and then glow at night for up to eight hours. When there is not enough sunlight during the day to charge the stones, the path can draw electricity from a solar panel installed nearby. There are also LEDs in the path that provides lighting.

How does the technology work?

Despite my best efforts, I never did unearth a good technical explanation. There is some sort of photoluminescent powder or paint. I vote for a powder that’s been emulsified in a paint/coating. material. Somehow, this material is charged by sunlight and then at night glows with the help of a solar panel and light-emitting diodes (LEDs).

Here’s the clearest explanation I found; it’s from Dan Howarth’s November 12, 2014 article for dezeen.com (Note: A link has been removed), ,

The surface of the Van Gogh-Roosegaarde Bicycle Path is coated with a special paint that uses energy gathered during the day to glow after dark.


[Daan] Roosegaarde told Dezeen that this method of illumination is “more gentle to the eye and surrounding nature” that other lighting infrastructure, and creates a “connection with cultural history”.

A nearby solar panel is used to generate power to illuminate the coated surface, which was developed with infrastructure firm Heijmans. LEDs along the side of certain curves in the path cast extra light, meaning the path will still be partially lit if the weather has been too cloudy for the panel to charge the surface to its full brightness.

“It’s a new total system that is self-sufficient and practical, and just incredibly poetic,” said Roosegaarde.

Lily Hay Newman’s November 14, 2014 article for Slate.com succinctly sums up the technical aspects,

The path is coated in photoluminescent paint that’s also embedded with small LEDs powered by nearby solar panels. The path essentially charges all day so that it can glow during the night, and it also has backup power in case it’s overcast.

This October 30, 2012 article by Liat Clark for Wired.com provides a bit more detail about the powder/paint as Clark delves into the Roosegaarde Studo’s Smart Highway project (the cycle path made use of the same technology) ,

The studio has developed a photo-luminising powder that will replace road markings – it charges up in sunlight, giving it up to 10 hours of glow-in-the-dark time come nightfall. “It’s like the glow in the dark paint you and I had when we were children,” designer Roosegaarde explained, “but we teamed up with a paint manufacturer and pushed the development. Now, it’s almost radioactive“. [perhaps not the wisest choice of hyperbole]

Special paint will also be used to paint markers like snowflakes across the road’s surface – when temperatures fall to a certain point, these images will become visible, indicating that the surface will likely be slippery. Roosegaarde says this technology has been around for years, on things like baby food – the studio has just upscaled it.

Not everyone is in love

Shaunacy Ferro’s July 26, 2017 article for dentalfloss.com highlights a glow-in-the-dark path project for Singapore and a little criticism (Note: Links have been removed),

Glow-in-the-dark materials are no longer for toys. Photoluminescence can help cities feel safer at night, whether it’s part of a mural, a bike lane, or a highway. Glow-in-the-dark paths have been tested in several European cities (the above is a Van Gogh-inspired bike path by the Dutch artist Daan Roosegaarde) and in Texas, but now, the technology may be coming to Singapore. The city-state is currently developing a 15-mile greenway called the Rail Corridor, and it now has a glow-in-the-dark path, as Mashable reports.

The 328-foot stretch of glowing path is part of a test of multiple surface materials that might eventually be used throughout the park, depending on public opinion. In addition to the strontium aluminate-beaded [emphasis mine] path that glows at night, there are also three other 328-foot stretches of the path that are paved with fine gravel, cement aggregate, and part-grass/part-gravel. The glow-in-the-dark material embedded in the walkway absorbs UV light from the sun during the day and can emit light for up to eight hours once the sun goes down.

However, in practice, glow-in-the-dark paths can be less dazzling than they seem. [emphasis mine] Mashable’s reporter called the glowing effect on Singapore’s path “disappointingly feeble.” [emphasis mine] In 2014, a glowing highway-markings pilot by Studio Roosegaarde in the Netherlands revealed that the first road markings faded after exposure to heavy rains. [emphases mine] When it comes to glowing roads, the renderings tend to look better than the actual result, [emphasis mine] and there are still kinks to work out. (The studio worked the issue out eventually.) While a person walking or biking down Singapore’s glowing path might be able to tell that they were staying on the path better than if they were fumbling along dark pavement, it’s not the equivalent of a streetlight, for sure.

Ferro had reported earlier on Studio Roosegaarde’s Smart Highway project in an October 23, 2014 article for Fast Company where Ferro first mentioned the rain problem (Note: Links have been removed),

Glowing Lanes is a collaboration between Dutch engineering company Heijmans and Daan Roosegaarde, a tech-loving artist and designer whose previous work includes Intimacy 2.0, a dress that becomes transparent when the wearer gets aroused. The glow-in-the-dark lane markers are intended to increase road visibility in a more energy-efficient way than traditional street lighting. Photoluminescent paint charges during the day and slowly emits light over the course of eight hours during the evening.

After a few technical challenges (an early version of the markers didn’t fare so well in the rain), the final system has been installed, and according to Studio Roosegaarde, the kinks have been worked out, and initial reports of the paint fading were “overstated.” [emphases mine]

“This was part of any normal learning process,” according to an email from the studio’s PR, and “now the project is ‘matured.’”

But not to the point where it’s no longer a novelty. According to the email from Studio Roosegaarde, the glowing highway caused a minor traffic jam last night as people rushed to look at it.

… Roosegaarde has also been asked to create a smart highway design for Afsluitdijk–an almost 20-mile-long dike that connects North Holland to the province of Friesland across the water–and according to his studio, there are plans in the works to launch the glowing lanes in China and Japan as well.

Comments

In the following excerpt, there’s a reference to strontium aluminate-coated materials, given the interview which follows this section, the project in Singapore did not use the photoluminescent paint developed by Roosegaarde Studio. I found this paint reference in a July 26, 2017 article by Yi Shu Ng for Mashable (h/t Ferro’s July 26, 2017 article) which notes the product’s ubiquity,

The track glows because it’s got strontium aluminate compounds embedded in it — the chemical is commonly found in glow-in-the-dark products, which absorb ultraviolet light in the day, to emit luminescence at night.

There are some inconsistencies in the reporting about the number of hours, eight hours or 10 hours, the bicycle path or smart highway remains lit after being charged. Given that this was a newish technology being used in a new application, the rain problem and other technical glitches were to be expected. I wish the writer had been a little less dismissive and that the studio had been a little more forthcoming about how they solved the problems. In any case, I dug further and this is what I got.

Interview

I’m not sure who answered the questions but this comes direct from Studio Roosegaarde,

  • Could you give me a capsule description of what’s happened since the path was opened in 2014/15? For example, How does the bike path look these days? Does it still glow? Don’t the bicycles on the path destroy the ‘Starry Night’ pattern over time? Do the stones have to be coated over and over again to maintain their solar charging capacities? 

    The Van Gogh Path is still working perfectly and is visited every night by couples, tourists and local people. The stones are inside the concrete so are still in place and will work for a minimum of 10 years. It is great to see we have created a place of wonder. It is the most published bicycle path in the world. We have even had children books published about it.
  • Are there more bike paths like the Van Gogh Path in other parts of Holland and/or elsewhere?

    No, this is the only one. There have been some copycats in other countries.The Smart Highway project is still growing, and our recent Gates of Light is the next step of poetic and energy-neutral landscapes like the Van Gogh Path:  https://www.studioroosegaarde.net/project/gates-of-light
  • How has your project evolved? And, have there been any unanticipated benefits and/or setbacks? Is there a change in the technology, I noticed you were investigating bioluminscence.

    Yes, we are still developing new landscapes of the future. What we have learned from Van Gogh Path we have applied in new projects such as Glowing Nature: https://www.studioroosegaarde.net/project/glowing-nature We also do something new.
  • I was struck by how gentle the lighting is. I understand there has been some criticism about how much light the path radiates and I’m wondering about your thoughts on that.

    Yes, since the path is a nature protected environment, normal LED lighting was not allowed. So the light is gentle but still visible, and sustainable.There are some bad copy-cats using cheap materials which don’t work well, like the one in Singapore. But we are happy that our path is still working.

Thank you to the folks at Studio Roosegaarde for taking the time to provide this interview. Here are links to Studio Roosegaarde and their industrial partner, Heijmans.

Iridescent giant clams could point the way to safety, climatologically speaking

Giant clams in Palau (Cynthia Barnett)

These don’t look like any clams I’ve ever seen but that is the point of Cynthia Barnett’s absorbing Sept. 10, 2018 article for The Atlantic (Note: A link has been removed),

Snorkeling amid the tree-tangled rock islands of Ngermid Bay in the western Pacific nation of Palau, Alison Sweeney lingers at a plunging coral ledge, photographing every giant clam she sees along a 50-meter transect. In Palau, as in few other places in the world, this means she is going to be underwater for a skin-wrinkling long time.

At least the clams are making it easy for Sweeney, a biophysicist at the University of Pennsylvania. The animals plump from their shells like painted lips, shimmering in blues, purples, greens, golds, and even electric browns. The largest are a foot across and radiate from the sea floor, but most are the smallest of the giant clams, five-inch Tridacna crocea, living higher up on the reef. Their fleshy Technicolor smiles beam in all directions from the corals and rocks of Ngermid Bay.

… Some of the corals are bleached from the conditions in Ngermid Bay, where naturally high temperatures and acidity mirror the expected effects of climate change on the global oceans. (Ngermid Bay is more commonly known as “Nikko Bay,” but traditional leaders and government officials are working to revive the indigenous name of Ngermid.)

Even those clams living on bleached corals are pulsing color, like wildflowers in a white-hot desert. Sweeney’s ponytail flows out behind her as she nears them with her camera. They startle back into their fluted shells. Like bashful fairytale creatures cursed with irresistible beauty, they cannot help but draw attention with their sparkly glow.

Barnett makes them seem magical and perhaps they are (Note: A link has been removed),

It’s the glow that drew Sweeney’s attention to giant clams, and to Palau, a tiny republic of more than 300 islands between the Philippines and Guam. Its sun-laden waters are home to seven of the world’s dozen giant-clam species, from the storied Tridacna gigas—which can weigh an estimated 550 pounds and measure over four feet across—to the elegantly fluted Tridacna squamosa. Sweeney first came to the archipelago in 2009, while working on animal iridescence as a post-doctoral fellow at the University of California at Santa Barbara. Whether shimmering from a blue morpho butterfly’s wings or a squid’s skin, iridescence is almost always associated with a visual signal—one used to attract mates or confuse predators. Giant clams’ luminosity is not such a signal. So, what is it?

In the years since, Sweeney and her colleagues have discovered that the clams’ iridescence is essentially the outer glow of a solar transformer—optimized over millions of years to run on sunlight and algal biofuel. Giant clams reach their cartoonish proportions thanks to an exceptional ability to grow their own photosynthetic algae in vertical farms spread throughout their flesh. Sweeney and other scientists think this evolved expertise may shed light on alternative fuel technologies and other industrial solutions for a warming world.

Barnett goes on to describe Palau’s relationship to the clams and the clams’ environment,

Palau’s islands have been inhabited for at least 3,400 years, and from the start, giant clams were a staple of diet, daily life, and even deity. Many of the islands’ oldest-surviving tools are crafted of thick giant-clam shell: arched-blade adzes, fishhooks, gougers, heavy taro-root pounders. Giant-clam shell makes up more than three-fourths of some of the oldest shell middens in Palau, a percentage that decreases through the centuries. Archaeologists suggest that the earliest islanders depleted the giant clams that crowded the crystalline shallows, then may have self-corrected. Ancient Palauan conservation law, known as bul, prohibited fishing during critical spawning periods, or when a species showed signs of over-harvesting.

Before the Christianity that now dominates Palauan religion sailed in on eighteenth-century mission ships, the culture’s creation lore began with a giant clam called to life in an empty sea. The clam grew bigger and bigger until it sired Latmikaik, the mother of human children, who birthed them with the help of storms and ocean currents.

The legend evokes giant clams in their larval phase, moving with the currents for their first two weeks of life. Before they can settle, the swimming larvae must find and ingest one or two photosynthetic alga, which later multiply, becoming self-replicating fuel cells. After the larvae down the alga and develop a wee shell and a foot, they kick around like undersea farmers, looking for a sunny spot for their crop. When they’ve chosen a well-lit home in a shallow lagoon or reef, they affix to the rock, their shell gaping to the sky. After the sun hits and photosynthesis begins, the microalgae will multiply to millions, or in the case of T. gigas, billions, and clam and algae will live in symbiosis for life.

Giant clam is a beloved staple in Palau and many other Pacific islands, prepared raw with lemon, simmered into coconut soup, baked into a savory pancake, or sliced and sautéed in a dozen other ways. But luxury demand for their ivory-like shells and their adductor muscle, which is coveted as high-end sashimi and an alleged aphrodisiac, has driven T. gigas extinct in China, Taiwan, and other parts of their native habitat. Some of the toughest marine-protection laws in the world, along with giant-clam aquaculture pioneered here, have helped Palau’s wild clams survive. The Palau Mariculture Demonstration Center raises hundreds of thousands of giant clams a year, supplying local clam farmers who sell to restaurants and the aquarium trade and keeping pressure off the wild population. But as other nations have wiped out their clams, Palau’s 230,000-square-mile ocean territory is an increasing target of illegal foreign fishers.

Barnett delves into how the country of Palau is responding to the voracious appetite for the giant clams and other marine life,

Palau, drawing on its ancient conservation tradition of bul, is fighting back. In 2015, President Tommy Remengesau Jr. signed into law the Palau National Marine Sanctuary Act, which prohibits fishing in 80 percent of Palau’s Exclusive Economic Zone and creates a domestic fishing area in the remaining 20 percent, set aside for local fishers selling to local markets. In 2016, the nation received a $6.6 million grant from Japan to launch a major renovation of the Palau Mariculture Demonstration Center. Now under construction at the waterfront on the southern tip of Malakal Island, the new facility will amp up clam-aquaculture research and increase giant-clam production five-fold, to more than a million seedlings a year.

Last year, Palau amended its immigration policy to require that all visitors sign a pledge to behave in an ecologically responsible manner. The pledge, stamped into passports by an immigration officer who watches you sign, is written to the island’s children:

Children of Palau, I take this pledge, as your guest, to preserve and protect your beautiful and unique island home. I vow to tread lightly, act kindly and explore mindfully. I shall not take what is not given. I shall not harm what does not harm me. The only footprints I shall leave are those that will wash away.

The pledge is winning hearts and public-relations awards. But Palau’s existential challenge is still the collective “we,” the world’s rising carbon emissions and the resulting upturns in global temperatures, sea levels, and destructive storms.

F. Umiich Sengebau, Palau’s Minister for Natural Resources, Environment, and Tourism, grew up on Koror and is full of giant-clam proverbs, wisdom and legends from his youth. He tells me a story I also heard from an elder in the state of Airai: that in old times, giant clams were known as “stormy-weather food,” the fresh staple that was easy to collect and have on hand when it was too stormy to go out fishing.

As Palau faces the storms of climate change, Sengebau sees giant clams becoming another sort of stormy-weather food, serving as a secure source of protein; a fishing livelihood; a glowing icon for tourists; and now, an inspiration for alternative energy and other low-carbon technologies. “In the old days, clams saved us,” Sengebau tells me. “I think there’s a lot of power in that, a great power and meaning in the history of clams as food, and now clams as science.”

I highly recommend Barnett’s article, which is one article in a larger series, from a November 6, 2017 The Atlantic press release,

The Atlantic is expanding the global footprint of its science writing today with a multi-year series to investigate life in all of its multitudes. The series, “Life Up Close,” created with support from Howard Hughes Medical Institute’s Department of Science Education (HHMI), begins today at TheAtlantic.com. In the first piece for the project, “The Zombie Diseases of Climate Change,” The Atlantic’s Robinson Meyer travels to Greenland to report on the potentially dangerous microbes emerging from thawing Arctic permafrost.

The project is ambitious in both scope and geographic reach, and will explore how life is adapting to our changing planet. Journalists will travel the globe to examine these changes as they happen to microbes, plants, and animals in oceans, grasslands, forests, deserts, and the icy poles. The Atlantic will question where humans should look for life next: from the Martian subsurface, to Europa’s oceans, to the atmosphere of nearby stars and beyond. “Life Up Close” will feature at least twenty reported pieces continuing through 2018.

“The Atlantic has been around for 160 years, but that’s a mere pinpoint in history when it comes to questions of life and where it started, and where we’re going,” said Ross Andersen, The Atlantic’s senior editor who oversees science, tech, and health. “The questions that this project will set out to tackle are critical; and this support will allow us to cover new territory in new and more ambitious ways.”

About The Atlantic:
Founded in 1857 and today one of the fastest growing media platforms in the industry, The Atlantic has throughout its history championed the power of big ideas and continues to shape global debate across print, digital, events, and video platforms. With its award-winning digital presence TheAtlantic.com and CityLab.com on cities around the world, The Atlantic is a multimedia forum on the most critical issues of our times—from politics, business, urban affairs, and the economy, to technology, arts, and culture. The Atlantic is celebrating its 160th anniversary this year. Bob Cohn is president of The Atlantic and Jeffrey Goldberg is editor in chief.

About the Howard Hughes Medical Institute (HHMI) Department of Science Education:
HHMI is the leading private nonprofit supporter of scientific research and science education in the United States. The Department of Science Education’s BioInteractive division produces free, high quality educational media for science educators and millions of students around the globe, its HHMI Tangled Bank Studios unit crafts powerful stories of scientific discovery for television and big screens, and its grants program aims to transform science education in universities and colleges. For more information, visit www.hhmi.org.

Getting back to the giant clams, sometimes all you can do is marvel, eh?

Bristly hybrid materials

Caption: [Image 1] A carbon fiber covered with a spiky forest of NiCoHC nanowires. Credit: All images reproduced from reference 1 under a Creative Commons Attribution 4.0 International License© 2018 KAUST

It makes me think of small, cuddly things like cats and dogs but it’s not. From an August 7, 2018 King Abdullah University of Science and Technology (KAUST; Saudi Arabia) news release (also published on August 12, 2018 on EurekAlert),

By combining multiple nanomaterials into a single structure, scientists can create hybrid materials that incorporate the best properties of each component and outperform any single substance. A controlled method for making triple-layered hollow nanostructures has now been developed at KAUST. The hybrid structures consist of a conductive organic core sandwiched between layers of electrocatalytically active metals: their potential uses range from better battery electrodes to renewable fuel production.

Although several methods exist to create two-layer materials, making three-layered structures has proven much more difficult, says Peng Wang from the Water Desalination and Reuse Center who co-led the current research with Professor Yu Han, member of the Advanced Membranes and Porous Materials Center at KAUST. The researchers developed a new, dual-template approach, explains Sifei Zhuo, a postdoctoral member of Wang’s team.

The researchers grew their hybrid nanomaterial directly on carbon paper–a mat of electrically conductive carbon fibers. They first produced a bristling forest of nickel cobalt hydroxyl carbonate (NiCoHC) nanowires onto the surface of each carbon fiber (image 1). Each tiny inorganic bristle was coated with an organic layer called hydrogen substituted graphdiyne (HsGDY) (image 2 [not included here]).

Next was the key dual-template step. When the team added a chemical mixture that reacts with the inner NiCoHC, the HsGDY acted as a partial barrier. Some nickel and cobalt ions from the inner layer diffused outward, where they reacted with thiomolybdate from the surrounding solution to form the outer nickel-, cobalt-co-doped MoS2 (Ni,Co-MoS2) layer. Meanwhile, some sulfur ions from the added chemicals diffused inwards to react with the remaining nickel and cobalt. The resulting substance (image 3 [not included here]) had the structure Co9S8, Ni3S2@HsGDY@Ni,Co-MoS2, in which the conductive organic HsGDY layer is sandwiched between two inorganic layers (image 4 [not included here]).

The triple layer material showed good performance at electrocatalytically breaking up water molecules to generate hydrogen, a potential renewable fuel. The researchers also created other triple-layer materials using the dual-template approach

“These triple-layered nanostructures hold great potential in energy conversion and storage,” says Zhuo. “We believe it could be extended to serve as a promising electrode in many electrochemical applications, such as in supercapacitors and sodium-/lithium-ion batteries, and for use in water desalination.”

Here’s a link to and a citation for the paper,

Dual-template engineering of triple-layered nanoarray electrode of metal chalcogenides sandwiched with hydrogen-substituted graphdiyne by Sifei Zhuo, Yusuf Shi, Lingmei Liu, Renyuan Li, Le Shi, Dalaver H. Anjum, Yu Han, & Peng Wang. Nature Communicationsvolume 9, Article number: 3132 (2018) DOI: https://doi.org/10.1038/s41467-018-05474-0 Published 07 August 2018

This paper is open access.