Category Archives: electronics

Artificial synapse courtesy of nanowires

It looks like a popsicle to me,

Caption: Image captured by an electron microscope of a single nanowire memristor (highlighted in colour to distinguish it from other nanowires in the background image). Blue: silver electrode, orange: nanowire, yellow: platinum electrode. Blue bubbles are dispersed over the nanowire. They are made up of silver ions and form a bridge between the electrodes which increases the resistance. Credit: Forschungszentrum Jülich

Not a popsicle but a representation of a device (memristor) scientists claim mimics a biological nerve cell according to a December 5, 2018 news item on ScienceDaily,

Scientists from Jülich [Germany] together with colleagues from Aachen [Germany] and Turin [Italy] have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able to both save and process information, as well as receive numerous signals in parallel. The resistive switching cell made from oxide crystal nanowires is thus proving to be the ideal candidate for use in building bioinspired “neuromorphic” processors, able to take over the diverse functions of biological synapses and neurons.

A Dec. 5, 2018 Forschungszentrum Jülich press release (also on EurekAlert), which originated the news item, provides more details,

Computers have learned a lot in recent years. Thanks to rapid progress in artificial intelligence they are now able to drive cars, translate texts, defeat world champions at chess, and much more besides. In doing so, one of the greatest challenges lies in the attempt to artificially reproduce the signal processing in the human brain. In neural networks, data are stored and processed to a high degree in parallel. Traditional computers on the other hand rapidly work through tasks in succession and clearly distinguish between the storing and processing of information. As a rule, neural networks can only be simulated in a very cumbersome and inefficient way using conventional hardware.

Systems with neuromorphic chips that imitate the way the human brain works offer significant advantages. Experts in the field describe this type of bioinspired computer as being able to work in a decentralised way, having at its disposal a multitude of processors, which, like neurons in the brain, are connected to each other by networks. If a processor breaks down, another can take over its function. What is more, just like in the brain, where practice leads to improved signal transfer, a bioinspired processor should have the capacity to learn.

“With today’s semiconductor technology, these functions are to some extent already achievable. These systems are however suitable for particular applications and require a lot of space and energy,” says Dr. Ilia Valov from Forschungszentrum Jülich. “Our nanowire devices made from zinc oxide crystals can inherently process and even store information, as well as being extremely small and energy efficient,” explains the researcher from Jülich’s Peter Grünberg Institute.

For years memristive cells have been ascribed the best chances of being capable of taking over the function of neurons and synapses in bioinspired computers. They alter their electrical resistance depending on the intensity and direction of the electric current flowing through them. In contrast to conventional transistors, their last resistance value remains intact even when the electric current is switched off. Memristors are thus fundamentally capable of learning.

In order to create these properties, scientists at Forschungszentrum Jülich and RWTH Aachen University used a single zinc oxide nanowire, produced by their colleagues from the polytechnic university in Turin. Measuring approximately one ten-thousandth of a millimeter in size, this type of nanowire is over a thousand times thinner than a human hair. The resulting memristive component not only takes up a tiny amount of space, but also is able to switch much faster than flash memory.

Nanowires offer promising novel physical properties compared to other solids and are used among other things in the development of new types of solar cells, sensors, batteries and computer chips. Their manufacture is comparatively simple. Nanowires result from the evaporation deposition of specified materials onto a suitable substrate, where they practically grow of their own accord.

In order to create a functioning cell, both ends of the nanowire must be attached to suitable metals, in this case platinum and silver. The metals function as electrodes, and in addition, release ions triggered by an appropriate electric current. The metal ions are able to spread over the surface of the wire and build a bridge to alter its conductivity.

Components made from single nanowires are, however, still too isolated to be of practical use in chips. Consequently, the next step being planned by the Jülich and Turin researchers is to produce and study a memristive element, composed of a larger, relatively easy to generate group of several hundred nanowires offering more exciting functionalities.

The Italians have also written about the work in a December 4, 2018 news item for the Polytecnico di Torino’s inhouse magazine, PoliFlash’. I like the image they’ve used better as it offers a bit more detail and looks less like a popsicle. First, the image,

Courtesy: Polytecnico di Torino

Now, the news item, which includes some historical information about the memristor (Note: There is some repetition and links have been removed),

Emulating and understanding the human brain is one of the most important challenges for modern technology: on the one hand, the ability to artificially reproduce the processing of brain signals is one of the cornerstones for the development of artificial intelligence, while on the other the understanding of the cognitive processes at the base of the human mind is still far away.

And the research published in the prestigious journal Nature Communications by Gianluca Milano and Carlo Ricciardi, PhD student and professor, respectively, of the Applied Science and Technology Department of the Politecnico di Torino, represents a step forward in these directions. In fact, the study entitled “Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities” shows how it is possible to artificially emulate the activity of synapses, i.e. the connections between neurons that regulate the learning processes in our brain, in a single “nanowire” with a diameter thousands of times smaller than that of a hair.

It is a crystalline nanowire that takes the “memristor”, the electronic device able to artificially reproduce the functions of biological synapses, to a more performing level. Thanks to the use of nanotechnologies, which allow the manipulation of matter at the atomic level, it was for the first time possible to combine into one single device the synaptic functions that were individually emulated through specific devices. For this reason, the nanowire allows an extreme miniaturisation of the “memristor”, significantly reducing the complexity and energy consumption of the electronic circuits necessary for the implementation of learning algorithms.

Starting from the theorisation of the “memristor” in 1971 by Prof. Leon Chua – now visiting professor at the Politecnico di Torino, who was conferred an honorary degree by the University in 2015 – this new technology will not only allow smaller and more performing devices to be created for the implementation of increasingly “intelligent” computers, but is also a significant step forward for the emulation and understanding of the functioning of the brain.

“The nanowire memristor – said Carlo Ricciardirepresents a model system for the study of physical and electrochemical phenomena that govern biological synapses at the nanoscale. The work is the result of the collaboration between our research team and the RWTH University of Aachen in Germany, supported by INRiM, the National Institute of Metrological Research, and IIT, the Italian Institute of Technology.”

h.t for the Italian info. to Nanowerk’s Dec. 10, 2018 news item.

Here’s a link to and a citation for the paper,

Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities by Gianluca Milano, Michael Luebben, Zheng Ma, Rafal Dunin-Borkowski, Luca Boarino, Candido F. Pirri, Rainer Waser, Carlo Ricciardi, & Ilia Valov. Nature Communicationsvolume 9, Article number: 5151 (2018) DOI: https://doi.org/10.1038/s41467-018-07330-7 Published: 04 December 2018

This paper is open access.

Just use the search term “memristor” in the blog search engine if you’re curious about the multitudinous number of postings on the topic here.

Graphene and smart textiles

Here’s one of the more recent efforts to create fibres that are electronic and capable of being woven into a smart textile. (Details about a previous effort can be found at the end of this post.) Now for this one, from a Dec. 3, 2018 news item on ScienceDaily,

The quest to create affordable, durable and mass-produced ‘smart textiles’ has been given fresh impetus through the use of the wonder material Graphene.

An international team of scientists, led by Professor Monica Craciun from the University of Exeter Engineering department, has pioneered a new technique to create fully electronic fibres that can be incorporated into the production of everyday clothing.

A Dec. 3, 2018 University of Exeter press release (also on EurekAlert), provides more detail about the problems associated with wearable electronics and the solution being offered (Note: A link has been removed),

Currently, wearable electronics are achieved by essentially gluing devices to fabrics, which can mean they are too rigid and susceptible to malfunctioning.

The new research instead integrates the electronic devices into the fabric of the material, by coating electronic fibres with light-weight, durable components that will allow images to be shown directly on the fabric.

The research team believe that the discovery could revolutionise the creation of wearable electronic devices for use in a range of every day applications, as well as health monitoring, such as heart rates and blood pressure, and medical diagnostics.

The international collaborative research, which includes experts from the Centre for Graphene Science at the University of Exeter, the Universities of Aveiro and Lisbon in Portugal, and CenTexBel in Belgium, is published in the scientific journal Flexible Electronics.

Professor Craciun, co-author of the research said: “For truly wearable electronic devices to be achieved, it is vital that the components are able to be incorporated within the material, and not simply added to it.

Dr Elias Torres Alonso, Research Scientist at Graphenea and former PhD student in Professor Craciun’s team at Exeter added “This new research opens up the gateway for smart textiles to play a pivotal role in so many fields in the not-too-distant future.  By weaving the graphene fibres into the fabric, we have created a new technique to all the full integration of electronics into textiles. The only limits from now are really within our own imagination.”

At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for the use in wearable electronic devices in recent years.

This new research used existing polypropylene fibres – typically used in a host of commercial applications in the textile industry – to attach the new, graphene-based electronic fibres to create touch-sensor and light-emitting devices.

The new technique means that the fabrics can incorporate truly wearable displays without the need for electrodes, wires of additional materials.

Professor Saverio Russo, co-author and from the University of Exeter Physics department, added: “The incorporation of electronic devices on fabrics is something that scientists have tried to produce for a number of years, and is a truly game-changing advancement for modern technology.”

Dr Ana Neves, co-author and also from Exeter’s Engineering department added “The key to this new technique is that the textile fibres are flexible, comfortable and light, while being durable enough to cope with the demands of modern life.”

In 2015, an international team of scientists, including Professor Craciun, Professor Russo and Dr Ana Neves from the University of Exeter, have pioneered a new technique to embed transparent, flexible graphene electrodes into fibres commonly associated with the textile industry.

Here’s a link to and a citation for the paper,

Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles by Elias Torres Alonso, Daniela P. Rodrigues, Mukond Khetani, Dong-Wook Shin, Adolfo De Sanctis, Hugo Joulie, Isabel de Schrijver, Anna Baldycheva, Helena Alves, Ana I. S. Neves, Saverio Russo & Monica F. Craciun. Flexible Electronicsvolume 2, Article number: 25 (2018) DOI: https://doi.org/10.1038/s41528-018-0040-2 Published 25 September 2018

This paper is open access.

I have an earlier post about an effort to weave electronics into textiles for soldiers, from an April 5, 2012 posting,

I gather that today’s soldier (aka, warfighter)  is carrying as many batteries as weapons. Apparently, the average soldier carries a couple of kilos worth of batteries and cables to keep their various pieces of equipment operational. The UK’s Centre for Defence Enterprise (part of the Ministry of Defence) has announced that this situation is about to change as a consequence of a recently funded research project with a company called Intelligent Textiles. From Bob Yirka’s April 3, 2012 news item for physorg.com,

To get rid of the cables, a company called Intelligent Textiles has come up with a type of yarn that can conduct electricity, which can be woven directly into the fabric of the uniform. And because they allow the uniform itself to become one large conductive unit, the need for multiple batteries can be eliminated as well.

I dug down to find more information about this UK initiative and the Intelligent Textiles company but the trail seems to end in 2015. Still, I did find a Canadian connection (for those who don’t know I’m a Canuck) and more about Intelligent Textile’s work with the British military in this Sept. 21, 2015 article by Barry Collins for alphr.com (Note: Links have been removed),

A two-person firm operating from a small workshop in Staines-upon-Thames, Intelligent Textiles has recently landed a multimillion-pound deal with the US Department of Defense, and is working with the Ministry of Defence (MoD) to bring its potentially life-saving technology to British soldiers. Not bad for a company that only a few years ago was selling novelty cushions.

Intelligent Textiles was born in 2002, almost by accident. Asha Peta Thompson, an arts student at Central Saint Martins, had been using textiles to teach children with special needs. That work led to a research grant from Brunel University, where she was part of a team tasked with creating a “talking jacket” for the disabled. The garment was designed to help cerebral palsy sufferers to communicate, by pressing a button on the jacket to say “my name is Peter”, for example, instead of having a Stephen Hawking-like communicator in front of them.

Another member of that Brunel team was engineering lecturer Dr Stan Swallow, who was providing the electronics expertise for the project. Pretty soon, the pair realised the prototype waistcoat they were working on wasn’t going to work: it was cumbersome, stuffed with wires, and difficult to manufacture. “That’s when we had the idea that we could weave tiny mechanical switches into the surface of the fabric,” said Thompson.

The conductive weave had several advantages over packing electronics into garments. “It reduces the amount of cables,” said Thompson. “It can be worn and it’s also washable, so it’s more durable. It doesn’t break; it can be worn next to the skin; it’s soft. It has all the qualities of a piece of fabric, so it’s a way of repackaging the electronics in a way that’s more user-friendly and more comfortable.” The key to Intelligent Textiles’ product isn’t so much the nature of the raw materials used, but the way they’re woven together. “All our patents are in how we weave the fabric,” Thompson explained. “We weave two conductive yarns to make a tiny mechanical switch that is perfectly separated or perfectly connected. We can weave an electronic circuit board into the fabric itself.”

Intelligent Textiles’ big break into the military market came when they met a British textiles firm that was supplying camouflage gear to the Canadian armed forces. [emphasis mine] The firm was attending an exhibition in Canada and invited the Intelligent Textiles duo to join them. “We showed a heated glove and an iPod controller,” said Thompson. “The Canadians said ‘that’s really fantastic, but all we need is power. Do you think you could weave a piece of fabric that distributes power?’ We said, ‘we’re already doing it’.”Before long it wasn’t only power that the Canadians wanted transmitted through the fabric, but data.

“The problem a soldier faces at the moment is that he’s carrying 60 AA batteries [to power all the equipment he carries],” said Thompson. “He doesn’t know what state of charge those batteries are at, and they’re incredibly heavy. He also has wires and cables running around the system. He has snag hazards – when he’s going into a firefight, he can get caught on door handles and branches, so cables are a real no-no.”

The Canadians invited the pair to speak at a NATO conference, where they were approached by military brass with more familiar accents. “It was there that we were spotted by the British MoD, who said ‘wow, this is a British technology but you’re being funded by Canada’,” said Thompson. That led to £235,000 of funding from the Centre for Defence Enterprise (CDE) – the money they needed to develop a fabric wiring system that runs all the way through the soldier’s vest, helmet and backpack.

There are more details about the 2015 state of affairs, textiles-wise, in a March 11, 2015 article by Richard Trenholm for CNET.com (Note: A link has been removed),

Speaking at the Wearable Technology Show here, Swallow describes IT [Intelligent Textiles]L as a textile company that “pretends to be a military company…it’s funny how you slip into these domains.”

One domain where this high-tech fabric has seen frontline action is in the Canadian military’s IAV Stryker armoured personnel carrier. ITL developed a full QWERTY keyboard in a single piece of fabric for use in the Stryker, replacing a traditional hardware keyboard that involved 100 components. Multiple components allow for repair, but ITL knits in redundancy so the fabric can “degrade gracefully”. The keyboard works the same as the traditional hardware, with the bonus that it’s less likely to fall on a soldier’s head, and with just one glaring downside: troops can no longer use it as a step for getting in and out of the vehicle.

An armoured car with knitted controls is one thing, but where the technology comes into its own is when used about the person. ITL has worked on vests like the JTAC, a system “for the guys who call down airstrikes” and need “extra computing oomph.” Then there’s SWIPES, a part of the US military’s Nett Warrior system — which uses a chest-mounted Samsung Galaxy Note 2 smartphone — and British military company BAE’s Broadsword system.

ITL is currently working on Spirit, a “truly wearable system” for the US Army and United States Marine Corps. It’s designed to be modular, scalable, intuitive and invisible.

While this isn’t an ITL product, this video about Broadsword technology from BAE does give you some idea of what wearable technology for soldiers is like,

baesystemsinc

Uploaded on Jul 8, 2014

Broadsword™ delivers groundbreaking technology to the 21st Century warfighter through interconnecting components that inductively transfer power and data via The Spine™, a revolutionary e-textile that can be inserted into any garment. This next-generation soldier system offers enhanced situational awareness when used with the BAE Systems’ Q-Warrior® see-through display.

If anyone should have the latest news about Intelligent Textile’s efforts, please do share in the comments section.

I do have one other posting about textiles and the military, which is dated May 9, 2012, but while it does reference US efforts it is not directly related to weaving electronics into solder’s (warfighter’s) gear.

You can find CenTexBel (Belgian Textile Rsearch Centre) here and Graphenea here. Both are mentioned in the University of Exeter press release.

Two-dimensional arsenic (arsenene) for electronics

Another day, another ‘ene’ (e.g., graphene, borene, germanene, etc.). This ‘ene’ is arsenene, from an October 15, 2018 Wiley (Publications) news release (also on EurekAlert),

The discovery of graphene, a material made of one or very few atomic layers of carbon, started a boom. Today, such two-dimensional materials are no longer limited to carbon and are hot prospects for many applications, especially in microelectronics. In the journal Angewandte Chemie, scientists have now introduced a new 2D material: they successfully modified arsenene (arsenic in a graphene-like structure) with chloromethylene groups.

Two-dimensional materials are crystalline materials made of just a single or very few layers of atoms that often display unusual properties. However, the use of graphene for applications such as transistors is limited because it behaves more like a conductor than a semiconductor. Modified graphene and 2D materials based on other chemical elements with semiconducting properties have now been developed. One such material is β-arsenene, a two-dimensional arsenic in a buckled honeycomb structure derived from gray arsenic. Researchers hope that modification of this previously seldom-studied material could improve its semiconducting properties and lead the way to new applications in fields such as sensing, catalysis, optoelectronics, and other semiconductor technologies.

A team at the University of Chemistry and Technology Prague (Czech Republic) and Nanyang Technical University (Singapore), led by Zdenek Sofer and Martin Pumera has now successfully produced a highly promising covalent modification of β-arsenene.

The arsenene was produced by milling gray arsenic in tetrahydrofuran. The shear forces cause two-dimensional layers to split off and disperse into the solvent. The researchers then introduce dichloromethane and add an organic lithium compound (butyllithium). These two reagents form an intermediate called chlorocarbene, a molecule made of one carbon atom, one hydrogen atom, and one chlorine atom. The carbon atom is short two bonding partners, a state that makes the whole class of carbene molecules highly reactive. Arsenene contains free electron pairs that “stick out” from the surface and can easily enter into bonds to chlorocarbene.

This approach leads to high coverage of the arsenene surface with chloromethylene groups, as confirmed by a variety of analysis methods (X-ray photoelectron spectroscopy, FT-IR spectroscopy, elemental analysis by transmission electron microscopy). The modified arsenene is more stable than pure arsenene and exhibits strong luminescence and electronic properties that make it attractive for optoelectronic applications. In addition, the chloromethylene units could serve as a starting point for further interesting modifications.

As always with an ‘ene’, the major focus is on electronics. Here’s a link to and a citation for the paper,

Covalent Functionalization of Exfoliated Arsenic with Chlorocarbene by Jiri Sturala, Adriano Ambrosi, Zdeněk Sofer, Martin Pumera. Angewandte Chimie International Edition Volume 57, Issue 45 November 5, 2018 Pages 14837-14840 DOI: https://doi.org/10.1002/anie.201809341 First published: 31 August 2018

This paper is behind a paywall.

Making nanoscale transistor chips out of thin air—sort of

Caption: The nano-gap transistors operating in air. As gaps become smaller than the mean-free path of electrons in air, there is ballistic electron transport. Credit: RMIT University

A November 19, 2018 news item on Nanowerk describes the ‘airy’ work ( Note: A link has been removed),

Researchers at RMIT University [Ausralia] have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air gaps, where they can travel unimpeded as if in space.

The device unveiled in material sciences journal Nano Letters (“Metal–Air Transistors: Semiconductor-free field-emission air-channel nanoelectronics”), eliminates the use of any semiconductor at all, making it faster and less prone to heating up.

A November 19, 2018 RMIT University news release on EurkeAlert, which originated the news item, describes the work and possibilities in more detail,

Lead author and PhD candidate in RMIT’s Functional Materials and Microsystems Research Group, Ms Shruti Nirantar, said this promising proof-of-concept design for nanochips as a combination of metal and air gaps could revolutionise electronics.

“Every computer and phone has millions to billions of electronic transistors made from silicon, but this technology is reaching its physical limits where the silicon atoms get in the way of the current flow, limiting speed and causing heat,” Nirantar said.

“Our air channel transistor technology has the current flowing through air, so there are no collisions to slow it down and no resistance in the material to produce heat.”

The power of computer chips – or number of transistors squeezed onto a silicon chip – has increased on a predictable path for decades, roughly doubling every two years. But this rate of progress, known as Moore’s Law, has slowed in recent years as engineers struggle to make transistor parts, which are already smaller than the tiniest viruses, smaller still.

Nirantar says their research is a promising way forward for nano electronics in response to the limitation of silicon-based electronics.

“This technology simply takes a different pathway to the miniaturisation of a transistor in an effort to uphold Moore’s Law for several more decades,” Shruti said.

Research team leader Associate Professor Sharath Sriram said the design solved a major flaw in traditional solid channel transistors – they are packed with atoms – which meant electrons passing through them collided, slowed down and wasted energy as heat.

“Imagine walking on a densely crowded street in an effort to get from point A to B. The crowd slows your progress and drains your energy,” Sriram said.

“Travelling in a vacuum on the other hand is like an empty highway where you can drive faster with higher energy efficiency.”

But while this concept is obvious, vacuum packaging solutions around transistors to make them faster would also make them much bigger, so are not viable.

“We address this by creating a nanoscale gap between two metal points. The gap is only a few tens of nanometers, or 50,000 times smaller than the width of a human hair, but it’s enough to fool electrons into thinking that they are travelling through a vacuum and re-create a virtual outer-space for electrons within the nanoscale air gap,” he said.

The nanoscale device is designed to be compatible with modern industry fabrication and development processes. It also has applications in space – both as electronics resistant to radiation and to use electron emission for steering and positioning ‘nano-satellites’.

“This is a step towards an exciting technology which aims to create something out of nothing to significantly increase speed of electronics and maintain pace of rapid technological progress,” Sriram said.

Here’s a link to and a citation for the paper,

Metal–Air Transistors: Semiconductor-free field-emission air-channel nanoelectronics by
Shruti Nirantar, Taimur Ahmed, Guanghui Ren, Philipp Gutruf, Chenglong Xu, Madhu Bhaskaran, Sumeet Walia, and Sharath Sriram. Nano Lett., DOI: 10.1021/acs.nanolett.8b02849 Publication Date (Web): November 16, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Defending nanoelectronics from cyber attacks

There’s a new program at the University of Stuttgart (Germany) and their call for projects was recently announced. First, here’s a description of the program in a May 30, 2019 news item on Nanowerk,

Today’s societies critically depend on electronic systems. Past spectacular cyber-attacks have clearly demonstrated the vulnerability of existing systems and the need to prevent such attacks in the future. The majority of available cyber-defenses concentrate on protecting the software part of electronic systems or their communication interfaces.

However, manufacturing technology advancements and the increasing hardware complexity provide a large number of challenges so that the focus of attackers has shifted towards the hardware level. We saw already evidence for powerful and successful hardware-level attacks, including Rowhammer, Meltdown and Spectre.

These attacks happened on products built using state-of-the-art microelectronic technology, however, we are facing completely new security challenges due to the ongoing transition to radically new types of nanoelectronic devices, such as memristors, spintronics, or carbon nanotubes and graphene based transistors.

The use of such emerging nanotechnologies is inevitable to address the key challenges related to energy efficiency, computing power and performance. Therefore, the entire industry, are switching to emerging nano-electronics alongside scaled CMOS technologies in heterogeneous integrated systems.

These technologies come with new properties and also facilitate the development of radically different computer architectures. The new technologies and architectures provide new opportunities for achieving security targets, but also raise questions about their vulnerabilities to new types of hardware attacks.

A May 28, 2019 University of Stuttgart press release provides more information about the program and the call for projects,

Whether it’s cars, industrial plants or the government network, spectacular cyber attacks over the past few months have shown how vulnerable modern electronic systems are. The aim of the new Priority Program “Nano Security”, which is coordinated by the University of Stuttgart, is protecting you and preventing the cyber attacks of the future. The program, which is funded by the German Research Foundation (DFG), emphasizes making the hardware into a reliable foundation of a system or a layer of security.

The challenges of nanoelectronics

Completely new challenges also emerge as a result of the switch to radically new nanoelectronic components, which for example are used to master the challenges of the future in terms of energy efficiency, computing power and secure data transmission. For example, memristors (components which are not just used to store information but also function as logic modules), the spintronics, which exploit quantum-mechanical effects, or carbon nanotubes.

The new technologies, as well as the fundamentally different computer architecture associated with them, offer new opportunities for cryptographic primitives in order to achieve an even more secure data transmission. However, they also raise questions about their vulnerability to new types of hardware attacks.

The problem is part of the solution

In this context, a better understanding should be developed of what consequences the new nanoelectronic technologies have for the security of circuits and systems as part of the new Priority Program. Here, the hardware is not just thought of as part of the problem but also as an important and necessary part of the solution to security problems. The starting points here for example are the hardware-based generation of cryptographic keys, the secure storage and processing of sensitive data, and the isolation of system components which is guaranteed by the hardware. Lastly, it should be ensured that an attack cannot be spread further by the system.

In this process, the scientists want to assess the possible security risks and weaknesses which stem from the new type of nanoelectronics. Furthermore, they want to develop innovative approaches for system security which are based on nanoelectronics as a security anchor.

The Priority Program promotes cooperation between scientists, who develop innovative security solutions for the computer systems of the future on different levels of abstraction. Likewise, it makes methods available to system designers to keep ahead in the race between attackers and security measures over the next few decades.

The call has started

The DFG Priority Program “Nano Security. From Nano-Electronics to Secure Systems“ (SPP 2253) is scheduled to last for a period of six years. The call for projects for the first three-year funding period was advertised a few days ago, and the first projects are set to start at the beginning of 2020.

For more information go to the Nano Security: From Nano-Electronics to Secure Systems webpage on the University of Stuttgart website.

Chen Qiufan, garbage, and Chinese science fiction stories

Garbage has been dominating Canadian news headlines for a few weeks now. First, it was Canadian garbage in the Philippines and now it’s Canadian garbage in Malaysia. Interestingly, we’re also having problems with China, since December 2018, when we detained a top executive from Huawe, a China-based international telecommunicatons company, in accordance with an official request from the US government and, in accordance, with what Prime Minister Justin Trudeau calls the ‘rule of law’. All of this provides an interesting backdrop (for Canadians anyway) on the topic of China, garbage, and science fiction.

A May 16, 2019 article by Anjie Zheng for Fast Company explores some of the latest and greatest from China’s science fiction writing community,

Like any good millennial, I think about my smartphone, to the extent that I do at all, in terms of what it does for me. It lets me message friends, buy stuff quickly, and amass likes. I hardly ever think about what it actually is—a mass of copper wires, aluminum alloys, and lithium battery encased in glass—or where it goes when I upgrade.

Chen Qiufan wants us to think about that. His debut novel, Waste Tide, is set in a lightly fictionalized version of Guiyu, the world’s largest electronic waste disposal. First published in Chinese in 2013, the book was recently released in the U.S. with a very readable translation into English by Ken Liu.

Chen, who has been called “China’s William Gibson,” is part of a younger generation of sci-fi writers who have achieved international acclaim in recent years. Liu Cixin became the first Chinese to win the prestigious Hugo Award for his Three Body Problem in 2015. The Wandering Earth, based on a short story by Liu, became China’s first science-fiction blockbuster when it was released in 2018. It was the highest-grossing film in the fastest-growing film market in the world last year and was recently scooped up by Netflix.

Aynne Kokas in a March 13, 2019 article for the Washington Post describes how the hit film, The Wandering Earth, fits into an overall Chinese-led movie industry focused on the future and Hollywood-like, i. e. like US movie industry, domination,

“The Wandering Earth,” directed by Frant Gwo, takes place in a future where the people of Earth must flee their sun as it swells into a red giant. Thousands of engines — the first of them constructed in Hangzhou, one of China’s tech hubs — propel the entire planet toward a new solar system, while everyone takes refuge from the cold in massive underground cities. On the surface, the only visible reminders of the past are markers of China’s might. The Shanghai Tower, the Oriental Pearl Tower and a stadium for the Shanghai 2044 Olympics all thrust out of the ice, having apparently survived the journey’s tsunamis, deep freeze and cliff-collapsing earthquakes.

The movie is China’s first big-budget sci-fi epic, and its production was ambitious, involving some 7,000 workers and 10,000 specially-built props. Audience excitement was correspondingly huge: Nearly half a million people wrote reviews of the film on Chinese social network site Douban. Having earned over $600 million in domestic sales, “The Wandering Earth” marks a major achievement for the country’s film industry.

It is also a major achievement for the Chinese government.

Since opening up the country’s film market in 2001, the Chinese government has aspired to learn from Hollywood how to make commercially appealing films, as I detail in my book “Hollywood Made in China.” From initial private offerings for state media companies, to foreign investment in films, studios and theme parks, the government allowed outside capital and expertise to grow the domestic commercial film industry — but not at the expense of government oversight. This policy’s underlying aim was to expand China’s cultural clout and political influence.

Until recently, Hollywood films dominated the country’s growing box office. That finally changed in 2015, with the release of major local blockbusters “Monster Hunt” and “Lost in Hong Kong.” The proliferation of homegrown hits signaled that the Chinese box office profits no longer depend on Hollywood studio films — sending an important message to foreign trade negotiators and studios.

Kokas provides some insight into how the Chinese movie industry is designed to further the Chinese government’s vision of the future. As a Canadian, I don’t see that much difference between the US and China industry’s vision. Both tout themselves as the answer to everything, both target various geographic regions for the ‘bad guys’, and both tout their national moral superiority in their films. I suppose the same can be said for most countries’ film industries but both China and the US can back themselves with economic might.

Zheng’s article delves deeper into garbage, and Chen Qiufan’s science fiction while illuminating the process of changing a ‘good guy’ into a ‘bad guy’,

Chen, 37, grew up a few miles from the real Guiyu. Mountains of scrap electronics are shipped there every year from around the world. Thousands of human workers sort through the junk for whatever can be reduced to reusable precious metals. They strip wires and disassemble circuit boards, soaking them in acid baths for bits of copper, tin, platinum, and gold. Whatever can’t be processed is burned. The water in Guiyu has been so contaminated it is undrinkable; the air is toxic. The workers, migrants from poor rural areas in China, have an abnormally high rate of respiratory diseases and cancer.

For the decades China was revving its economic engine, authorities were content to turn a blind eye to the human costs of the recycling business. It was an economic win-win. For developed countries like the U.S., it’s cheaper to ship waste to places like China than trying to recycle it themselves. And these shipments create jobs and profits for the Chinese.

In recent years, however, steps have been taken to protect workers and the environment in China. …

Waste Tide highlights the danger of “throw-away culture,” says Chen, also known in English as Stanley Chan. When our personal electronics stop serving us, whether because they break or our lust for the newest specs get the better of us, we toss them. Hopefully we’re conscientious enough to bring them to local recyclers that claim they’ll dispose of them properly. But that’s likely the end of our engagement with the trash. Out of sight, out of mind.

Fiction, and science fiction in particular, is an apt medium for Chen to probe the consequences of this arrangement. “It’s not journalism,” he says. Instead, the story is an imaginative, action-packed tale of power imbalances, and the individual characters that think they’re doing good. Waste Tide culminates, expectedly, in an insurgency of the workers against their exploitative overlords.

Guiyu has been fictionalized in Waste Tide as “Silicon Isle.” (A homophone of the Chinese character “gui” translates to “Silicon,” and “yu” is an island). The waste hell is ruled by three ruthless family clans, dominated by the Luo clan. They treat workers as slaves and derisively call them “waste people.”

Technology in the near-future has literally become extensions of selves and only exacerbates class inequality. Prosthetic inner ears improve balance; prosthetic limbs respond to mental directives; helmets heighten natural senses. The rich “switch body parts as easily as people used to switch phones.” Those with fewer means hack discarded prosthetics to get the same kick. When they’re no longer needed, synthetic body parts contaminated with blood and bodily fluids are added to the detritus.

At the center of the story is Mimi, a migrant worker who dreams of earning enough money to return home and live a quiet life. She strikes up a relationship with Kaizong, a Chinese-American college graduate trying to rediscover his roots. But the good times are short-lived. The boss of the Luo clan becomes convinced that Mimi holds the key to rousing his son from his coma and soon kidnaps the hapless girl.

For all the advanced science, there is a backwards superstition that animates Silicon Isle. [emphasis mine] The clan bosses subscribe to “a simple form of animism.” They pray to the wind and sea for ample supplies of waste. They sacrifice animals (and some humans) to bring them luck, and use local witches to exorcise evil spirits. Boss Luo has Mimi kidnapped and tortured in an effort to appease the gods in the hopes of waking up his comatose son. The torture of Mimi infects her with a mysterious disease that splits her consciousness. The waste people are enraged by her violation, which eventually sparks a war against the ruling clans. [emphasis mine]

A parallel narrative involves an American, Scott Brandle, who works for an environmental company. While in town trying to set up a recycling facility, he stumbles onto the truth about the virus that may have infected Mimi: a chemical weapon developed and used by the U.S. [emphasis mine] years earlier. Invented by a Japanese researcher [emphasis mine] working in the U.S., the drug is capable of causing mass hallucinations and terror. When Brandle learns that Mimi may have been infected with this virus, he wants a piece of her [emphasis mine] too, so that scientists back home can study its effects.

Despite portraying the future of China in a less-than-positive light, [emphasis mine] Waste Tide has not been banned–a common result for works that displease Beijing; instead, the book won China’s prestigious Nebula award for science fiction, and is about to be reprinted on the mainland. …

An interview with Chen (it’s worthwhile to read his take on what he’s doing) follows the plot description in this intriguing and what seems to be a sometimes disingenuous article.

The animism and the war against the ruling class? It reminds me a little of the tales told about old Chine and Mao’s campaign to overthrow the ruling classes who had kept control of the proletariat, in part, by encouraging ‘superstitious religious belief’.

As far as I’m concerned the interpretation can go either or both ways: a critique of the current government’s policies and where they might lead in the future and/or a reference back to the glorious rising of China’s communist government. Good fiction always contains ambiguity; it’s what fuels courses in literature.

Also, the bad guys are from the US and Japan, countries which have long been allied with each other and with which China has some serious conflicts.

Interesting, non? And, it’s not that different from what you’ll see in US (or any other country’s for that matter) science fiction wiring and movies, except that the heroes are Chinese.

Getting back to the garbage in the Philippines, there are 69 containers on their way back to Canada as of May 30, 2019. As for why all this furor about Canadian garbage in the Philippines and Malaysia, it’s hard to believe that Canada is the only sinner. Of course, we are in China’s bad books due to the Huawei executive’s detention here (she is living in her home in Vancouver and goes out and about as she wishes, albeit under surveillance).

Anyway, I can’t help but wonder if indirect pressure is being exerted by China or if the Philippines and Malaysia have been incentivized in some way by China. The timing has certainly been interesting.

Political speculation aside, it’s probably a good thing that countries are refusing to take our garbage. As I’m sure more than one environmentalist would be happy to point out, it’s about time we took care of our own mess.

Two approaches to memristors

Within one day of each other in October 2018, two different teams working on memristors with applications to neuroprosthetics and neuromorphic computing (brainlike computing) announced their results.

Russian team

An October 15, 2018 (?) Lobachevsky University press release (also published on October 15, 2018 on EurekAlert) describes a new approach to memristors,

Biological neurons are coupled unidirectionally through a special junction called a synapse. An electrical signal is transmitted along a neuron after some biochemical reactions initiate a chemical release to activate an adjacent neuron. These junctions are crucial for cognitive functions, such as perception, learning and memory.

A group of researchers from Lobachevsky University in Nizhny Novgorod investigates the dynamics of an individual memristive device when it receives a neuron-like signal as well as the dynamics of a network of analog electronic neurons connected by means of a memristive device. According to Svetlana Gerasimova, junior researcher at the Physics and Technology Research Institute and at the Neurotechnology Department of Lobachevsky University, this system simulates the interaction between synaptically coupled brain neurons while the memristive device imitates a neuron axon.

A memristive device is a physical model of Chua’s [Dr. Leon Chua, University of California at Berkeley; see my May 9, 2008 posting for a brief description Dr. Chua’s theory] memristor, which is an electric circuit element capable of changing its resistance depending on the electric signal received at the input. The device based on a Au/ZrO2(Y)/TiN/Ti structure demonstrates reproducible bipolar switching between the low and high resistance states. Resistive switching is determined by the oxidation and reduction of segments of conducting channels (filaments) in the oxide film when voltage with different polarity is applied to it. In the context of the present work, the ability of a memristive device to change conductivity under the action of pulsed signals makes it an almost ideal electronic analog of a synapse.

Lobachevsky University scientists and engineers supported by the Russian Science Foundation (project No.16-19-00144) have experimentally implemented and theoretically described the synaptic connection of neuron-like generators using the memristive interface and investigated the characteristics of this connection.

“Each neuron is implemented in the form of a pulse signal generator based on the FitzHugh-Nagumo model. This model provides a qualitative description of the main neurons’ characteristics: the presence of the excitation threshold, the presence of excitable and self-oscillatory regimes with the possibility of a changeover. At the initial time moment, the master generator is in the self-oscillatory mode, the slave generator is in the excitable mode, and the memristive device is used as a synapse. The signal from the master generator is conveyed to the input of the memristive device, the signal from the output of the memristive device is transmitted to the input of the slave generator via the loading resistance. When the memristive device switches from a high resistance to a low resistance state, the connection between the two neuron-like generators is established. The master generator goes into the oscillatory mode and the signals of the generators are synchronized. Different signal modulation mode synchronizations were demonstrated for the Au/ZrO2(Y)/TiN/Ti memristive device,” – says Svetlana Gerasimova.

UNN researchers believe that the next important stage in the development of neuromorphic systems based on memristive devices is to apply such systems in neuroprosthetics. Memristive systems will provide a highly efficient imitation of synaptic connection due to the stochastic nature of the memristive phenomenon and can be used to increase the flexibility of the connections for neuroprosthetic purposes. Lobachevsky University scientists have vast experience in the development of neurohybrid systems. In particular, a series of experiments was performed with the aim of connecting the FitzHugh-Nagumo oscillator with a biological object, a rat brain hippocampal slice. The signal from the electronic neuron generator was transmitted through the optic fiber communication channel to the bipolar electrode which stimulated Schaffer collaterals (axons of pyramidal neurons in the CA3 field) in the hippocampal slices. “We are going to combine our efforts in the design of artificial neuromorphic systems and our experience of working with living cells to improve flexibility of prosthetics,” concludes S. Gerasimova.

The results of this research were presented at the 38th International Conference on Nonlinear Dynamics (Dynamics Days Europe) at Loughborough University (Great Britain).

This diagram illustrates an aspect of the work,

Caption: Schematic of electronic neurons coupling via a memristive device. Credit: Lobachevsky University

US team

The American Institute of Physics (AIP) announced the publication of a ‘memristor paper’ by a team from the University of Southern California (USC) in an October 16, 2018 news item on phys.org,

Just like their biological counterparts, hardware that mimics the neural circuitry of the brain requires building blocks that can adjust how they synapse, with some connections strengthening at the expense of others. One such approach, called memristors, uses current resistance to store this information. New work looks to overcome reliability issues in these devices by scaling memristors to the atomic level.

An October 16, 2018 AIP news release (also on EurekAlert), which originated the news item, delves further into the particulars of this particular piece of memristor research,

A group of researchers demonstrated a new type of compound synapse that can achieve synaptic weight programming and conduct vector-matrix multiplication with significant advances over the current state of the art. Publishing its work in the Journal of Applied Physics, from AIP Publishing, the group’s compound synapse is constructed with atomically thin boron nitride memristors running in parallel to ensure efficiency and accuracy.

The article appears in a special topic section of the journal devoted to “New Physics and Materials for Neuromorphic Computation,” which highlights new developments in physical and materials science research that hold promise for developing the very large-scale, integrated “neuromorphic” systems of tomorrow that will carry computation beyond the limitations of current semiconductors today.

“There’s a lot of interest in using new types of materials for memristors,” said Ivan Sanchez Esqueda, an author on the paper. “What we’re showing is that filamentary devices can work well for neuromorphic computing applications, when constructed in new clever ways.”

Current memristor technology suffers from a wide variation in how signals are stored and read across devices, both for different types of memristors as well as different runs of the same memristor. To overcome this, the researchers ran several memristors in parallel. The combined output can achieve accuracies up to five times those of conventional devices, an advantage that compounds as devices become more complex.

The choice to go to the subnanometer level, Sanchez said, was born out of an interest to keep all of these parallel memristors energy-efficient. An array of the group’s memristors were found to be 10,000 times more energy-efficient than memristors currently available.

“It turns out if you start to increase the number of devices in parallel, you can see large benefits in accuracy while still conserving power,” Sanchez said. Sanchez said the team next looks to further showcase the potential of the compound synapses by demonstrating their use completing increasingly complex tasks, such as image and pattern recognition.

Here’s an image illustrating the parallel artificial synapses,

Caption: Hardware that mimics the neural circuitry of the brain requires building blocks that can adjust how they synapse. One such approach, called memristors, uses current resistance to store this information. New work looks to overcome reliability issues in these devices by scaling memristors to the atomic level. Researchers demonstrated a new type of compound synapse that can achieve synaptic weight programming and conduct vector-matrix multiplication with significant advances over the current state of the art. They discuss their work in this week’s Journal of Applied Physics. This image shows a conceptual schematic of the 3D implementation of compound synapses constructed with boron nitride oxide (BNOx) binary memristors, and the crossbar array with compound BNOx synapses for neuromorphic computing applications. Credit: Ivan Sanchez Esqueda

Here’s a link to and a citation for the paper,

Efficient learning and crossbar operations with atomically-thin 2-D material compound synapses by Ivan Sanchez Esqueda, Huan Zhao and Han Wang. The article will appear in the Journal of Applied Physics Oct. 16, 2018 (DOI: 10.1063/1.5042468).

This paper is behind a paywall.

*Title corrected from ‘Two approaches to memristors featuring’ to ‘Two approaches to memristors’ on May 31, 2019 at 1455 hours PDT.

Electron quantum materials, a new field in nanotechnology?

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials’

UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article

Courtesy: University of California at Riverside

Bravo to whomever put the image of a field together together with a subhead that includes the phrases ‘vision for a field’ and ‘perspective article’. It’s even better if you go to the November 5, 2018 University of California at Riverside (UCR) news release (also on EurekAlert) by Iqbal Pittalwala to see the original format,

When two atomically thin two-dimensional layers are stacked on top of each other and one layer is made to rotate against the second layer, they begin to produce patterns — the familiar moiré patterns — that neither layer can generate on its own and that facilitate the passage of light and electrons, allowing for materials that exhibit unusual phenomena. For example, when two graphene layers are overlaid and the angle between them is 1.1 degrees, the material becomes a superconductor.

“It’s a bit like driving past a vineyard and looking out the window at the vineyard rows. Every now and then, you see no rows because you’re looking directly along a row,” said Nathaniel Gabor, an associate professor in the Department of Physics and Astronomy at the University of California, Riverside. “This is akin to what happens when two atomic layers are stacked on top of each other. At certain angles of twist, everything is energetically allowed. It adds up just right to allow for interesting possibilities of energy transfer.”

This is the future of new materials being synthesized by twisting and stacking atomically thin layers, and is still in the “alchemy” stage, Gabor added. To bring it all under one roof, he and physicist Justin C. W. Song of Nanyang Technological University, Singapore, have proposed this field of research be called “electron quantum metamaterials” and have just published a perspective article in Nature Nanotechnology.

“We highlight the potential of engineering synthetic periodic arrays with feature sizes below the wavelength of an electron. Such engineering allows the electrons to be manipulated in unusual ways, resulting in a new range of synthetic quantum metamaterials with unconventional responses,” Gabor said.

Metamaterials are a class of material engineered to produce properties that do not occur naturally. Examples include optical cloaking devices and super-lenses akin to the Fresnel lens that lighthouses use. Nature, too, has adopted such techniques – for example, in the unique coloring of butterfly wings – to manipulate photons as they move through nanoscale structures.

“Unlike photons that scarcely interact with each other, however, electrons in subwavelength structured metamaterials are charged, and they strongly interact,” Gabor said. “The result is an enormous variety of emergent phenomena and radically new classes of interacting quantum metamaterials.”

Gabor and Song were invited by Nature Nanotechnology to write a review paper. But the pair chose to delve deeper and lay out the fundamental physics that may explain much of the research in electron quantum metamaterials. They wrote a perspective paper instead that envisions the current status of the field and discusses its future.

“Researchers, including in our own labs, were exploring a variety of metamaterials but no one had given the field even a name,” said Gabor, who directs the Quantum Materials Optoelectronics lab at UCR. “That was our intent in writing the perspective. We are the first to codify the underlying physics. In a way, we are expressing the periodic table of this new and exciting field. It has been a herculean task to codify all the work that has been done so far and to present a unifying picture. The ideas and experiments have matured, and the literature shows there has been rapid progress in creating quantum materials for electrons. It was time to rein it all in under one umbrella and offer a road map to researchers for categorizing future work.”

In the perspective, Gabor and Song collect early examples in electron metamaterials and distil emerging design strategies for electronic control from them. They write that one of the most promising aspects of the new field occurs when electrons in subwavelength-structure samples interact to exhibit unexpected emergent behavior.

“The behavior of superconductivity in twisted bilayer graphene that emerged was a surprise,” Gabor said. “It shows, remarkably, how electron interactions and subwavelength features could be made to work together in quantum metamaterials to produce radically new phenomena. It is examples like this that paint an exciting future for electronic metamaterials. Thus far, we have only set the stage for a lot of new work to come.”

Gabor, a recipient of a Cottrell Scholar Award and a Canadian Institute for Advanced Research Azrieli Global Scholar Award, was supported by the Air Force Office of Scientific Research Young Investigator Program and a National Science Foundation Division of Materials Research CAREER award.

There is a video illustrating the ideas which is embedded in a November 5, 2018 news item on phys.oirg,


Here’s a link to and a citation for the ‘perspective’ paper,

Electron quantum metamaterials in van der Waals heterostructures by Justin C. W. Song & Nathaniel M. Gabor. Nature Nanotechnology, volume 13, pages986–993 (2018) DOI: https://doi.org/10.1038/s41565-018-0294-9 Published: 05 November 2018

This paper is behind a paywall.

Bendable phones that are partially organic

It’s been about nine  or 10 years since I first heard about bendable phones (my September 29, 2010 posting). The concept keeps popping up from time to time (my April 25, 2017 posting) and this time, we have Australian scientists to thank for this latest work described in an October 5, 2018 news item on Nanowerk (Note: A link has been removed),

Engineers at ANU [Australian National University] have invented a semiconductor with organic and inorganic materials that can convert electricity into light very efficiently, and it is thin and flexible enough to help make devices such as mobile phones bendable (Advanced Materials, “Efficient and Layer-Dependent Exciton Pumping across Atomically Thin Organic–Inorganic Type-I Heterostructures”).

The invention also opens the door to a new generation of high-performance electronic devices made with organic materials that will be biodegradable or that can be easily recycled, promising to help substantially reduce e-waste.

An October 5, 2018 ANU press release (also on EurekAlert but published October 4, 2018) expands on the theme,

The huge volumes of e-waste generated by discarded electronic devices around the world is causing irreversible damage to the environment. Australia produces 200,000 tonnes of e-waste every year – only four per cent of this waste is recycled.

The organic component has the thickness of just one atom – made from just carbon and hydrogen – and forms part of the semiconductor that the ANU team developed. The inorganic component has the thickness of around two atoms. The hybrid structure can convert electricity into light efficiently for displays on mobile phones, televisions and other electronic devices.

Lead senior researcher Associate Professor Larry Lu said the invention was a major breakthrough in the field.

“For the first time, we have developed an ultra-thin electronics component with excellent semiconducting properties that is an organic-inorganic hybrid structure and thin and flexible enough for future technologies, such as bendable mobile phones and display screens,” said Associate Professor Lu from the ANU Research School of Engineering.

PhD researcher Ankur Sharma, who recently won the ANU 3-Minute Thesis competition, said experiments demonstrated the performance of their semiconductor would be much more efficient than conventional semiconductors made with inorganic materials such as silicon.

“We have the potential with this semiconductor to make mobile phones as powerful as today’s supercomputers,” said Mr Sharma from the ANU Research School of Engineering.

“The light emission from our semiconducting structure is very sharp, so it can be used for high-resolution displays and, since the materials are ultra-thin, they have the flexibility to be made into bendable screens and mobile phones in the near future.”

The team grew the organic semiconductor component molecule by molecule, in a similar way to 3D printing. The process is called chemical vapour deposition.

“We characterised the opto-electronic and electrical properties of our invention to confirm the tremendous potential of it to be used as a future semiconductor component,” Associate Professor Lu said.

“We are working on growing our semiconductor component on a large scale, so it can be commercialised in collaboration with prospective industry partners.”

Here’s a link to and a citation for the paper,

Efficient and Layer‐Dependent Exciton Pumping across Atomically Thin Organic–Inorganic Type‐I Heterostructures by Linglong Zhang, Ankur Sharma, Yi Zhu, Yuhan Zhang, Bowen Wang, Miheng Dong, Hieu T. Nguyen, Zhu Wang, Bo Wen, Yujie Cao, Boqing Liu, Xueqian Sun, Jiong Yang, Ziyuan Li. Advanced Materials Volume30, Issue 40 1803986 (October 4, 2018) DOI:https://doi.org/10.1002/adma.201803986 First published [onliine]: 30 August 2018

This paper is behind a paywall.

Wearable electronic textiles from the UK, India, and Canada: two different carbon materials

It seems wearable electronic textiles may be getting nearer to the marketplace. I have three research items (two teams working with graphene and one working with carbon nanotubes) that appeared on my various feeds within two days of each other.

UK/China

This research study is the result of a collaboration between UK and Chinese scientists. From a May 15, 2019 news item on phys.org (Note: Links have been removed),


Wearable electronic components incorporated directly into fabrics have been developed by researchers at the University of Cambridge. The devices could be used for flexible circuits, healthcare monitoring, energy conversion, and other applications.

The Cambridge researchers, working in collaboration with colleagues at Jiangnan University in China, have shown how graphene – a two-dimensional form of carbon – and other related materials can be directly incorporated into fabrics to produce charge storage elements such as capacitors, paving the way to textile-based power supplies which are washable, flexible and comfortable to wear.

The research, published in the journal Nanoscale, demonstrates that graphene inks can be used in textiles able to store electrical charge and release it when required. The new textile electronic devices are based on low-cost, sustainable and scalable dyeing of polyester fabric. The inks are produced by standard solution processing techniques.

Building on previous work by the same team, the researchers designed inks which can be directly coated onto a polyester fabric in a simple dyeing process. The versatility of the process allows various types of electronic components to be incorporated into the fabric.

Schematic of the textile-based capacitor integrating GNP/polyesters as electrodes and h-BN/polyesters as dielectrics. Credit: Felice Torrisi

A May 16, 2019 University of Cambridge press release, which originated the news item, probes further,

Most other wearable electronics rely on rigid electronic components mounted on plastic or textiles. These offer limited compatibility with the skin in many circumstances, are damaged when washed and are uncomfortable to wear because they are not breathable.

“Other techniques to incorporate electronic components directly into textiles are expensive to produce and usually require toxic solvents, which makes them unsuitable to be worn,” said Dr Felice Torrisi from the Cambridge Graphene Centre, and the paper’s corresponding author. “Our inks are cheap, safe and environmentally-friendly, and can be combined to create electronic circuits by simply overlaying different fabrics made of two-dimensional materials on the fabric.”

The researchers suspended individual graphene sheets in a low boiling point solvent, which is easily removed after deposition on the fabric, resulting in a thin and uniform conducting network made up of multiple graphene sheets. The subsequent overlay of several graphene and hexagonal boron nitride (h-BN) fabrics creates an active region, which enables charge storage. This sort of ‘battery’ on fabric is bendable and can withstand washing cycles in a normal washing machine.

“Textile dyeing has been around for centuries using simple pigments, but our result demonstrates for the first time that inks based on graphene and related materials can be used to produce textiles that could store and release energy,” said co-author Professor Chaoxia Wang from Jiangnan University in China. “Our process is scalable and there are no fundamental obstacles to the technological development of wearable electronic devices both in terms of their complexity and performance.”

The work done by the Cambridge researchers opens a number of commercial opportunities for ink based on two-dimensional materials, ranging from personal health and well-being technology, to wearable energy and data storage, military garments, wearable computing and fashion.

“Turning textiles into functional energy storage elements can open up an entirely new set of applications, from body-energy harvesting and storage to the Internet of Things,” said Torrisi “In the future our clothes could incorporate these textile-based charge storage elements and power wearable textile devices.”

Here’s a link to and a citation for the paper,

Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures by Siyu Qiang, Tian Carey, Adrees Arbab, Weihua Song, Chaoxia Wang and Felice Torris. Nanoscale, 2019, Advance Article DOI: 10.1039/C9NR00463G First published on 18 Apr 2019

This paper is behind a paywall.

India

Prior to graphene’s reign as the ‘it’ carbon material, carbon nanotubes (CNTs) ruled. It’s been quieter on the CNT front since graphene took over but a May 15, 2019 Nanowerk Spotlight article by Michael Berger highlights some of the latest CNT research coming out of India,


The most important technical challenge is to blend the chemical nature of raw materials with fabrication techniques and processability, all of which are diametrically conflicting for textiles and conventional energy storage devices. A team from Indian Institute of Technology Bombay has come out with a comprehensive approach involving simple and facile steps to fabricate a wearable energy storage device. Several scientific and technological challenges were overcome during this process.

First, to achieve user-comfort and computability with clothing, the scaffold employed was the the same as what a regular fabric is made up of – cellulose fibers. However, cotton yarns are electrical insulators and therefore practically useless for any electronics. Therefore, the yarns are coated with single-wall carbon nanotubes (SWNTs).

SWNTs are hollow, cylindrical allotropes of carbon and combine excellent mechanical strength with electrical conductivity and surface area. Such a coating converts the electrical insulating cotton yarn to a metallic conductor with high specific surface area. At the same time, using carbon-based materials ensures that the final material remains light-weight and does not cause user discomfort that can arise from metallic wires such as copper and gold. This CNT-coated cotton yarn (CNT-wires) forms the electrode for the energy storage device.

Next, the electrolyte is composed of solid-state electrolyte sheets since no liquid-state electrolytes can be used for this purpose. However, solid state electrolytes suffer from poor ionic conductivity – a major disadvantage for energy storage applications. Therefore, a steam-based infiltration approach that enhances the ionic conductivity of the electrolyte is adopted. Such enhancement of humidity significantly increases the energy storage capacity of the device.


The integration of the CNT-wire electrode with the electrolyte sheet was carried out by a simple and elegant approach of interweaving the CNT-wire through the electrolyte (see Figure 1). This resulted in cross-intersections which are actually junctions where the electrical energy can be stored. Each such junction is now an energy storage unit, referred to as sewcap.

The advantage of this process is that several 100s and 1000s of sewcaps can be made in a small area and integrated to increase the total amount of energy stored in the system. This scalability is unique and critical aspect of this work and stems from the approach of interweaving.

Further, this process is completely adaptable with current processes used in textile industries. Hence, a proportionately large energy-storage is achieved by creating sewcap-junctions in various combinations.

All components of the final sewcap device are flexible. However, they need to be protected from environmental effects such as temperature, humidity and sweat while retaining the mechanical flexibility. This is achieved by laminating the entire device between polymer sheets. The process is exactly similar to the one used for protecting documents and ID cards.

The laminated sewcap can be integrated easily on clothing and fabrics while retaining the flexibility and sturdiness. This is demonstrated by the unchanged performance of the device during extreme and harsh mechanical testing such as striking repeatedly with a hammer, complete flexing, bending and rolling and washing in a laundry machine.

In fact, this is the first device that has been proven to be stable under rigorous washing conditions in the presence of hot water, detergents and high torque (spinning action of washing machine). This provides the device with comprehensive mechanical stability.


CNTs have high surface area and electrical conductivity. The CNT-wire combines these properties of CNTs with stability and porosity of cellulose yarns. The junction created by interweaving is essentially comprised of two such CNT-wires that are sandwiching an electrolyte. Application of potential difference leads to polarization of the electrolyte thus enabling energy storage similar to the way in which a conventional capacitor acts.

“We use the advantage of the interweaving process and create several such junctions. So, with each junction being able to store a certain amount of electrical energy, all the junctions synchronized are able to store a large amount of energy. This provides high energy density to the device,” Prof. C. Subramaniam, Department of Chemistry, IIT Bombay and corresponding author of the paper points out.

The device has also been employed for lighting up an LED [light-emitting diode]. This can be potentially scaled to provide electrical energy demanded by the application.

This image accompanies the paper written by Prof. C. Subramaniam and his team,

Courtesy: IACS Applied Materials Interfaces

Here’s a link to and a citation for the paper,

Interwoven Carbon Nanotube Wires for High-Performing, Mechanically Robust, Washable, and Wearable Supercapacitors by Mihir Kumar Jha, Kenji Hata, and Chandramouli Subramaniam. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.8b22233 Publication Date (Web): April 29, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

Canada

A research team from the University of British Columbia (UBC at the Okanagan Campus) joined the pack with a May 16, 2019 news item on ScienceDaily,

Forget the smart watch. Bring on the smart shirt.

Researchers at UBC Okanagan’s School of Engineering have developed a low-cost sensor that can be interlaced into textiles and composite materials. While the research is still new, the sensor may pave the way for smart clothing that can monitor human movement.

A May 16, 2019 UBC news release (also on EurekAlert), which originated the news item, describes the work in more detail,


“Microscopic sensors are changing the way we monitor machines and humans,” says Hoorfar, lead researcher at the Advanced Thermo-Fluidic Lab at UBC’s Okanagan campus. “Combining the shrinking of technology along with improved accuracy, the future is very bright in this area.”

This ‘shrinking technology’ uses a phenomenon called piezo-resistivity—an electromechanical response of a material when it is under strain. These tiny sensors have shown a great promise in detecting human movements and can be used for heart rate monitoring or temperature control, explains Hoorfar.

Her research, conducted in partnership with UBC Okanagan’s Materials and Manufacturing Research Institute, shows the potential of a low-cost, sensitive and stretchable yarn sensor. The sensor can be woven into spandex material and then wrapped into a stretchable silicone sheath. This sheath protects the conductive layer against harsh conditions and allows for the creation of washable wearable sensors.

While the idea of smart clothing—fabrics that can tell the user when to hydrate, or when to rest—may change the athletics industry, UBC Professor Abbas Milani says the sensor has other uses. It can monitor deformations in fibre-reinforced composite fabrics currently used in advanced industries such as automotive, aerospace and marine manufacturing.

The low-cost stretchable composite sensor has also shown a high sensitivity and can detect small deformations such as yarn stretching as well as out-of-plane deformations at inaccessible places within composite laminates, says Milani, director of the UBC Materials and Manufacturing Research Institute.

The testing indicates that further improvements in its accuracy could be achieved by fine-tuning the sensor’s material blend and improving its electrical conductivity and sensitivity This can eventually make it able to capture major flaws like “fibre wrinkling” during the manufacturing of advanced composite structures such as those currently used in airplanes or car bodies.

“Advanced textile composite materials make the most of combining the strengths of different reinforcement materials and patterns with different resin options,” he says. “Integrating sensor technologies like piezo-resistive sensors made of flexible materials compatible with the host textile reinforcement is becoming a real game-changer in the emerging era of smart manufacturing and current automated industry trends.”

Here’s a link to and a citation for the paper,

Graphene‐Coated Spandex Sensors Embedded into Silicone Sheath for Composites Health Monitoring and Wearable Applications by Hossein Montazerian, Armin Rashidi, Arash Dalili, Homayoun Najjaran, Abbas S. Milani, Mina Hoorfar. Small Volume15, Issue17 April 26, 2019 1804991 DOI: https://doi.org/10.1002/smll.201804991 First published: 28 March 2019

This paper is behind a paywall.

Will there be one winner or will they find CNTs better for one type of wearable tech textile while graphene excels for another type of wearable tech textile?