Category Archives: electronics

A hardware (neuromorphic and quantum) proposal for handling increased AI workload

It’s been a while since I’ve featured anything from Purdue University (Indiana, US). From a November 7, 2023 news item on Nanowerk, Note Links have been removed,

Technology is edging closer and closer to the super-speed world of computing with artificial intelligence. But is the world equipped with the proper hardware to be able to handle the workload of new AI technological breakthroughs?

Key Takeaways
Current AI technologies are strained by the limitations of silicon-based computing hardware, necessitating new solutions.

Research led by Erica Carlson [Purdue University] suggests that neuromorphic [brainlike] architectures, which replicate the brain’s neurons and synapses, could revolutionize computing efficiency and power.

Vanadium oxides have been identified as a promising material for creating artificial neurons and synapses, crucial for neuromorphic computing.

Innovative non-volatile memory, observed in vanadium oxides, could be the key to more energy-efficient and capable AI hardware.

Future research will explore how to optimize the synaptic behavior of neuromorphic materials by controlling their memory properties.

The colored landscape above shows a transition temperature map of VO2 (pink surface) as measured by optical microscopy. This reveals the unique way that this neuromorphic quantum material [emphasis mine] stores memory like a synapse. Image credit: Erica Carlson, Alexandre Zimmers, and Adobe Stock

An October 13, 2023 Purdue University news release (also on EurekAlert but published November 6, 2023) by Cheryl Pierce, which originated the news item, provides more detail about the work, Note: A link has been removed,

“The brain-inspired codes of the AI revolution are largely being run on conventional silicon computer architectures which were not designed for it,” explains Erica Carlson, 150th Anniversary Professor of Physics and Astronomy at Purdue University.

A joint effort between Physicists from Purdue University, University of California San Diego (USCD) and École Supérieure de Physique et de Chimie Industrielles (ESPCI) in Paris, France, believe they may have discovered a way to rework the hardware…. [sic] By mimicking the synapses of the human brain.  They published their findings, “Spatially Distributed Ramp Reversal Memory in VO2” in Advanced Electronic Materials which is featured on the back cover of the October 2023 edition.

New paradigms in hardware will be necessary to handle the complexity of tomorrow’s computational advances. According to Carlson, lead theoretical scientist of this research, “neuromorphic architectures hold promise for lower energy consumption processors, enhanced computation, fundamentally different computational modes, native learning and enhanced pattern recognition.”

Neuromorphic architecture basically boils down to computer chips mimicking brain behavior.  Neurons are cells in the brain that transmit information. Neurons have small gaps at their ends that allow signals to pass from one neuron to the next which are called synapses. In biological brains, these synapses encode memory. This team of scientists concludes that vanadium oxides show tremendous promise for neuromorphic computing because they can be used to make both artificial neurons and synapses.

“The dissonance between hardware and software is the origin of the enormously high energy cost of training, for example, large language models like ChatGPT,” explains Carlson. “By contrast, neuromorphic architectures hold promise for lower energy consumption by mimicking the basic components of a brain: neurons and synapses. Whereas silicon is good at memory storage, the material does not easily lend itself to neuron-like behavior. Ultimately, to provide efficient, feasible neuromorphic hardware solutions requires research into materials with radically different behavior from silicon – ones that can naturally mimic synapses and neurons. Unfortunately, the competing design needs of artificial synapses and neurons mean that most materials that make good synaptors fail as neuristors, and vice versa. Only a handful of materials, most of them quantum materials, have the demonstrated ability to do both.”

The team relied on a recently discovered type of non-volatile memory which is driven by repeated partial temperature cycling through the insulator-to-metal transition. This memory was discovered in vanadium oxides.

Alexandre Zimmers, lead experimental scientist from Sorbonne University and École Supérieure de Physique et de Chimie Industrielles, Paris, explains, “Only a few quantum materials are good candidates for future neuromorphic devices, i.e., mimicking artificial synapses and neurons. For the first time, in one of them, vanadium dioxide, we can see optically what is changing in the material as it operates as an artificial synapse. We find that memory accumulates throughout the entirety of the sample, opening new opportunities on how and where to control this property.”

“The microscopic videos show that, surprisingly, the repeated advance and retreat of metal and insulator domains causes memory to be accumulated throughout the entirety of the sample, rather than only at the boundaries of domains,” explains Carlson. “The memory appears as shifts in the local temperature at which the material transitions from insulator to metal upon heating, or from metal to insulator upon cooling. We propose that these changes in the local transition temperature accumulate due to the preferential diffusion of point defects into the metallic domains that are interwoven through the insulator as the material is cycled partway through the transition.”

Now that the team has established that vanadium oxides are possible candidates for future neuromorphic devices, they plan to move forward in the next phase of their research.

“Now that we have established a way to see inside this neuromorphic material, we can locally tweak and observe the effects of, for example, ion bombardment on the material’s surface,” explains Zimmers. “This could allow us to guide the electrical current through specific regions in the sample where the memory effect is at its maximum. This has the potential to significantly enhance the synaptic behavior of this neuromorphic material.”

There’s a very interesting 16 mins. 52 secs. video embedded in the October 13, 2023 Purdue University news release. In an interview with Dr. Erica Carlson who hosts The Quantum Age website and video interviews on its YouTube Channel, Alexandre Zimmers takes you from an amusing phenomenon observed by 19th century scientists through the 20th century where it becomes of more interest as the nanscale phenonenon can be exploited (sonar, scanning tunneling microscopes, singing birthday cards, etc.) to the 21st century where we are integrating this new information into a quantum* material for neuromorphic hardware.

Here’s a link to and a citation for the paper,

Spatially Distributed Ramp Reversal Memory in VO2 by Sayan Basak, Yuxin Sun, Melissa Alzate Banguero, Pavel Salev, Ivan K. Schuller, Lionel Aigouy, Erica W. Carlson, Alexandre Zimmers. Advanced Electronic Materials Volume 9, Issue 10 October 2023 2300085 DOI: https://doi.org/10.1002/aelm.202300085 First published: 10 July 2023

This paper is open access.

There’s a lot of research into neuromorphic hardware, here’s a sampling of some of my most recent posts on the topic,

There’s more, just use ‘neuromorphic hardware’ for your search term.

*’meta’ changed to ‘quantum’ on January 8, 2024.

Powered with salt water

Apparently, salt water can be used both in the production of fusion energy (a form of nuclear energy) and, according to new research from the University of Illinois into a nanofluidic device, electricity. From a September 22, 2023 University of Illinois news release (also on EurekAlert),

There is a largely untapped energy source along the world’s coastlines: the difference in salinity between seawater and freshwater. A new nanodevice can harness this difference to generate power.

A team of researchers at the University of Illinois Urbana-Champaign has reported a design for a nanofluidic device capable of converting ionic flow into usable electric power in the journal Nano Energy. The team believes that their device could be used to extract power from the natural ionic flows at seawater-freshwater boundaries.

“While our design is still a concept at this stage, it is quite versatile and already shows strong potential for energy applications,” said Jean-Pierre Leburton, a U. of I. professor of electrical & computer engineering and the project lead. “It began with an academic question – ‘Can a nanoscale solid-state device extract energy from ionic flow?’ – but our design exceeded our expectations and surprised us in many ways.”

When two bodies of water with different salinity meet, such as where a river empties into an ocean, salt molecules naturally flow from higher concentration to lower concentration. The energy of these flows can be harvested because they consist of electrically charged particles called ions that form from the dissolved salt.

Leburton’s group designed a nanoscale semiconductor device that takes advantage of a phenomenon called “Coulomb drag” between flowing ions and electric charges in the device. When the ions flow through a narrow channel in the device, electric forces cause the device charges to move from one side to the other creating voltage and electric current.

The researchers found two surprising behaviors when they simulated their device. First, while they expected that Coulomb drag would primarily occur through the attractive force between opposite electric charges, the simulations indicated that the device works equally well if the electric forces are repulsive. Both positively and negatively charged ions contribute to drag.

“Just as noteworthy, our study indicates that there is an amplification effect” said Mingye Xiong, a graduate student in Leburton’s group and the study’s lead author. “Since the moving ions are so massive compared to the device charges, the ions impart large amounts of momentum to the charges, amplifying the underlying current.”

The researchers also found that these effects are independent of the specific channel configuration as well as the choice of materials, provided the channel diameter is narrow enough to ensure proximity between the ions and the charges.

The researchers are in the process of patenting their findings, and they are studying how arrays of these devices could scale for practical power generation.

“We believe that the power density of a device array could meet or exceed that of solar cells,” Leburton said. “And that’s not to mention the potential applications in other fields like biomedical sensing and nanofluidics.”

Here’s a link to and a citation for the paper,

Ionic coulomb drag in nanofluidic semiconductor channels for energy harvest by Mingye Xiong, Kewei Song, Jean-Pierre Leburton. Nano Energy Volume 117, 1 December 2023, 108860 DOI: https://doi.org/10.1016/j.nanoen.2023.108860

This paper is behind a paywall.

Shape-changing speaker (aka acoustic swarms) for sound control

To alleviate any concerns, these swarms are not kin to Michael Crichton’s swarms in his 2002 novel, Prey or his 2011 novel, Micro (published after his death).

A September 21, 2023 news item on ScienceDaily announces this ‘acoustic swarm’ research,

In virtual meetings, it’s easy to keep people from talking over each other. Someone just hits mute. But for the most part, this ability doesn’t translate easily to recording in-person gatherings. In a bustling cafe, there are no buttons to silence the table beside you.

The ability to locate and control sound — isolating one person talking from a specific location in a crowded room, for instance — has challenged researchers, especially without visual cues from cameras.

A team led by researchers at the University of Washington has developed a shape-changing smart speaker, which uses self-deploying microphones to divide rooms into speech zones and track the positions of individual speakers. With the help of the team’s deep-learning algorithms, the system lets users mute certain areas or separate simultaneous conversations, even if two adjacent people have similar voices. Like a fleet of Roombas, each about an inch in diameter, the microphones automatically deploy from, and then return to, a charging station. This allows the system to be moved between environments and set up automatically. In a conference room meeting, for instance, such a system might be deployed instead of a central microphone, allowing better control of in-room audio.

The team published its findings Sept. 21 [2023] in Nature Communications.

A September 21, 2023 University of Washington (state) news release (also on EurekAlert), which originated the news item, delves further into the work, Note: Links have been removed,

“If I close my eyes and there are 10 people talking in a room, I have no idea who’s saying what and where they are in the room exactly. That’s extremely hard for the human brain to process. Until now, it’s also been difficult for technology,” said co-lead author Malek Itani, a UW doctoral student in the Paul G. Allen School of Computer Science & Engineering. “For the first time, using what we’re calling a robotic ‘acoustic swarm,’ we’re able to track the positions of multiple people talking in a room and separate their speech.”

Previous research on robot swarms has required using overhead or on-device cameras, projectors or special surfaces. The UW team’s system is the first to accurately distribute a robot swarm using only sound.

The team’s prototype consists of seven small robots that spread themselves across tables of various sizes. As they move from their charger, each robot emits a high frequency sound, like a bat navigating, using this frequency and other sensors to avoid obstacles and move around without falling off the table. The automatic deployment allows the robots to place themselves for maximum accuracy, permitting greater sound control than if a person set them. The robots disperse as far from each other as possible since greater distances make differentiating and locating people speaking easier. Today’s consumer smart speakers have multiple microphones, but clustered on the same device, they’re too close to allow for this system’s mute and active zones.

“If I have one microphone a foot away from me, and another microphone two feet away, my voice will arrive at the microphone that’s a foot away first. If someone else is closer to the microphone that’s two feet away, their voice will arrive there first,” said co-lead author Tuochao Chen, a UW doctoral student in the Allen School. “We developed neural networks that use these time-delayed signals to separate what each person is saying and track their positions in a space. So you can have four people having two conversations and isolate any of the four voices and locate each of the voices in a room.”

The team tested the robots in offices, living rooms and kitchens with groups of three to five people speaking. Across all these environments, the system could discern different voices within 1.6 feet (50 centimeters) of each other 90% of the time, without prior information about the number of speakers. The system was able to process three seconds of audio in 1.82 seconds on average — fast enough for live streaming, though a bit too long for real-time communications such as video calls.

As the technology progresses, researchers say, acoustic swarms might be deployed in smart homes to better differentiate people talking with smart speakers. That could potentially allow only people sitting on a couch, in an “active zone,” to vocally control a TV, for example.

Researchers plan to eventually make microphone robots that can move around rooms, instead of being limited to tables. The team is also investigating whether the speakers can emit sounds that allow for real-world mute and active zones, so people in different parts of a room can hear different audio. The current study is another step toward science fiction technologies, such as the “cone of silence” in “Get Smart” and“Dune,” the authors write.

Of course, any technology that evokes comparison to fictional spy tools will raise questions of privacy. Researchers acknowledge the potential for misuse, so they have included guards against this: The microphones navigate with sound, not an onboard camera like other similar systems. The robots are easily visible and their lights blink when they’re active. Instead of processing the audio in the cloud, as most smart speakers do, the acoustic swarms process all the audio locally, as a privacy constraint. And even though some people’s first thoughts may be about surveillance, the system can be used for the opposite, the team says.

“It has the potential to actually benefit privacy, beyond what current smart speakers allow,” Itani said. “I can say, ‘Don’t record anything around my desk,’ and our system will create a bubble 3 feet around me. Nothing in this bubble would be recorded. Or if two groups are speaking beside each other and one group is having a private conversation, while the other group is recording, one conversation can be in a mute zone, and it will remain private.”

Takuya Yoshioka, a principal research manager at Microsoft, is a co-author on this paper, and Shyam Gollakota, a professor in the Allen School, is a senior author. The research was funded by a Moore Inventor Fellow award.

Two of the paper`s authors, Malek Itani and Tuochao Chen, have written a ‘Behind the Paper’ article for Nature.com’s Electrical and Electronic Engineering Community, from their September 21, 2023 posting,

Sound is a versatile medium. In addition to being one of the primary means of communication for us humans, it serves numerous purposes for organisms across the animal kingdom. Particularly, many animals use sound to localize themselves and navigate in their environment. Bats, for example, emit ultrasonic sound pulses to move around and find food in the dark. Similar behavior can be observed in Beluga whales to avoid obstacles and locate one other.

Various animals also have a tendency to cluster together into swarms, forming a unit greater than the sum of its parts. Famously, bees agglomerate into swarms to more efficiently search for a new colony. Birds flock to evade predators. These behaviors have caught the attention of scientists for quite some time, inspiring a handful of models for crowd control, optimization and even robotics. 

A key challenge in building robot swarms for practical purposes is the ability for the robots to localize themselves, not just within the swarm, but also relative to other important landmarks. …

Here’s a link to and a citation for the paper,

Creating speech zones with self-distributing acoustic swarms by Malek Itani, Tuochao Chen, Takuya Yoshioka & Shyamnath Gollakota. Nature Communications volume 14, Article number: 5684 (2023) DOI: https://doi.org/10.1038/s41467-023-40869-8 Published: 21 September 2023

This paper is open access.

(nano) Rust and magnets from the Canadian Light Source

An October 5, 2023 news item on phys.org highlights research from the Canadian Light Source (CLS, also known as, the synchrotron located in Saskatoon, Saskatchewan), Note: A link has been removed,

Every motor we use needs a magnet. University of Manitoba researcher Rachel Nickel is studying how rust could make those magnets cheaper and easier to produce.

Her most recent paper, published in the journal Nano Letters, explores a unique type of iron oxide nanoparticle. This material has special magnetic and electric features that could make it useful. It even has potential as a permanent magnet, which we use in car and airplane motors.

What sets it apart from other magnets is that it’s made from two of the most common elements found on earth: iron and oxygen. Right now, we use magnets made out of some of the rarest elements on the planet.

An October 5, 2023 CLS news release (also received via email) by Victoria Martinez, which originated the news item, provides more detail,

“The ability to produce magnets without rare earth elements [emphasis mine] is incredibly exciting,” says Nickel. “Almost everything that we use that has a motor where we need to start a motion relies on a permanent magnet”.

Researchers only started to understand this unique type of rust, called epsilon iron oxide, in the last 20 years.

“Now, what’s special about epsilon iron oxide is it only exists in the nanoscale,” says Nickel. “It’s basically fancy dust. But it is fancy dust with such incredible potential.”

In order to use it in everyday technology, researchers like Nickel need to understand its structure. To study epsilon iron oxide’s structure in different sizes, Nickel and colleagues collected data at the Advanced Photon Source (APS) in Illinois, thanks to the facility’s partnership with the Canadian Light Source (CLS) at the University of Saskatchewan. As the particle sizes change, the magnetic and electric traits of epsilon iron oxide change; the researchers began to see unusual electronic behaviour in their samples at larger sizes.

Nickel hopes to continue research on these particles, pursuing some of the stranger magnetic and electric properties.

“The more we are able to investigate these systems and the more we have access to facilities to investigate these systems, the more we can learn about the world around us and develop it into new and transformative technologies,” she says.

This work was funded through the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation.

For anyone not familiar with the rare earths situation, they’re not all that rare but they are difficult to mine in most regions of the world. China has some of the most accessible rare earth sites in the world. Consequently, they hold a dominant position in the market. Regardless of who has dominance, this is never a good situation and many countries and their researchers are looking at alternatives to rare earths.

Here’s a link to and a citation for the paper,

Nanoscale Size Effects on Push–Pull Fe–O Hybridization through the Multiferroic Transition of Perovskite ϵ-Fe2O3 by Rachel Nickel, Josh Gibbs, Jacob Burgess, Padraic Shafer, Debora Motta Meira, Chengjun Sun, and Johan van Lierop. Nano Lett. 2023, 23, 17, 7845–7851 DOI: https://doi.org/10.1021/acs.nanolett.3c01512 Publication Date: August 25, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

NorthPole: a brain-inspired chip design for saving energy

One of the main attractions of brain-inspired computing is that it requires less energy than is used in conventional computing. The latest entry into the brain-inspired computing stakes was announced in an October 19, 2023 American Association for the Advancement of Science (AAAS) news release on EurekAlert,

Researchers present NorthPole – a brain-inspired chip architecture that blends computation with memory to process data efficiently at low-energy costs. Since its inception, computing has been processor-centric, with memory separated from compute. However, shuttling large amounts of data between memory and compute comes at a high price in terms of both energy consumption and processing bandwidth and speed. This is particularly evident in the case of emerging and advanced real-time artificial intelligence (AI) applications like facial recognition, object detection, and behavior monitoring, which require fast access to vast amounts of data. As a result, most contemporary computer architectures are rapidly reaching physical and processing bottlenecks and risk becoming economically, technically, and environmentally unsustainable, given the growing energy costs involved. Inspired by the neural architecture of the organic brain, Dharmendra Modha and colleagues developed NorthPole – a neural inference architecture that intertwines compute with memory on a single chip. According to the authors, NorthPole “reimagines the interaction between compute and memory” by blending brain-inspired computing and semiconductor technology. It achieves higher performance, energy-efficiency, and area-efficiency compared to other comparable architectures, including those that use more advanced technology processes. And, because NorthPole is a digital system, it is not subject to the device noise and systemic biases and drifts that afflict analog systems. Modha et al. demonstrate NorthPole’s capabilities by testing it on the ResNet50 benchmark image classification network, where it achieved 25 times higher energy metric of frames per second (FPS) per watt, a 5 times higher space metric of FPS per transistor, and a 22 times lower time metric of latency relative to comparable technology. In a related Perspective, Subramanian Iyer and Vwani Roychowdhury discuss NorthPole’s advancements and limitations in greater detail.

By the way, the NorthPole chip is a result of IBM research as noted in Charles Q. Choi’s October 23, 2023 article for IEEE Spectrum magazine (IEEE is the Institute of Electrical and Electronics Engineers), Note: Links have been removed,

A brain-inspired chip from IBM, dubbed NorthPole, is more than 20 times as fast as—and roughly 25 times as energy efficient as—any microchip currently on the market when it comes to artificial intelligence tasks. According to a study from IBM, applications for the new silicon chip may include autonomous vehicles and robotics.

Brain-inspired computer hardware aims to mimic a human brain’s exceptional ability to rapidly perform computations in an extraordinarily energy-efficient manner. These machines are often used to implement neural networks, which similarly imitate the way a brain learns and operates.

“The brain is vastly more energy-efficient than modern computers, in part because it stores memory with compute in every neuron,” says study lead author Dharmendra Modha, IBM’s chief scientist for brain-inspired computing.

“NorthPole merges the boundaries between brain-inspired computing and silicon-optimized computing, between compute and memory, between hardware and software,” Modha says.

The scientists note that IBM fabricated NorthPole with a 12-nm node process. The current state of the art for CPUs is 3 nm, and IBM has spent years researching 2-nm nodes. This suggests further gains with this brain-inspired strategy may prove readily available, the company says.

The NorthPole chip is preceded by another IBM brain-inspired chip, TrueNorth. (Use the term “TrueNorth” in the blog search engine, if you want to see more about that and other brain-inspired chips.)

Choi’s October 23, 2023 article features technical information but a surprising amount is accessible to an interested reader who’s not an engineer.

There’s a video, which seems to have been produced by IBM,

Here’s a link to and a citation for the paper,

Neural inference at the frontier of energy, space, and time by Dharmendra S. Modha, Filipp Akopyan, Alexander Andreopoulos, Rathinakumar Appuswamy, John V. Arthur, Andrew S. Cassidy, Pallab Datta, Michael V. DeBole, Steven K. Esser, Carlos Ortega Otero, Jun Sawada, Brian Taba, Arnon Amir, Deepika Bablani, Peter J. Carlson, Myron D. Flickner, Rajamohan Gandhasri, Guillaume J. Garreau, Megumi Ito, Jennifer L. Klamo, Jeffrey A. Kusnitz, Nathaniel J. McClatchey, Jeffrey L. McKinstry, Yutaka Nakamura, Tapan K. Nayak, William P. Risk, Kai Schleupen, Ben Shaw, Jay Sivagnaname, Daniel F. Smith, Ignacio Terrizzano, and Takanori Ueda. Science 19 Oct 2023 Vol 382, Issue 6668 pp. 329-335 DOI: 10.1126/science.adh1174

This paper is behind a paywall.

Nanoscale tattoos for individual cells

It’s fascinating to read about a technique for applying ‘tattoos’ to living cells and I have two news items and news releases with different perspectives about this same research.

First out the door was the August 7, 2023 news item on ScienceDaily,

Engineers have developed nanoscale tattoos — dots and wires that adhere to live cells — in a breakthrough that puts researchers one step closer to tracking the health of individual cells.

The new technology allows for the first time the placement of optical elements or electronics on live cells with tattoo-like arrays that stick on cells while flexing and conforming to the cells’ wet and fluid outer structure.

“If you imagine where this is all going in the future, we would like to have sensors to remotely monitor and control the state of individual cells and the environment surrounding those cells in real time,” said David Gracias, a professor of chemical and biomolecular engineering at Johns Hopkins University who led the development of the technology. “If we had technologies to track the health of isolated cells, we could maybe diagnose and treat diseases much earlier and not wait until the entire organ is damaged.”

An August 7, 2023 Johns Hopkins University news release by (also on EurekAlert), which originated the news item, describes the research in an accessible fashion before delving into technical details,

Gracias, who works on developing  biosensor technologies that are nontoxic and noninvasive for the body, said the tattoos bridge the gap between living cells or tissue and conventional sensors and electronic materials. They’re essentially like barcodes or QR codes, he said.

“We’re talking about putting something like an electronic tattoo on a living object tens of times smaller than the head of a pin,” Gracias said. “It’s the first step towards attaching sensors and electronics on live cells.”

The structures were able to stick to soft cells for 16 hours even as the cells moved.

The researchers built the tattoos in the form of arrays with gold, a material known for its ability to prevent signal loss or distortion in electronic wiring. They attached the arrays to cells that make and sustain tissue in the human body, called fibroblasts. The arrays were then treated with  molecular glues and transferred onto the cells using an alginate hydrogel film, a gel-like laminate that can be dissolved after the gold adheres to the cell. The molecular glue on the array bonds to a film secreted by the cells called the extracellular matrix.

Previous research has demonstrated how to use hydrogels to stick nanotechnology onto human skin and internal animal organs. By showing how to adhere nanowires and nanodots onto single cells, Gracias’ team is addressing the long-standing challenge of making optical sensors and electronics compatible with biological matter at the single cell level. 

“We’ve shown we can attach complex nanopatterns to living cells, while ensuring that the cell doesn’t die,” Gracias said. “It’s a very important result that the cells can live and move with the tattoos because there’s often a significant incompatibility between living cells and the methods engineers use to fabricate electronics.”

The team’s ability to attach the dots and wires in an array form is also crucial. To use this technology to track bioinformation, researchers must be able to arrange sensors and wiring into specific patterns not unlike how they are arranged in electronic chips. 

“This is an array with specific spacing,” Gracias explained, “not a haphazard bunch of dots.”

The team plans to try to attach more complex nanocircuits that can stay in place for longer periods. They also want to experiment with different types of cells.

Other Johns Hopkins authors are Kam Sang Kwok, Yi Zuo, Soo Jin Choi, Gayatri J. Pahapale, and Luo Gu.

This looks more like a sea creature to me but it’s not,

Caption: False-colored gold nanodot array on a fibroblast cell. Credit: Kam Sang Kwok and Soo Jin Choi, Gracias Lab/Johns Hopkins University.[The measurement, i.e., what looks like a ‘u’ with a preceding tail, in the lower right corner of the image is one micron/one millionth add that to the ‘m’ and you have what’s commonly described as one micrometre.]

An August 10, 2023 news item on ScienceDaily offers a different perspective from the American Chemical Society (ACS) on this research,

For now, cyborgs exist only in fiction, but the concept is becoming more plausible as science progresses. And now, researchers are reporting in ACS’ Nano Letters that they have developed a proof-of-concept technique to “tattoo” living cells and tissues with flexible arrays of gold nanodots and nanowires. With further refinement, this method could eventually be used to integrate smart devices with living tissue for biomedical applications, such as bionics and biosensing.

An August 10, 2023 ACS news release (also on EurekAlert), which originated the news item, explains some of the issues with attaching electronics to living tissue,

Advances in electronics have enabled manufacturers to make integrated circuits and sensors with nanoscale resolution. More recently, laser printing and other techniques have made it possible to assemble flexible devices that can mold to curved surfaces. But these processes often use harsh chemicals, high temperatures or pressure extremes that are incompatible with living cells. Other methods are too slow or have poor spatial resolution. To avoid these drawbacks, David Gracias, Luo Gu and colleagues wanted to develop a nontoxic, high-resolution, lithographic method to attach nanomaterials to living tissue and cells.

The team used nanoimprint lithography to print a pattern of nanoscale gold lines or dots on a polymer-coated silicon wafer. The polymer was then dissolved to free the gold nanoarray so it could be transferred to a thin piece of glass. Next, the gold was functionalized with cysteamine and covered with a hydrogel layer, which, when peeled away, removed the array from the glass. The patterned side of this flexible array/hydrogel layer was coated with gelatin and attached to individual live fibroblast cells. In the final step, the hydrogel was degraded to expose the gold pattern on the surface of the cells. The researchers used similar techniques to apply gold nanoarrays to sheets of fibroblasts or to rat brains. Experiments showed that the arrays were biocompatible and could guide cell orientation and migration.

The researchers say their cost-effective approach could be used to attach other nanoscale components, such as electrodes, antennas and circuits, to hydrogels or living organisms, thereby opening up opportunities for the development of biohybrid materials, bionic devices and biosensors.

The authors acknowledge funding from the Air Force Office of Scientific Research, the National Institute on Aging, the National Science Foundation and the Johns Hopkins University Surpass Program.

Here’s a link to and a citation for the paper,

Toward Single Cell Tattoos: Biotransfer Printing of Lithographic Gold Nanopatterns on Live Cells by Kam Sang Kwok, Yi Zuo, Soo Jin Choi, Gayatri J. Pahapale, Luo Gu, and David H. Gracias. Nano Lett. 2023, 23, 16, 7477–7484 DOI: https://doi.org/10.1021/acs.nanolett.3c01960 Publication Date:August 1, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

100-fold increase in AI energy efficiency

Most people don’t realize how much energy computing, streaming video, and other technologies consume and AI (artificial intelligence) consumes a lot. (For more about work being done in this area, there’s my October 13, 2023 posting about an upcoming ArtSci Salon event in Toronto featuring Laura U. Marks’s recent work ‘Streaming Carbon Footprint’ and my October 16, 2023 posting about how much water is used for AI.)

So this news is welcome, from an October 12, 2023 Northwestern University news release (also received via email and on EurekAlert), Note: Links have been removed,

AI just got 100-fold more energy efficient

Nanoelectronic device performs real-time AI classification without relying on the cloud

– AI is so energy hungry that most data analysis must be performed in the cloud
– New energy-efficient device enables AI tasks to be performed within wearables
– This allows real-time analysis and diagnostics for faster medical interventions
– Researchers tested the device by classifying 10,000 electrocardiogram samples
– The device successfully identified six types of heart beats with 95% accuracy

Northwestern University engineers have developed a new nanoelectronic device that can perform accurate machine-learning classification tasks in the most energy-efficient manner yet. Using 100-fold less energy than current technologies, the device can crunch large amounts of data and perform artificial intelligence (AI) tasks in real time without beaming data to the cloud for analysis.

With its tiny footprint, ultra-low power consumption and lack of lag time to receive analyses, the device is ideal for direct incorporation into wearable electronics (like smart watches and fitness trackers) for real-time data processing and near-instant diagnostics.

To test the concept, engineers used the device to classify large amounts of information from publicly available electrocardiogram (ECG) datasets. Not only could the device efficiently and correctly identify an irregular heartbeat, it also was able to determine the arrhythmia subtype from among six different categories with near 95% accuracy.

The research was published today (Oct. 12 [2023]) in the journal Nature Electronics.

“Today, most sensors collect data and then send it to the cloud, where the analysis occurs on energy-hungry servers before the results are finally sent back to the user,” said Northwestern’s Mark C. Hersam, the study’s senior author. “This approach is incredibly expensive, consumes significant energy and adds a time delay. Our device is so energy efficient that it can be deployed directly in wearable electronics for real-time detection and data processing, enabling more rapid intervention for health emergencies.”

A nanotechnology expert, Hersam is Walter P. Murphy Professor of Materials Science and Engineering at Northwestern’s McCormick School of Engineering. He also is chair of the Department of Materials Science and Engineering, director of the Materials Research Science and Engineering Center and member of the International Institute of Nanotechnology. Hersam co-led the research with Han Wang, a professor at the University of Southern California, and Vinod Sangwan, a research assistant professor at Northwestern.

Before machine-learning tools can analyze new data, these tools must first accurately and reliably sort training data into various categories. For example, if a tool is sorting photos by color, then it needs to recognize which photos are red, yellow or blue in order to accurately classify them. An easy chore for a human, yes, but a complicated — and energy-hungry — job for a machine.

For current silicon-based technologies to categorize data from large sets like ECGs, it takes more than 100 transistors — each requiring its own energy to run. But Northwestern’s nanoelectronic device can perform the same machine-learning classification with just two devices. By reducing the number of devices, the researchers drastically reduced power consumption and developed a much smaller device that can be integrated into a standard wearable gadget.

The secret behind the novel device is its unprecedented tunability, which arises from a mix of materials. While traditional technologies use silicon, the researchers constructed the miniaturized transistors from two-dimensional molybdenum disulfide and one-dimensional carbon nanotubes. So instead of needing many silicon transistors — one for each step of data processing — the reconfigurable transistors are dynamic enough to switch among various steps.

“The integration of two disparate materials into one device allows us to strongly modulate the current flow with applied voltages, enabling dynamic reconfigurability,” Hersam said. “Having a high degree of tunability in a single device allows us to perform sophisticated classification algorithms with a small footprint and low energy consumption.”

To test the device, the researchers looked to publicly available medical datasets. They first trained the device to interpret data from ECGs, a task that typically requires significant time from trained health care workers. Then, they asked the device to classify six types of heart beats: normal, atrial premature beat, premature ventricular contraction, paced beat, left bundle branch block beat and right bundle branch block beat.

The nanoelectronic device was able to identify accurately each arrhythmia type out of 10,000 ECG samples. By bypassing the need to send data to the cloud, the device not only saves critical time for a patient but also protects privacy.

“Every time data are passed around, it increases the likelihood of the data being stolen,” Hersam said. “If personal health data is processed locally — such as on your wrist in your watch — that presents a much lower security risk. In this manner, our device improves privacy and reduces the risk of a breach.”

Hersam imagines that, eventually, these nanoelectronic devices could be incorporated into everyday wearables, personalized to each user’s health profile for real-time applications. They would enable people to make the most of the data they already collect without sapping power.

“Artificial intelligence tools are consuming an increasing fraction of the power grid,” Hersam said. “It is an unsustainable path if we continue relying on conventional computer hardware.”

Here’s a link to and a citation for the paper,

Reconfigurable mixed-kernel heterojunction transistors for personalized support vector machine classification by Xiaodong Yan, Justin H. Qian, Jiahui Ma, Aoyang Zhang, Stephanie E. Liu, Matthew P. Bland, Kevin J. Liu, Xuechun Wang, Vinod K. Sangwan, Han Wang & Mark C. Hersam. Nature Electronics (2023) DOI: https://doi.org/10.1038/s41928-023-01042-7 Published: 12 October 2023

This paper is behind a paywall.

Toronto’s ArtSci Salon hosts October 16, 2023 and October 27, 2023 events and the Fourth Annual Small File Media Festival in Vancouver (Canada) Oct. 20 – 21, 2023

An October 5, 2023 announcement (received via email) from Toronto’s ArtSci Salon lists two events coming up in October 2023,

These two Events are part of the international Leonardo LASER series
LASER Toronto is hosted by Nina Czegledy and Roberta Buiani

The Anthropocene Cookbook on October 16, 2023

[downloaded from: https://artscisalon.com/coms4208/]

From the Toronto ArtSci Salon October 5, 2023 announcement,

Oct 16 [2023], 3:30 PM [ET] 
The Anthropocene cookbook

with authors 
Zane Cerpina & Stahl Stenslie
Cerpina and Stenslie are the authors of
The Anthropocene Cookbook. How to survive in the age of catastrophes 

Join us to welcome Cerpina and Stenslie as they introduce us to their
book and discuss the future cuisine of humanity. To sustain the
soon-to-be 9 billion global population we cannot count on Mother
Earth’s resources anymore. The project explores innovative and
speculative ideas about new foods in the field of arts, design, science
& technology, rethinking eating traditions and food taboos, and
proposing new recipes for survival in times of ecological catastrophes.

To match the topic of their talk, attendees will be presented with
“anthropocene snacks” and will be encouraged to discuss food
alternatives and new networks of solidarity to fight food deserts,
waste, and unsustainable consumption.

This is a Hybrid event: our guests will join us virtually on zoom.
Join us in person at Glendon Campus, rm YH190 (the studio next to the
Glendon Theatre) for a more intimate community experience and some
anthropocene snacks. If you wish to join us on Zoom, please

register here

This event is part of a series on Emergent Practices in Communication,
featuring explorations on interspecies communication and digital
networks; land-based justice and collective care. The full program can be found here

This initiative is supported by York University’s Teaching Commons Academic Innovation Fund

Zane Cerpina is a multicultural and interdisciplinary female author,
curator, artist, and designer working with the complexity of
socio-political and environmental issues in contemporary society and in
the age of the Anthropocene. Cerpina earned her master’s degree in
design from AHO – The Oslo School of Architecture and Design and a
bachelor’s degree in Art and Technology from Aalborg University. She
resides in Oslo and is a project manager/curator at TEKS (Trondheim
Electronic Arts Centre). She is also a co-founder and editor of EE:
Experimental Emerging Art Journal. From 2015 to 2019, Cerpina was a
creative manager and editor at PNEK (Production Network for Electronic
Art, Norway).

Stahl Stenslie works as an artist, curator and researcher specializing
in experimental media art and interaction experiences. His aesthetic
focus is on art and artistic expressions that challenge ordinary ways of
perceiving the world. Through his practice he asks the questions we tend
to avoid – or where the answers lie in the shadows of existence.
Keywords of his practice are somaesthetics, unstable media,
transgression and numinousness. The technological focus in his works is
on the art of the recently possible – such as i) panhaptic
communication on Smartphones, ii) somatic and immersive soundspaces, and
iii) design of functional and lethal artguns, 3D printed in low-cost
plastic material.He has a PhD on Touch and Technologies from The School
of Architecture and Design, Oslo, Norway. Currently he heads the R&D
department at Arts for Young Audiences Norway.

If you’re interested in the book, there’s the anthropocenecookbook.com, which has more about the book and purchase information,

The Anthropocene Cookbook is by far the most comprehensive collection of ideas about future food from the perspective of art, design, and science. It is a thought-provoking book about art, food, and eating in the Anthropocene –The Age of Man– and the age of catastrophes.

Published by The MIT Press [MIT = Massachusetts Institute of Technology]
| mitpress.mit.edu

Supported by TEKS
Trondheim Electronic Arts Centre
| www.teks.no

*Date changed* Streaming Carbon Footprint on October 27, 2023

Keep scrolling down to Date & location changed for Streaming Carbon Footprint subhead.

From the Toronto ArtSci Salon October 5, 2023 announcement,

Oct 27, [2023] 5:00-7:00 PM  [ET]
Streaming Carbon Footprint

with 
Laura U. Marks
and
David Rokeby

Room 230
The Fields Institute for Research in Mathematical Sciences
222 College Street, Toronto

We are thrilled to announce this dialogue between media Theorist Laura U. Marks and Media Artist David Rokeby. Together, they will discuss a well known elephant in the room of media and digital technologies: their carbon footprint. As social media and streaming media usage increases exponentially, what can be done to mitigate their impact? are there alternatives?

This is a live event: our guests will join us in person.

if you wish to join us on Zoom instead, a link will be circulated on our website and on social media a few days before the event. The event will be recorded

Laura U. Marks works on media art and philosophy with an intercultural focus, and on small-footprint media. She programs experimental media for venues around the world. As Grant Strate University Professor, she teaches in the School for the Contemporary Arts at Simon Fraser University in Vancouver, Canada. Her upcoming book The Fold: From Your Body to the Cosmos will be published I March 2024 by Duke University Press. 

David Rokeby is an installation artist based in Toronto, Canada. He has been creating and exhibiting since 1982. For the first part of his career he focussed on interactive pieces that directly engage the human body, or that involve artificial perception systems. In the last decade, his practice has expanded to included video, kinetic and static sculpture. His work has been performed / exhibited in shows across Canada, the United States, Europe and Asia.

Awards include the first BAFTA (British Academy of Film and Television Arts) award for Interactive Art in 2000, a 2002 Governor General’s award in Visual and Media Arts and the Prix Ars Electronica Golden Nica for Interactive Art 2002. He was awarded the first Petro-Canada Award for Media Arts in 1988, the Prix Ars Electronica Award of Distinction for Interactive Art (Austria) in 1991 and 1997.

I haven’t been able to dig up any information about registration but it will be added here should I stumble across any in the next few weeks. I did, however, find more information about Marks’s work and a festival in Vancouver (Canada).

Fourth Annual Small File Media Festival (October 20 -21, 2023) and the Streaming Carbon Footprint

First, let’s flip back in time to a July 27, 2021 Simon Fraser University (SFU) news release (also published as a July 27, 2021 news item on phys.org) by Tessa Perkins Deneault,

When was the last time you watched a DVD? If you’re like most people, your DVD collection has been gathering dust as you stream movies and TV from a variety of on-demand services. But have you ever considered the impact of streaming video on the environment?

School for the Contemporary Arts professor Laura Marks and engineering professor Stephen Makonin, with engineering student Alejandro Rodriguez-Silva and media scholar Radek Przedpełski, worked together for over a year to investigate the carbon footprint of streaming media supported by a grant from the Social Sciences and Humanities Research Council of Canada.

“Stephen and Alejandro were there to give us a reality check and to increase our engineering literacy, and Radek and I brought the critical reading to it,” says Marks. “It was really a beautiful meeting of critical media studies and engineering.”

After combing through studies on Information and Communication Technologies (ICT) and making their own calculations, they confirmed that streaming media (including video on demand, YouTube, video embedded in social media and websites, video conferences, video calls and games) is responsible for more than one per cent of greenhouse gas emissions worldwide. And this number is only projected to rise as video conferencing and streaming proliferate.

“One per cent doesn’t sound like a lot, but it’s significant if you think that the airline industry is estimated to be 1.9 per cent,” says Marks. “ICT’s carbon footprint is growing fast, and I’m concerned that because we’re all turning our energy to other obvious carbon polluters, like fossil fuels, cars, the airline industry, people are not going to pay attention to this silent, invisible carbon polluter.”

One thing that Marks found surprising during their research is how politicized this topic is.

Their full report includes a section detailing the International Energy Association’s attack on French think tank The Shift Project after they published a report on streaming media’s carbon footprint in 2019. They found that some ICT engineers state that the carbon footprint of streaming is not a concern because data centres and networks are very efficient, while others say the fast-rising footprint is a serious problem that needs to be addressed. Their report includes comparisons of the divergent figures in engineering studies in order to get a better understanding of the scope of this problem.

The No. 1 thing Marks and Makonin recommend to reduce streaming’s carbon footprint is to ensure that our electricity comes from renewable sources. At an individual level, they offer a list of recommendations to reduce energy consumption and demand for new ICT infrastructure including: stream less, watch physical media including DVDs, decrease video resolution, use audio-only mode when possible, and keep your devices longer—since production of devices is very carbon-intensive.    

Promoting small files and low resolution, Marks founded the Small File Media Festival [link leads to 2023 programme], which will present its second annual program [2021] of 5-megabyte films Aug. 10 – 20. As the organizers say, movies don’t have to be big to be binge-worthy.

Learn more about Marks’ research and the Small File Media Festival: https://www.sfu.ca/sca/projects—activities/streaming-carbon-footprint.html

And now for 2023, here’s a video promoting the upcoming fourth annual festival,

The Streaming Carbon Footprint webpage on the SFU website includes information about the final report and the latest Small File Media Festival. Although I found the Small File Media Festival website also included a link for purchasing tickets,

The Small File Media Festival returns for its fourth iteration! We are delighted to partner with The Cinematheque to present over sixty jewel-like works from across the globe. These movies are small in file size, but huge in impact: by embracing the aesthetics of compression and low resolution (glitchiness, noise, pixelation), they lay the groundwork for a new experimental film movement in the digital age. This year, six lovingly curated programs traverse brooding pixelated landscapes, textural paradises, and crystalline infinities.

TICKETS AND FESTIVAL INFO

Join us Friday, October 20 [2023] for the opening-night program followed by a drinks reception in the lobby and a dance party in the cinema, featuring music by Vancouver electronic artist SAN. We’ll announce the winner of the coveted Small-File Golden Mini Bear during Saturday’s [October 21, 2023] award ceremony! As always, the festival will stream online at small​file​.ca after the live events.

We’re most grateful to our future-forward friends at the Social Sciences and Humanities Research Council of Canada, Canada Council for the Arts, and SFU Contemporary Arts. Thanks to VIVO Media Arts, Cairo Video Festival, and The Hmm for generous distribution and exhibition awards, and to UKRAïNATV, a partner in small-file activism.

Cosmically healthy, community-building, and punk AF, small-file ecomedia will heal the world, one pixel at a time.

TICKETS

There we have it. And then, we didn’t

*Date & location change* for Streaming Carbon Footprint event

From an October 27, 2023 ArtSci Salon notice,

Nov 7, [2023] 5:00-7:00 PM 
Streaming Carbon Footprint

with 
Laura U. Marks
and
David Rokeby
 

Tuesday, November 7 [2023]
5:00-7:00 pm
The BMO Lab
15 King’s College Circle, room H-12
Toronto, Ontario M5S 3H7

Good luck to the organizers. It must have been nervewracking to change the date so late in the game.

IBM’s neuromorphic chip, a prototype and more

it seems IBM is very excited about neuromorphic computing. First, there’s an August 10, 2023 news article by Shiona McCallum & Chris Vallance for British Broadcasting Corporation (BBC) online news,

Concerns have been raised about emissions associated with warehouses full of computers powering AI systems.

IBM said its prototype could lead to more efficient, less battery draining AI chips for smartphones.

Its efficiency is down to components that work in a similar way to connections in human brains, it said.

Compared to traditional computers, “the human brain is able to achieve remarkable performance while consuming little power”, said scientist Thanos Vasilopoulos, based at IBM’s research lab in Zurich, Switzerland.

I sense a memristor about to be mentioned, from McCallum & Vallance’s article August 10, 2023 news article,

Most chips are digital, meaning they store information as 0s and 1s, but the new chip uses components called memristors [memory resistors] that are analogue and can store a range of numbers.

You can think of the difference between digital and analogue as like the difference between a light switch and a dimmer switch.

The human brain is analogue, and the way memristors work is similar to the way synapses in the brain work.

Prof Ferrante Neri, from the University of Surrey, explains that memristors fall into the realm of what you might call nature-inspired computing that mimics brain function.

A memristor could “remember” its electric history, in a similar way to a synapse in a biological system.

“Interconnected memristors can form a network resembling a biological brain,” he said.

He was cautiously optimistic about the future for chips using this technology: “These advancements suggest that we may be on the cusp of witnessing the emergence of brain-like chips in the near future.”

However, he warned that developing a memristor-based computer is not a simple task and that there would be a number of challenges ahead for widespread adoption, including the costs of materials and manufacturing difficulties.

Neri is most likely aware that researchers have been excited that ‘green’ computing could be made possible by memristors since at least 2008 (see my May 9, 2008 posting “Memristors and green energy“).

As it turns out, IBM published two studies on neuromorphic chips in August 2023.

The first study (mentioned in the BBC article) is also described in an August 22, 2023 article by Peter Grad for Tech Xpore. This one is a little more technical than the BBC article,

For those who are truly technical, here’s a link to and a citation for the paper,

A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference by Manuel Le Gallo, Riduan Khaddam-Aljameh, Milos Stanisavljevic, Athanasios Vasilopoulos, Benedikt Kersting, Martino Dazzi, Geethan Karunaratne, Matthias Brändli, Abhairaj Singh, Silvia M. Müller, Julian Büchel, Xavier Timoneda, Vinay Joshi, Malte J. Rasch, Urs Egger, Angelo Garofalo, Anastasios Petropoulos, Theodore Antonakopoulos, Kevin Brew, Samuel Choi, Injo Ok, Timothy Philip, Victor Chan, Claire Silvestre, Ishtiaq Ahsan, Nicole Saulnier, Nicole Saulnier, Pier Andrea Francese, Evangelos Eleftheriou & Abu Sebastian. Nature Electronics (2023) DOI: https://doi.org/10.1038/s41928-023-01010-1 Published: 10 August 2023

This paper is behind a paywall.

Before getting to the second paper, there’s an August 23, 2023 IBM blog post by Mike Murphy announcing its publication in Nature, Note: Links have been removed,

Although we’re still just at the precipice of the AI revolution, artificial intelligence has already begun to revolutionize the way we live and work. There’s just one problem: AI technology is incredibly power-hungry. By some estimates, running a large AI model generates more emissions over its lifetime than the average American car.

The future of AI requires new innovations in energy efficiency, from the way models are designed down to the hardware that runs them. And in a world that’s increasingly threatened by climate change, any advances in AI energy efficiency are essential to keep pace with AI’s rapidly expanding carbon footprint.

And one of the latest breakthroughs in AI efficiency from IBM Research relies on analog chips — ones that consume much less power. In a paper published in Nature today,1 researchers from IBM labs around the world presented their prototype analog AI chip for energy-efficient speech recognition and transcription. Their design was utilized in two AI inference experiments, and in both cases, the analog chips performed these tasks just as reliably as comparable all-digital devices — but finished the tasks faster and used less energy.

The concept of designing analog chips for AI inference is not new — researchers have been contemplating the idea for years. Back in 2021, a team at IBM developed chips that use Phase-change memory (PCM) works when an electrical pulse is applied to a material, which changes the conductance of the device. The material switches between amorphous and crystalline phases, where a lower electrical pulse will make the device more crystalline, providing less resistance, and a high enough electrical pulse makes the device amorphous, resulting in large resistance. Instead of recording the usual 0s or 1s you would see in digital systems, the PCM device records its state as a continuum of values between the amorphous and crystalline states. This value is called a synaptic weight, which can be stored in the physical atomic configuration of each PCM device. The memory is non-volatile, so the weights are retained when the power supply is switched off.phase-change memory to encode the weights of a neural network directly onto the physical chip. But previous research in the field hasn’t shown how chips like these could be used on the massive models we see dominating the AI landscape today. For example, GPT-3, one of the larger popular models, has 175 billion parameters, or weights.

Murphy also explains the difference (for amateurs like me) between this work and the earlier published study, from the August 23, 2023 IBM blog post, Note: Links have been removed,

Natural-language tasks aren’t the only AI problems that analog AI could solve — IBM researchers are working on a host of other uses. In a paper published earlier this month in Nature Electronics, the team showed it was possible to use an energy-efficient analog chip design for scalable mixed-signal architecture that can achieve high accuracy in the CIFAR-10 image dataset for computer vision image recognition.

These chips were conceived and designed by IBM researchers in the Tokyo, Zurich, Yorktown Heights, New York, and Almaden, California labs, and built by an external fabrication company. The phase change memory and metal levels were processed and validated at IBM Research’s lab in the Albany Nanotech Complex.

If you were to combine the benefits of the work published today in Nature, such as large arrays and parallel data-transport, with the capable digital compute-blocks of the chip shown in the Nature Electronics paper, you would see many of the building blocks needed to realize the vision of a fast, low-power analog AI inference accelerator. And pairing these designs with hardware-resilient training algorithms, the team expects these AI devices to deliver the software equivalent of neural network accuracies for a wide range of AI models in the future.

Here’s a link to and a citation for the second paper,

An analog-AI chip for energy-efficient speech recognition and transcription by S. Ambrogio, P. Narayanan, A. Okazaki, A. Fasoli, C. Mackin, K. Hosokawa, A. Nomura, T. Yasuda, A. Chen, A. Friz, M. Ishii, J. Luquin, Y. Kohda, N. Saulnier, K. Brew, S. Choi, I. Ok, T. Philip, V. Chan, C. Silvestre, I. Ahsan, V. Narayanan, H. Tsai & G. W. Burr. Nature volume 620, pages 768–775 (2023) DOI: https://doi.org/10.1038/s41586-023-06337-5 Published: 23 August 2023 Issue Date: 24 August 2023

This paper is open access.

10 years of the European Union’s roll of the dice: €1B or 1billion euros each for the Human Brain Project (HBP) and the Graphene Flagship

Graphene and Human Brain Project win biggest research award in history (& this is the 2000th post)” on January 28, 2013 was how I announced the results of what had been a a European Union (EU) competition that stretched out over several years and many stages as projects were evaluated and fell to the wayside or were allowed onto the next stage. The two finalists received €1B each to be paid out over ten years.

Human Brain Project (HBP)

A September 12, 2023 Human Brain Project (HBP) press release (also on EurekAlert) summarizes the ten year research effort and the achievements,

The EU-funded Human Brain Project (HBP) comes to an end in September and celebrates its successful conclusion today with a scientific symposium at Forschungszentrum Jülich (FZJ). The HBP was one of the first flagship projects and, with 155 cooperating institutions from 19 countries and a total budget of 607 million euros, one of the largest research projects in Europe. Forschungszentrum Jülich, with its world-leading brain research institute and the Jülich Supercomputing Centre, played an important role in the ten-year project.

“Understanding the complexity of the human brain and explaining its functionality are major challenges of brain research today”, says Astrid Lambrecht, Chair of the Board of Directors of Forschungszentrum Jülich. “The instruments of brain research have developed considerably in the last ten years. The Human Brain Project has been instrumental in driving this development – and not only gained new insights for brain research, but also provided important impulses for information technologies.”

HBP researchers have employed highly advanced methods from computing, neuroinformatics and artificial intelligence in a truly integrative approach to understanding the brain as a multi-level system. The project has contributed to a deeper understanding of the complex structure and function of the brain and enabled novel applications in medicine and technological advances.

Among the project’s highlight achievements are a three-dimensional, digital atlas of the human brain with unprecedented detail, personalised virtual models of patient brains with conditions like epilepsy and Parkinson’s, breakthroughs in the field of artificial intelligence, and an open digital research infrastructure – EBRAINS – that will remain an invaluable resource for the entire neuroscience community beyond the end of the HBP.

Researchers at the HBP have presented scientific results in over 3000 publications, as well as advanced medical and technical applications and over 160 freely accessible digital tools for neuroscience research.

“The Human Brain Project has a pioneering role for digital brain research with a unique interdisciplinary approach at the interface of neuroscience, computing and technology,” says Katrin Amunts, Director of the HBP and of the Institute for Neuroscience and Medicine at FZJ. “EBRAINS will continue to power this new way of investigating the brain and foster developments in brain medicine.”

“The impact of what you achieved in digital science goes beyond the neuroscientific community”, said Gustav Kalbe, CNECT, Acting Director of Digital Excellence and Science Infrastructures at the European Commission during the opening of the event. “The infrastructure that the Human Brain Project has established is already seen as a key building block to facilitate cooperation and research across geographical boundaries, but also across communities.”

Further information about the Human Brain Project as well as photos from research can be found here: https://fz-juelich.sciebo.de/s/hWJkNCC1Hi1PdQ5.

Results highlights and event photos in the online press release.

Results overviews:
– “Human Brain Project: Spotlights on major achievements” and “A closer Look on Scientific
Advances”

– “Human Brain Project: An extensive guide to the tools developed”

Examples of results from the Human Brain Project:

As the “Google Maps of the brain” [emphasis mine], the Human Brain Project makes the most comprehensive digital brain atlas to date available to all researchers worldwide. The atlas by Jülich researchers and collaborators combines high-resolution data of neurons, fibre connections, receptors and functional specialisations in the brain, and is designed as a constantly growing system.

13 hospitals in France are currently testing the new “Virtual Epileptic Patient” – a platform developed at the University of Marseille [Aix-Marseille University?] in the Human Brain Project. It creates personalised simulation models of brain dynamics to provide surgeons with predictions for the success of different surgical treatment strategies. The approach was presented this year in the journals Science Translational Medicine and The Lancet Neurology.



SpiNNaker2 is a “neuromorphic” [brainlike] computer developed by the University of Manchester and TU Dresden within the Human Brain Project. The company SpiNNcloud Systems in Dresden is commercialising the approach for AI applications. (Image: Sprind.org)

As an openly accessible digital infrastructure, EBRAINS offers scientists easy access to the best techniques for complex research questions.

[https://www.ebrains.eu/]

There was a Canadian connection at one time; Montréal Neuro at Canada’s McGill University was involved in developing a computational platform for neuroscience (CBRAIN) for HBP according to an announcement in my January 29, 2013 posting. However, there’s no mention of the EU project on the CBRAIN website nor is there mention of a Canadian partner on the EBRAINS website, which seemed the most likely successor to the CBRAIN portion of the HBP project originally mentioned in 2013.

I couldn’t resist “Google maps of the brain.”

In any event, the statement from Astrid Lambrecht offers an interesting contrast to that offered by the leader of the other project.

Graphene Flagship

In fact, the Graphene Flagship has been celebrating its 10th anniversary since last year; see my September 1, 2022 posting titled “Graphene Week (September 5 – 9, 2022) is a celebration of 10 years of the Graphene Flagship.”

The flagship’s lead institution, Chalmers University of Technology in Sweden, issued an August 28, 2023 press release by Lisa Gahnertz (also on the Graphene Flagship website but published September 4, 2023) touting its achievement with an ebullience I am more accustomed to seeing in US news releases,

Chalmers steers Europe’s major graphene venture to success

For the past decade, the Graphene Flagship, the EU’s largest ever research programme, has been coordinated from Chalmers with Jari Kinaret at the helm. As the project reaches the ten-year mark, expectations have been realised, a strong European research field on graphene has been established, and the journey will continue.

‘Have we delivered what we promised?’ asks Graphene Flagship Director Jari Kinaret from his office in the physics department at Chalmers, overlooking the skyline of central Gothenburg.

‘Yes, we have delivered more than anyone had a right to expect,’ [emphasis mine] he says. ‘In our analysis for the conclusion of the project, we read the documents that were written at the start. What we promised then were over a hundred specific things. Some of them were scientific and technological promises, and they have all been fulfilled. Others were for specific applications, and here 60–70 per cent of what was promised has been delivered. We have also delivered applications we did not promise from the start, but these are more difficult to quantify.’

The autumn of 2013 saw the launch of the massive ten-year Science, Technology and Innovation research programme on graphene and other related two-dimensional materials. Joint funding from the European Commission and EU Member States totalled a staggering €1,000 million. A decade later, it is clear that the large-scale initiative has succeeded in its endeavours. According to a report by the research institute WifOR, the Graphene Flagship will have created a total contribution to GDP of €3,800 million and 38,400 new jobs in the 27 EU countries between 2014 and 2030.

Exceeded expectations

‘Per euro invested and compared to other EU projects, the flagship has performed 13 times better than expected in terms of patent applications, and seven times better for scientific publications. We have 17 spin-off companies that have received over €130 million in private funding – people investing their own money is a real example of trust in the fact that the technology works,’ says Jari Kinaret.

He emphasises that the long time span has been crucial in developing the concepts of the various flagship projects.

‘When it comes to new projects, the ability to work on a long timescale is a must and is more important than a large budget. It takes a long time to build trust, both in one another within a team and in the technology on the part of investors, industry and the wider community. The size of the project has also been significant. There has been an ecosystem around the material, with many graphene manufacturers and other organisations involved. It builds robustness, which means you have the courage to invest in the material and develop it.’

From lab to application

In 2010, Andre Geim and Konstantin Novoselov of the University of Manchester won the Nobel Prize in Physics for their pioneering experiments isolating the ultra-light and ultra-thin material graphene. It was the first known 2D material and stunned the world with its ‘exceptional properties originating in the strange world of quantum physics’ according to the Nobel Foundation’s press release. Many potential applications were identified for this electrically conductive, heat-resistant and light-transmitting material. Jari Kinaret’s research team had been exploring the material since 2006, and when Kinaret learned of the European Commission’s call for a ten-year research programme, it prompted him to submit an application. The Graphene Flagship was initiated to ensure that Europe would maintain its leading position in graphene research and innovation, and its coordination and administration fell to Chalmers.

Is it a staggering thought that your initiative became the biggest EU research project of all time?

‘The fact that the three-minute presentation I gave at a meeting in Brussels has grown into an activity in 22 countries, with 170 organisations and 1,300 people involved … You can’t think about things like that because it can easily become overwhelming. Sometimes you just have to go for it,’ says Jari Kinaret.

One of the objectives of the Graphene Flagship was to take the hopes for this material and move them from lab to application. What has happened so far?

‘We are well on track with 100 products priced and on their way to the market. Many of them are business-to-business products that are not something we ordinary consumers are going to buy, but which may affect us indirectly.’

‘It’s important to remember that getting products to the application stage is a complex process. For a researcher, it may take ten working prototypes; for industry, ten million. Everything has to click into place, on a large scale. All components must work identically and in exactly the same way, and be compatible with existing production in manufacturing as you cannot rebuild an entire factory for a new material. In short, it requires reliability, reproducibility and manufacturability.’

Applications in a wide range of areas

Graphene’s extraordinary properties are being used to deliver the next generation of technologies in a wide range of fields, such as sensors for self-driving cars, advanced batteries, new water purification methods and sophisticated instruments for use in neuroscience. When asked if there are any applications that Jani Kinaret himself would like to highlight, he mentions, among other things, the applications that are underway in the automotive industry – such as sensors to detect obstacles for self-driving cars. Thanks to graphene, they will be so cost-effective to produce that it will be possible to make them available in more than just the most expensive car models.

He also highlights the aerospace industry, where a graphene material for removing ice from aircraft and helicopter wings is under development for the Airbus company. Another favourite, which he has followed from basic research to application, is the development of an air cleaner for Lufthansa passenger aircraft, based on a kind of ‘graphene foam’. Because graphene foam is very light, it can be heated extremely quickly. A pulse of electricity lasting one thousandth of a second is enough to raise the temperature to 300 degrees, thus killing micro-organisms and effectively cleaning the air in the aircraft.

He also mentions the Swedish company ABB, which has developed a graphene composite for circuit breakers in switchgear. These circuit breakers are used to protect the electricity network and must be safe to use. The graphene composite replaces the manual lubrication of the circuit breakers, resulting in significant cost savings.

‘We also see graphene being used in medical technology, but its application requires many years of testing and approval by various bodies. For example, graphene technology can more effectively map the brain before neurosurgery, as it provides a more detailed image. Another aspect of graphene is that it is soft and pliable. This means it can be used for electrodes that are implanted in the brain to treat tremors in Parkinson’s patients, without the electrodes causing scarring,’ says Jari Kinaret.

Coordinated by Chalmers

Jari Kinaret sees the fact that the EU chose Chalmers as the coordinating university as a favourable factor for the Graphene Flagship.

‘Hundreds of millions of SEK [Swedish Kroner] have gone into Chalmers research, but what has perhaps been more important is that we have become well-known and visible in certain areas. We also have the 2D-Tech competence centre and the SIO Grafen programme, both funded by Vinnova and coordinated by Chalmers and Chalmers industriteknik respectively. I think it is excellent that Chalmers was selected, as there could have been too much focus on the coordinating organisation if it had been more firmly established in graphene research at the outset.’

What challenges have been encountered during the project?

‘With so many stakeholders involved, we are not always in agreement. But that is a good thing. A management book I once read said that if two parties always agree, then one is redundant. At the start of the project, it was also interesting to see the major cultural differences we had in our communications and that different cultures read different things between the lines; it took time to realise that we should be brutally straightforward in our communications with one another.’

What has it been like to have the coordinating role that you have had?

‘Obviously, I’ve had to worry about things an ordinary physics professor doesn’t have to worry about, like a phone call at four in the morning after the Brexit vote or helping various parties with intellectual property rights. I have read more legal contracts than I thought I would ever have to read as a professor. As a researcher, your approach when you go into a role is narrow and deep, here it was rather all about breadth. I would have liked to have both, but there are only 26 hours in a day,’ jokes Jari Kinaret.

New phase for the project and EU jobs to come

A new assignment now awaits Jari Kinaret outside Chalmers as Chief Executive Officer of the EU initiative KDT JU (Key Digital Technologies Joint Undertaking, soon to become Chips JU), where industry and the public sector interact to drive the development of new electronic components and systems.

The Graphene Flagship may have reached its destination in its current form, but the work started is progressing in a form more akin to a flotilla. About a dozen projects will continue to live on under the auspices of the European Commission’s Horizon Europe programme. Chalmers is going to coordinate a smaller CSA project called GrapheneEU, where CSA stands for ‘Coordination and Support Action’. It will act as a cohesive force between the research and innovation projects that make up the next phase of the flagship, offering them a range of support and services, including communication, innovation and standardisation.

The Graphene Flagship is about to turn ten. If the project had been a ten-year-old child, what kind of child would it have been?

‘It would have been a very diverse organism. Different aspirations are beginning to emerge – perhaps it is adolescence that is approaching. In addition, within the project we have also studied other related 2D materials, and we found that there are 6,000 distinct materials of this type, of which only about 100 have been studied. So, it’s the younger siblings that are starting to arrive now.’

Facts about the Graphene Flagship:

The Graphene Flagship is the first European flagship for future and emerging technologies. It has been coordinated and administered from the Department of Physics at Chalmers, and as the project enters its next phase, GrapheneEU, coordination will continue to be carried out by staff currently working on the flagship led by Chalmers Professor Patrik Johansson.

The project has proved highly successful in developing graphene-based technology in Europe, resulting in 17 new companies, around 100 new products, nearly 500 patent applications and thousands of scientific papers. All in all, the project has exceeded the EU’s targets for utilisation from research projects by a factor of ten. According to the assessment of the EU research programme Horizon 2020, Chalmers’ coordination of the flagship has been identified as one of the key factors behind its success.

Graphene Week will be held at the Svenska Mässan in Gothenburg from 4 to 8 September 2023. Graphene Week is an international conference, which also marks the finale of the ten-year anniversary of the Graphene Flagship. The conference will be jointly led by academia and industry – Professor Patrik Johansson from Chalmers and Dr Anna Andersson from ABB – and is expected to attract over 400 researchers from Sweden, Europe and the rest of the world. The programme includes an exhibition, press conference and media activities, special sessions on innovation, diversity and ethics, and several technical sessions. The full programme is available here.

Read the press release on Graphene Week from 4 to 8 September and the overall results of the Graphene Flagship. …

Ten years and €1B each. Congratulations to the organizers on such massive undertakings. As for whether or not (and how they’ve been successful), I imagine time will tell.