Category Archives: environment

Norwegian Institute for Water Research (NIVA) releases study on silver and titanium nanomaterials in wastewater

It turns out that silver and titanium nanomaterials (e.g. silver nanoparticles washed out of athletic clothing) in wastewater may have ‘negative’ and ‘positive’ effects on freshwater and marine life depending on the species.

A November 18, 2019 news item on Nanowerk provides an introduction to the research (Note: Links have been removed),

You may not always think about it when you do your laundry or flush the toilet; but whatever you eat, wear or apply on your skin ends up in wastewater and eventually reaches the environment. The use of nanoparticles in consumer products like textiles, foods and personal care products is increasing.

What is so special about nanoparticles, is their tiny size: One nanometer is one billionth of a meter. The small size gives nanoparticles unique and novel properties compared to their bigger counterparts and may for example reach locations that bigger particles cannot reach.
Further, pristine nanoparticles behave differently from nanoparticles in the environment. In the environment, nanoparticles are transformed by interacting and forming aggregates with other particles, elements or solids, and thereby obtain other physicochemical properties.

The transformation of these tiny particles in wastewater treatment processes and their effect on freshwater and marine organisms, have largely been unknown.
Increased mortality of marine crustaceans.

In a study (“Ecotoxicological Effects of Transformed Silver and Titanium Dioxide Nanoparticles in the Effluent from a Lab-Scale Wastewater Treatment System”) conducted at the Norwegian Institute for Water Research (NIVA), Anastasia Georgantzopoulou and colleagues from NIVA and SINTEF investigated how silver and titanium dioxide nanoparticles behave in wastewater treatment plants, and how marine and freshwater organisms are affected by them.

Exposure to treated wastewater did not have any adverse effects on the freshwater crustacean Daphnia magna. (Photo: NIVA)

A November 18, 2019 NIVA press release, which originated the news item, fills in the details,

The researchers made a laboratory-scale wastewater treatment plant, using sludge from a wastewater treatment plant in Norway. They added environmentally relevant concentrations of silver (Ag) and titanium dioxide (TiO2) nanoparticles over a 5-week period and used the treated wastewater to assess the effects of transformed nanoparticles on freshwater and marine organisms, as well as on gill cells from rainbow trout.

The experiment demonstrated contrasting effects on the two crustacean species. For the marine copepod (Tisbe battagliai), mortality increased by 20-45%, whereas exposure to ttreated wastewater did not have any adverse effects on the freshwater crustacean (Daphnia magna).

“These differences are probably due, at least partly, to the two species’ different feeding habits, in combination with the fact that the nanoparticles showed a strong association to solids present in the wastewater”, Georgantzopoulou says, and explains:

“Daphnia magna is an organism that filters water for food, whereas the marine copepod feeds on bottom surfaces – like effluent solids that have settled out from the water. The bottom feeding crustacean is therefore more likely to ingest nanoparticles, and thereby be affected by solid-associated nanoparticles”. 

Effects on algal species

Nanoparticle-containing treated wastewater also affected algal growth, but the two algae species did not have a common response: The marine algae (Skeletonema pseudocostatum) responded with a 20-40 % growth inhibition, while the algal growth of the freshwater algae (Raphidocelis subcapitata) was actually stimulated, by a 40 % increase, accompanied by increased cell aggregation. The latter is probably some kind of a defense mechanism, aiming to decrease the surface area exposed to toxic particles.

“The results from our study indicate that algal responses to the treated wastewater exposure are species-dependent. This is possibly due to differences in algal cell size, surface area, and cell wall composition”, the NIVA researcher explains.

Increased permeability of fish gill cells

The researchers also found effects of silver and titanium nanoparticles on fish gill cells using an in vitro gill cell line model. As large amounts of water are passing through the gills, and they constitute a barrier to the external environment, this organ is highly exposed to water-borne contaminants, including nanoparticles.

“Exposure to nanoparticle-containing wastewater lead to an increase in reactive oxygen species, a group of molecules that can easily react with and damage cells. This was followed by increased permeability of the gill cells, leading to a compromised barrier function”, Georgantzopoulou says.

“However, the concentrations of silver and titanium nanoparticles in the treated wastewater were too low to fully account for the effects on cell permeability alone. The wastewater effluent is a complex mixture of materials, and the permeability response is probably caused by a combination of the presence of nanoparticles and other stressors”, Georgantzopoulou adds.

Wastewater treatment-transformation of nanoparticles

“We carried out this study on wastewater treatment plant-transformed nanoparticles, and compared them to pristine nanoparticles, as the former is more relevant to what is actually happening in the environment. The increased toxicity of the transformed nanomaterials observed in the study indicates that the effects cannot be predicted by assessing the effects of nanomaterials in their pristine form and highlights the importance of understanding their behavior, environmental transformation and interaction with organisms. Future studies should take nanoparticle transformation into account and focus on a more relevant experimental exposure conditions incorporating transformed nanoparticles in more long-term impact studies to provide a better understanding of their potential impacts”, Georgantzopoulou concludes.

Here’s a link to and a citation for the paper,

Ecotoxicological Effects of Transformed Silver and Titanium Dioxide Nanoparticles in the Effluent from a Lab-Scale Wastewater Treatment System by Anastasia Georgantzopoulou, Patricia Almeida Carvalho, Christian Vogelsang, Mengstab Tilahun, Kuria Ndungu, Andy M. Booth, Kevin V. Thomas, Ailbhe Macken. Environ. Sci. Technol. 2018, 52, 16, 9431-9441 DOI: https://doi.org/10.1021/acs.est.8b01663 Publication Date:July 26, 2018 Copyright © 2018 American Chemical Society

This paper is behind a paywall.

A Café Scientifique Vancouver (Canada) February 25, 2020 talk ‘ Invasive Species of the Lower Mainland 101’

From a February 22, 2020 Café Scientifque announcement (received via email),

Our next café will happen on Tuesday, February 25th, 2020 at 7:30pm in the back room at Yagger’s Downtown (433 W Pender). Our speaker for the evening will be marine biologist Dr. Nick Wong who is associated with the conservation of invasive species [sic].

TITLE OF PRESENTATION: Invasive Species of the Lower Mainland 101

BRIEF ABSTRACT OF WORK: The Invasive Species Council of BC (ISCBC) is a collaborative-based organization committed to reducing the spread and impacts of non-native species within BC.

My role focuses on educating and informing a diverse range of audiences on current and “watchlist” invasive species in British Columbia.

Nick will give details about the key invasives species in the lower mainland, describe some of the ISCBC programs and share things you can do to preserve BC’s amazing biodiversity.

BIO: Nick is the Research and Projects Coordinator with the Invasive Species Council of BC. He received his BSc from Western University [Ontario] and an MSc and PhD in Marine Ecology from the University of Auckland. Nick is passionate about teaching and creating engaging opportunities for people to learn and understand the role they can play in the prevention and mitigation of invasive species.

If the annual reports page is to be believed, the ISCBC has been around since 2006. Nope, I just looked at the 2006 report and the introduction states they were just starting their fourth year of existence at that time. Here’s the ISCBC website.

One final comment, it seems like there might have been a lost opportunity. The ISCBC would have been an interesting addition as a sponsor or partner to the Invasive Systems Festival organized by the Curiosity Collider folks. The festival was mentioned in my October 14, 2019 posting (scroll down about 60% of the way).

Space debris, water, and DIY biology, science events in Canada (Jan. 22 – 23, 2020)

There is a lot happening in the next day or two. I have two Vancouver (Canada) science events and an online event, which can be attended from anywhere.

Space debris on January 23, 2020 in Vancouver

I was surprised to learn about space debris (it was described as a floating junkyard in space) in 1992. It seems things have not gotten better. Here’s more from the Cosmic Nights: Space Debris event page on the H.R. MacMillan Space Centre website,

Cosmic Nights: Space Debris

….

There are tens of thousands of pieces of man-made debris, or “space junk,” orbiting the Earth that threaten satellites and other spacecraft. With the increase of space exploration and no debris removal processes in place that number is sure to increase.

Learn more about the impact space debris will have on current and future missions, space law, and the impact human activity, both scientific, and commercial are having on space as we discuss what it will take to make space exploration more sustainable. Physics professors Dr. Aaron Rosengren, and Dr. Aaron Boley will be joining us to share their expertise on the subject.

Tickets available for 7:30pm or 9:00pm planetarium star theatre shows.
________________

7:30 ticket holder schedule:
6:30 – check-in
7:00 – “Pooping in Space” (GroundStation Canada Theatre)
7:30 – 8:30 “Go Boldly and Sustainably” show (Planetarium Star Theatre)
9:00 – 9:30 “Space Debris” lecture

9:00 ticket holder schedule:
6:30 – check-in
7:00 – 9:00 (runs every 30 mins) “Pooping in Space” show (GroundStation Canada Theatre)
8:00 – 8:30 “Space Debris” lecture
9:00 – 10:00 “Go Boldly and Sustainably” show (Planetarium Star Theatre)
The bar will be open from 6:30 – 10:00pm in the Cosmic Courtyard.

Only planetarium shows are ticketed, all other activities are optional.

7:00pm, 7:30pm, 8:00pm, 8:30pm – “Pooping in Space” – GroundStation Canada Theatre
The ultimate waste! What happens when you have to “GO” in space? In this live show you’ll see how astronauts handle this on the ISS, look at some new innovations space suit design for future missions, and we’ll have some fun astronaut trivia.

7:30pm and 9:00pm – “Go Boldly and Sustainably” – Planetarium Star Theatre
As humans venture into a solar system, where no one can own anything, it is becoming increasingly important to create policies to control for waste and promote sustainability. But who will enact these policies? Will it be our governments or private companies? Our astronomer Rachel Wang, and special guest Dr. Aaron Boley will explore these concepts under the dome in the Planetarium Star Theatre. For the 7:30 show SFU’s Paul Meyer will be making an appearance to talk about the key aspects of space security diplomacy and how it relates to the space debris challenge.

Dr. Aaron Boley is an Assistant Professor in the Physics and Astronomy department at UBC whose research program uses theory and observations to explore a wide range of processes in the formation of planets, from the birth of planet-forming discs to the long-term evolution of planetary systems.

Paul Meyer is Fellow in International Security and Adjunct Professor of International Studies at Simon Fraser University and a founding member of the Outer Space Institute. Prior to his assuming his current positions in 2011, Mr. Meyer had a 35-year career with the Canadian Foreign Service, including serving as Canada’s Ambassador to the United Nations and to the Conference on Disarmament in Geneva (2003-2007). He teaches a course on diplomacy at SFU’s School for International Studies and writes on issues of nuclear non-proliferation and disarmament, outer space security and international cyber security.

8:00pm and 9:00pm – “Space Junk: Our Quest to Conquer the Space Environment Problem” lecture by Dr. Aaron Rosengren

At the end of 2019, after nearly two decades, the U.S. government issued updated orbital debris mitigation guidelines, but the revision fell short of the sweeping changes many in the space debris research community expected. The updated guidelines sets new quantitative limits on events that can create debris and updates the classes of orbits to be used for the retirement of satellites, even allowing for the new exotic idea of passive disposal through gravitational resonances (similar phenomena have left their mark on the asteroid belt between Mars and Jupiter). The revised guidelines, however, do not make major changes, and leave intact the 25-year time frame for end-of-life disposal of low-Earth orbit satellites, a period many now believe to be far too long with the ever increasing orbital traffic in near-Earth space. In this talk, I will discuss various approaches to cleaning up or containing space junk, such as a recent exciting activity in Australia to use laser photo pressure to nudge inactive debris to safe orbits.

Dr. Aaron J. Rosengren is an Assistant Professor in the College of Engineering at the University of Arizona and Member of the Interdisciplinary Graduate Program in Applied Mathematics. Prior to joining UA in 2017, he spent one year at the Aristotle University of Thessaloniki in Greece working in the Department of Physics, as part of the European Union H2020 Project ReDSHIFT. He has also served as a member of the EU Asteroid and Space Debris Network, Stardust, working for two years at the Institute of Applied Physics Nello Carrara of the Italian National Research Council. His research interests include space situational awareness, orbital debris, celestial mechanics, and planetary science. Aaron is currently part of the Space Situational Awareness (SSA)-Arizona initiative at the University of Arizona, a member of the Outer Space Institute (OSI) for the sustainable development of Space at the University of British Columbia, and a research affiliate of the Center for Orbital Debris Education and Research (CODER) at the University of Maryland.

*Choose between either the 7:30pm or 9:00pm planetarium show when purchasing your ticket.*

This is a 19+ event. All attendees will be required to provide photo ID upon entry.

Date and Time

Thu, 23 January 2020
6:30 PM – 10:00 PM PST

Location

H.R. MacMillan Space Centre
1100 Chestnut Street
Vancouver, BC V6J 3J9

Cosmic Nights is the name for a series of talks about space and astronomy and an opportunity to socialize with your choice of beer or wine for purchase.

Canada-wide 2nd Canadian DIY Biology Summit (live audio and webcast)

This is a January 22, 2020 event accessible Canada-wide. For anyone on Pacific Time, it does mean being ready to check-in at 5 am. The first DIY Biology (‘do-it-yourself’ biology) Summit was held in 2016.

Here’s more about the event from its Open Science Network events page on Meetup,

Organizers of Community Biolabs across Canada are converging on Ottawa this Wednesday for the second Canadian DIY Biology Summit organized by the Public Health Agency of Canada (PHAC). OSN [Open Science Network] President & Co-Founder, Scott Pownall, has been invited to talk about the Future of DIY/Community Biology in Canada.

The agenda was just released. Times are East Standard Time.
https://www.opensciencenet.org/wp-content/uploads/2020/01/2020-2nd-Canadian-DYI-Biology-Summit-Agenda.pdf

You can join in remotely via WebEx or audio conferencing.

WebEx Link: https://gts-ee.webex.com/webappng/sites/gts-ee/meeting/info/1144bc57660846349f15cf6e80a6a35f

A few points of clarification: DIYbio YVR has been renamed Open Science Network on Meetup and, should you wish to attend the summit virtually, there is information about passwords and codes on the agenda, which presumably will help you to get access.

Nerd Nite v. 49: Waterslides, Oil Tankers, and Predator-Prey Relationships on January 22, 2020 in Vancouver

Here’s more about Nerd Nite Vancouver v.49 from its event posting,

When you were young, did you spend your summers zooming down waterslides? We remember days where our calves ached from climbing stairs, and sore bums from well… you know. And, if you were like us, you also stared at those slides and thought “How are these things made? And, is it going to disassemble while I’m on it?”. Today, we spend more of our summer days staring out at the oil tankers lining the shore, or watching seagulls dive down to retrieve waste left behind by tourists on Granville Island, but we maintain that curiousity about the things around us! So, splash into a New Year with us to learn about all three: waterslides, oil tankers, and predator-prey relationships.

Hosted by: Kaylee Byers and Michael Unger

Where: The Fox Cabaret

When: Wednesday January 22nd; Doors @ 7, show starts @ 7:30

Tickets: Eventbrite

Poster by: Armin Mortazavi

Music by: DJ Burger

1. Ecology

Zachary Sherker 

Zachary is completing an MSc at UBC investigating freshwater and estuarine predation on juvenile salmon during their out-migration from natal rivers and works as a part-time contract biologist in the lower mainland. Prior to coming out west, Zach completed an interdisciplinary BSc in Aquatic Resources and Biology at St. F.X. University in Antigonish, N.S. During his undergraduate degree, Zach ran field and lab experiments to explore predator-induced phenotypic plasticity in intertidal blue mussels exposed to the waterborne cues of a drilling predator snail. He also conducted biological surveys on lobster fishing boats and worked as a fisheries observer for the offshore commercial snow crab fleet.

2. Waterslides

Shane Jensen

Shane is a professional mechanical engineer whose career transitioned from submarine designer to waterslide tester. He is currently a product manager for waterslides at WhiteWater West.

3. Oil Tankers 101

Kayla Glynn 

Kayla is an ocean enthusiast. She earned her Masters in Marine Management at Dalhousie University, studying compensation for environmental damage caused by ship-source oil spills. Passionate about sharing her knowledge of the ocean with others, Kayla’s shifted her focus to the realm of science communication to help more people foster a deeper relationship with science and the ocean. Kayla now works as a producer at The Story Collider, a non-profit dedicated to sharing true, personal stories about science, where she hosts live storytelling events and leads workshops on behalf of the organization. Follow her at @kaylamayglynn and catch her live on the Story Collider stage on February 11th, 2020!

There you have it.

Dial-a-frog?

Frog and phone – Credit: Marta Yebra Alvarez

There is a ‘frogphone’ but you won’t be talking or communicating directly with frogs, instead you will get data about them, according to a December 6, 2019 British Ecological Society press release (also on EurekAlert),

Researchers have developed the ‘FrogPhone’, a novel device which allows scientists to call up a frog survey site and monitor them in the wild. The FrogPhone is the world’s first solar-powered remote survey device that relays environmental data to the observer via text messages, whilst conducting real-time remote acoustic surveys over the phone. These findings are presented in the British Ecological Society Journal Methods in Ecology and Evolution today [December 6, 2019].

The FrogPhone introduces a new concept that allows researchers to “call” a frog habitat, any time, from anywhere, once the device has been installed. The device has been developed at the University of New South Wales (UNSW) Canberra and the University of Canberra in collaboration with the Australian Capital Territory (ACT) and Region Frogwatch Program and the Australian National University.

The FrogPhone utilises 3G/4G cellular mobile data coverage and capitalises on the characteristic wideband audio of mobile phones, which acts as a carrier for frog calls. Real time frog calls can be transmitted across the 3G/4G network infrastructure, directly to the user’s phone. This supports clear sound quality and minimal background noise, allowing users to identify the calls of different frog species.

“We estimate that the device with its current microphone can detect calling frogs from a 100-150m radius” said lead author Dr. Adrian Garrido Sanchis, Associate Lecturer at UNSW Canberra. “The device allows us to monitor the local frog population with more frequency and ease, which is significant as frog species are widely recognised as indicators of environmental health” said the ACT and Region Frogwatch coordinator and co-author, Anke Maria Hoefer.

The FrogPhone unifies both passive acoustic and active monitoring methods, all in a waterproof casing. The system has a large battery capacity coupled to a powerful solar panel. It also contains digital thermal sensors to automatically collect environmental data such as water and air temperature in real-time. The FrogPhone uses an open-source platform which allows any researcher to adapt it to project-specific needs.

The system simulates the main features of a mobile phone device. The FrogPhone accepts incoming calls independently after three seconds. These three seconds allow time to activate the temperature sensors and measure the battery storage levels. All readings then get automatically texted to the caller’s phone.

Acoustic monitoring of animals generally involves either site visits by a researcher or using battery-powered passive acoustic devices, which record calls and store them locally on the device for later analysis. These often require night-time observation, when frogs are most active. Now, when researchers dial a device remotely, the call to the FrogPhone can be recorded indirectly and analysed later.

Ms. Hoefer remarked that “The FrogPhone will help to drastically reduce the costs and risks involved in remote or high intensity surveys. Its use will also minimize potential negative impacts of human presence at survey sites. These benefits are magnified with increasing distance to and inaccessibility of a field site.”

A successful field trial of the device was performed in Canberra from August 2017 to March 2018. Researchers used spectrograms, graphs which allow the visual comparison of the spectrum of frequencies of frog signals over time, to test the recording capabilities of the FrogPhone.

Ms. Hoefer commented that “The spectrogram comparison between the FrogPhone and the standard direct mobile phone methodology in the lab, for the calls of 9 different frog species, and the field tests have proven that the FrogPhone can be successfully used as a new alternative to conduct frog call surveys.”

The use of the current FrogPhone is limited to areas with adequate 3G/4G phone coverage. Secondly, to listen to frogs in a large area, several survey devices would be needed. In addition, it relies on exposure to sunlight.

Future additions to the FrogPhone could include a satellite communications module for poor signal areas, or the use of multidirectional microphones for large areas. Lead author Garrido Sanchis emphasized that “In densely vegetated areas the waterproof case of the FrogPhone allows the device to be installed as a floating device in the middle of a pond, to maximise solar access to recharge the batteries”.

Dr. Garrido Sanchis said “While initially tested in frogs, the technology used for the FrogPhone could easily be extended to capture other animal vocalisation (e.g. insects and mammals), expanding the applicability to a wide range of biodiversity conservation studies”.

Here’s what the FrogPhone looks like onsite,

The FrogPhone installed at the field site. Credit: Kumudu Munasinghe

Here’s a link to and a citation for the paper,

The FrogPhone: A novel device for real‐time frog call monitoring by Adrian, Garrido Sanchis, Lorenzo Bertolelli, Anke Maria Hoefer, Marta Yebra Alvarez, Kumudu Munasinghe. Methods in Ecology and Evolution https://doi.org/10.1111/2041-210X.13332 First published [online]: 04 December 2019

This paper is open access.

Climate change and black gold

A July 3, 2019 news item on Nanowerk describes research coming from India and South Korea where nano gold is turned into black nanogold (Note: A link has been removed),

One of the main cause of global warming is the increase in the atmospheric CO2 level. The main source of this CO2 is from the burning of fossil fuels (electricity, vehicles, industry and many more).

Researchers at TIFR [Tata Institute of Fundamental Research] have developed the solution phase synthesis of Dendritic Plasmonic Colloidosomes (DPCs) with varying interparticle distances between the gold Nanoparticles (AU NPs) using a cycle-by-cycle growth approach by optimizing the nucleation-growth step. These DPCs absorb the entire visible and near-infrared region of solar light, due to interparticle plasmonic coupling as well as the heterogeneity in the Au NP [gold nanoparticle] sizes, which transformed golden gold material to black gold (Chemical Science, “Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion”).

A July 3, 2019 Tata Institute of Fundamental Research (TIFR) press release on EurekAlert, which originated the news item, provides more technical detail,

Black (nano)gold was able to catalyze CO2 to methane (fuel) conversion at atmospheric pressure and temperature, using solar energy. They also observed the significant effect of the plasmonic hotspots on the performance of these DPCs for the purification of seawater to drinkable water via steam generation, temperature jump assisted protein unfolding, oxidation of cinnamyl alcohol using pure oxygen as the oxidant, and hydrosilylation of aldehydes.

This was attributed to varying interparticle distances and particle sizes in these DPCs. The results indicate the synergistic effects of EM and thermal hotspots as well as hot electrons on DPCs performance. Thus, DPCs catalysts can effectively be utilized as Vis-NIR light photo-catalysts, and the design of new plasmonic nanocatalysts for a wide range of other chemical reactions may be possible using the concept of plasmonic coupling.

Raman thermometry and SERS (Surface-enhanced Raman Spectroscopy) provided information about the thermal and electromagnetic hotspots and local temperatures which was found to be dependent on the interparticle plasmonic coupling. The spatial distribution of the localized surface plasmon modes by STEM-EELS plasmon mapping confirmed the role of the interparticle distances in the SPR (Surface Plasmon Resonance) of the material.

Thus, in this work, by using the techniques of nanotechnology, the researchers transformed golden gold to black gold, by changing the size and gaps between gold nanoparticles. Similar to the real trees, which use CO2, sunlight and water to produce food, the developed black gold acts like an artificial tree that uses CO2, sunlight and water to produce fuel, which can be used to run our cars. Notably, black gold can also be used to convert sea water into drinkable water using the heat that black gold generates after it captures sunlight.

This work is a way forward to develop “Artificial Trees” which capture and convert CO2 to fuel and useful chemicals. Although at this stage, the production rate of fuel is low, in coming years, these challenges can be resolved. We may be able to convert CO2 to fuel using sunlight at atmospheric condition, at a commercially viable scale and CO2 may then become our main source of clean energy.

Here’s an image illustrating the work

Caption: Use of black gold can get us one step closer to combat climate change. Credit: Royal Society of Chemistry, Chemical Science

A July 3, 2019 Royal Society of Chemistry Highlight features more information about the research,

A “black” gold material has been developed to harvest sunlight, and then use the energy to turn carbon dioxide (CO2) into useful chemicals and fuel.

In addition to this, the material can also be used for applications including water purification, heating – and could help further research into new, efficient catalysts.

“In this work, by using the techniques of nanotechnology, we transformed golden gold to black gold, by simply changing the size and gaps between gold nanoparticles,” said Professor Vivek Polshettiwar from Tata Institute of Fundamental Research (TIFR) in India.

Tuning the size and gaps between gold nanoparticles created thermal and electromagnetic hotspots, which allowed the material to absorb the entire visible and near-infrared region of sunlight’s wavelength – making the gold “black”.

The team of researchers, from TIFR and Seoul National University in South Korea, then demonstrated that this captured energy could be used to combat climate change.

Professor Polshettiwar said: “It not only harvests solar energy but also captures and converts CO2 to methane (fuel). Synthesis and use of black gold for CO2-to-fuel conversion, which is reported for the first time, has the potential to resolve the global CO2 challenge.

“Now, like real trees which use CO2, sunlight and water to produce food, our developed black gold acts like an artificial tree to produce fuel – which we can use to run our cars,” he added.
Although production is low at this stage, Professor Polshettiwar (who was included in the RSC’s 175 Faces of Chemistry) believes that the commercially-viable conversion of CO2 to fuel at atmospheric conditions is possible in the coming years.

He said: “It’s the only goal of my life – to develop technology to capture and convert CO2 and combat climate change, by using the concepts of nanotechnology.”

Other experiments described in the Chemical Science paper demonstrate using black gold to efficiently convert sea water into drinkable water via steam generation.

It was also used for protein unfolding, alcohol oxidation, and aldehyde hydrosilylation: and the team believe their methodology could lead to novel and efficient catalysts for a range of chemical transformations.

Here’s a link to and a citation for the paper,

Plasmonic colloidosomes of black gold for solar energy harvesting and hotspots directed catalysis for CO2 to fuel conversion by Mahak Dhiman, Ayan Maity, Anirban Das, Rajesh Belgamwar, Bhagyashree Chalke, Yeonhee Lee, Kyunjong Sim, Jwa-Min Nam and Vivek Polshettiwar. Chem. Sci., 2019, Advance Article. DOI: 10.1039/C9SC02369K First published on July 3, 2019

This paper is freely available in the open access journal Chemical Science.

Reading (2 of 2): Is zinc-infused underwear healthier for women?

This first part of this Reading ‘series’, Reading (1 of 2): an artificial intelligence story in British Columbia (Canada) was mostly about how one type of story, in this case,based on a survey, is presented and placed in one or more media outlets. The desired outcome is for more funding by government and for more investors (they tucked in an ad for an upcoming artificial intelligence conference in British Columbia).

This story about zinc-infused underwear for women also uses science to prove its case and it, too, is about raising money. In this case, it’s a Kickstarter campaign to raise money.

If Huha’s (that’s the company name) claims for ‘zinc-infused mineral undies’ are to be believed, the answer is an unequivocal yes. The reality as per the current research on the topic is not quite as conclusive.

The semiotics (symbolism)

Huha features fruit alongside the pictures of their underwear. You’ll see an orange, papaya, and melon in the kickstarter campaign images and on the company website. It seems to be one of those attempts at subliminal communication. Fruit is good for you therefore our underwear is good for you. In fact, our underwear (just like the fruit) has health benefits.

For a deeper dive into the world of semiotics, there’s the ‘be fruitful and multiply’ stricture which is found in more than one religious or cultural orientation and is hard to dismiss once considered.

There is no reason to add fruit to the images other than to suggest benefits from nature and fertility (or fruitfulness). They’re not selling fruit and these ones are not particularly high in zinc. If all you’re looking for is colour, why not vegetables or puppies?

The claims

I don’t have time to review all of the claims but I’ll highlight a few. My biggest problem with the claims is that there are no citations or links to studies, i.e., the research. So, something like this becomes hard to assess,

Most women’s underwear are made with chemical-based, synthetic fibers that lead to yeast and UTI [urinary tract infection] infections, odor, and discomfort. They’ve also been proven to disrupt human hormones, have been linked to cancer, pollute the planet aggressively, and stay in landfills far too long.

There’s more than one path to a UTI and/or odor and/or discomfort but I can see where fabrics that don’t breathe can exacerbate or cause problems of that nature. I have a little more difficulty with the list that follows. I’d like to see the research on underpants disrupting human hormones. Is this strictly a problem for women or could men also be affected? (If you should know, please leave a comment.)

As for ‘linked to cancer’, I’m coming to the conclusion that everything is linked to cancer. Offhand, I’ve been told peanuts, charcoal broiled items (I think it’s the char), and my negative thoughts are all linked to cancer.

One of the last claims in the excerpted section, ‘pollute the planet aggressively’ raises this question.When did underpants become aggressive’?

The final claim seems unexceptional. Our detritus is staying too long in our landfills. Of course, the next question is: how much faster do the Huha underpants degrade in a landfill? That question is not addressed in Kickstarter campaign material.

Talking to someone with more expertise

I contacted Dr. Andrew Maynard, Associate Director at Arizona State University (ASU) School for the Future of Innovation in Society, He has a PhD in physics and longstanding experience in research and evaluation of emerging technologies (for many years he specialized in nanoparticle analysis and aerosol exposure in occupational settings),.

Professor Maynard is a widely recognized expert and public commentator on emerging technologies and their safe and responsible development and use, and has testified before [US] congressional committees on a number of occasions. 

None of this makes him infallible but I trust that he always works with integrity and bases his opinions on the best information at hand. I’ve always found him to be a reliable source of information.

Here’s what he had to say (from an October 25, 2019 email),

I suspect that their claims are pushing things too far – from what I can tell, professionals tend to advise against synthetic underwear because of the potential build up of moisture and bacteria and the lack of breathability, and tend to suggest natural materials – which indicating that natural fibers and good practices should be all most people need. I haven’t seen any evidence for an underwear crisis here, and one concern is that the company is manufacturing a problem which they then claim to solve. That said, I can’t see anything totally egregious in what they are doing. And the zinc presence makes sense in that it prevents bacterial growth/activity within the fabric, thus reducing the chances of odor and infection.

Pharmaceutical grade zinc and research into underwear

I was a little curious about ‘pharmaceutical grade’ zinc as my online searches for a description were unsuccessful. Andrew explained that the term likely means ‘high purity’ zinc suitable for use in medications rather than the zinc found in roofing panels.

After the reference to ‘pharmaceutical grade’ zinc there’s a reference to ‘smartcel sensitive Zinc’. Here’s more from the smartcel sensitive webpage,

smartcel™ sensitive is skin friendly thanks to zinc oxide’s soothing and anti-inflammatory capabilities. This is especially useful for people with sensitive skin or skin conditions such as eczema or neurodermitis. Since zinc is a component of skin building enzymes, it operates directly on the skin. An active exchange between the fiber and the skin occurs when the garment is worn.

Zinc oxide also acts as a shield against harmful UVA and UVB radiation [it’s used in sunscreens], which can damage our skin cells. Depending on the percentage of smartcel™ sensitive used in any garment, it can provide up to 50 SPF.

Further to this, zinc oxide possesses strong antibacterial properties, especially against odour causing bacteria, which helps to make garments stay fresh longer. *

I couldn’t see how zinc helps the pH balance in anyone’s vagina as claimed in the Kickstarter campaign and smartcel, on its ‘sensitive’ webpage, doesn’t make that claim but I found an answer in an April 4, 2017 Q&A (question and answer) interview by Jocelyn Cavallo for Medium,

What women need to know about their vaginal p

Q & A with Dr. Joanna Ellington

A woman’s vagina is a pretty amazing body part. Not only can it be a source of pleasure but it also can help create and bring new life into the world. On top of all that, it has the extraordinary ability to keep itself clean by secreting natural fluids and maintaining a healthy pH to encourage the growth of good bacteria and discourage harmful bacteria from moving in. Despite being so important, many women are never taught the vital role that pH plays in their vaginal health or how to keep it in balance.

We recently interviewed renowned Reproductive Physiologist and inventor of IsoFresh Balancing Vaginal Gel, Dr. Joanna Ellington, to give us the low down on what every woman needs to know about their vaginal pH and how to maintain a healthy level.

What is pH?

Dr. Ellington: PH is a scale of acidity and alkalinity. The measurements range from 0 to 14: a pH lower than 7 is acidic and a pH higher than 7 is considered alkaline.

What is the “perfect” pH level for a woman’s vagina?

Dr. E.: For most women of a reproductive age vaginal pH should be 4.5 or less. For post-menopausal women this can go up to about 5. The vagina will naturally be at a high pH right after sex, during your period, after you have a baby or during ovulation (your fertile time).

Are there diet and environmental factors that affect a women’s vaginal pH level?

Dr. E.: Yes, iron zinc and manganese have been found to be critical for lactobacillus (healthy bacteria) to function. Many women don’t eat well and should supplement these, especially if they are vegetarian. Additionally, many vegetarians have low estrogen because they do not eat the animal fats that help make our sex steroids. Without estrogen, vaginal pH and bacterial imbalance can occur. It is important that women on these diets ensure good fat intake from other sources, and have estrogen and testosterone and iron levels checked each year.

Do clothing and underwear affect vaginal pH?

Dr. E.: Yes, tight clothing and thong underwear [emphasis mine] have been shown in studies to decrease populations of healthy vaginal bacteria and cause pH changes in the vagina. Even if you wear these sometimes, it is important for your vaginal ecosystem that loose clothing or skirts be worn some too.

Yes, Dr. Ellington has the IsoFresh Balancing Vaginal Gel and whether that’s a good product should be researched but all of the information in the excerpt accords with what I’ve heard over the years and fits in nicely with what Andrew said, zinc in underwear could be useful for its antimicrobial properties. Also, note the reference to ‘thong underwear’ as a possible source of difficulty and note that Huha is offering thong and very high cut underwear.

Of course, your underwear may already have zinc in it as this research suggests (thank you, Andrew, for the reference),

Exposure of women to trace elements through the skin by direct contact with underwear clothing by Thao Nguyen & Mahmoud A. Saleh. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances and Environmental Engineering Volume 52, 2017 – Issue 1 Pages 1-6 DOI: https://doi.org/10.1080/10934529.2016.1221212 Published online: 09 Sep 2016

This paper is behind a paywall but I have access through a membership in the Canadian Academy of Independent Scholars. So, here’s the part I found interesting,

… The main chemical pollutants present in textiles are dyes containing carcinogenic amines, metals, pentachlorophenol, chlorine bleaching, halogen carriers, free formaldehyde, biocides, fire retardants and softeners.[1] Metals are also found in textile products and clothing are used for many purposes: Co [cobalt], Cu [copper], Cr [chromium] and Pb [lead] are used as metal complex dyes, Cr as pigments mordant, Sn as catalyst in synthetic fabrics and as synergists of flame retardants,Ag [silver] as antimicrobials and Ti [titanium] and Zn [zinc] as water repellents and odor preventive agents.[2–5] When present in textile materials, the toxic elements mentioned above represent not only a major environmental problem in the textile industry but also they may impose potential danger to human health by absorption through the skin.[6,7] [emphasis mine] Chronic exposure to low levels of toxic elements has been associated with a number of adverse human health effects.[8–11] Also exposure to high concentration of elements which are considered as essential for humans such as Cu, Co, Fe [iron], Mn [manganese] or Zn among others, can also be harmful.[12] [emphasis mine] Co, Cr, Cu and Ni [nitrogen] are skin sensitizers,[13,14] which may lead to contact dermatitis, also Cr can lead to liver damage, pulmonary congestion and cancer.[15] [emphasis mine] The purpose of the present study was to determine the concentrations of a number of elements in various skin-contact clothes. For risk estimations, the determination of the extractable amounts of heavy metals is of importance, since they reflect their possible impact on human health. [p. 2 PDF]

So, there’s the link to cancer. Maybe.

Are zinc-infused undies a good idea?

It could go either way. (For specifics about the conclusions reached in the study, scroll down to the Ooops! subheading.) I like the idea of using sustainable Eucalyptus-based material (TencelL) for the underwear as I have heard that cotton isn’t sustainably cultivated. As for claims regarding the product’s environmental friendliness, it’s based on wood, specifically, cellulose, which Canadian researchers have been experimenting with at the nanoscale* and they certainly have been touting nanocellulose as environmentally friendly. Tencel’s sustainability page lists a number of environmental certifications from the European Union, Belgium, and the US.

*Somewhere in the Kickstarter campaign material, there’s a reference to nanofibrils and I’m guessing those nanofibrils are Tencel’s wood fibers at the nanoscale. As well, I’m guessing that smartcel’s fabric contains zinc oxide nanoparticles.

Whether or not you need more zinc is something you need to determine for yourself. Finding out if the pH balance in your vagina is within a healthy range might be a good way to start. It would also be nice to know how much zinc is in the underwear and whether it’s being used antimicrobial properties and/or as a source for one of minerals necessary for your health.

How the Kickstarter campaign is going

At the time of this posting, they’ve reached a little over $24,000 with six days left. The goal was $10,000. Sadly, there are no questions in the FAQ (frequently asked questions).

Reading tips

It’s exhausting trying to track down authenticity. In this case, there were health and environmental claims but I do have a few suggestions.

  1. Look at the imagery critically and try to ignore the hyperbole.
  2. How specific are the claims? e.g., How much zinc is there in the underpants?
  3. Who are their experts and how trustworthy are the agencies/companies mentioned?
  4. If research is cited, are the publishers reputable and is the journal reputable?
  5. Does it make sense given your own experience?
  6. What are the consequences if you make a mistake?

Overblown claims and vague intimations of disease are not usually good signs. Conversely, someone with great credential may not be trustworthy which is why I usually try to find more than one source for confirmation. The person behind this campaign and the Huha company is Alexa Suter. She’s based in Vancouver, Canada and seems to have spent most of her time as a writer and social media and video producer with a few forays into sales and real estate. I wonder if she’s modeling herself and her current lifestyle entrepreneurial effort on Gwyneth Paltrow and her lifestyle company, Goop.

Huha underwear may fulfill its claims or it may be just another pair of underwear or it may be unhealthy. As for the environmentally friendly claims, let’s hope that the case. On a personal level, I’m more hopeful about that.

Regardless, the underwear is not cheap. The smallest pledge that will get your underwear (a three-pack) is $65 CAD.

Ooops! ETA: November 8, 2019:

I forgot to include the conclusion the researchers arrived at and some details on how they arrived at those conclusions. First, they tested 120 pairs of underpants in all sorts of colours and made in different parts of the world.

Second, some underpants showed excessive levels of metals. Cotton was the most likely material to show excess although nylon and polyester can also be problematic. To put this into proportion and with reference to zinc, “Zn exceeded the limit in 4% of the tested samples
and was found mostly in samples manufactured in China.” [p. 6 PDF] Finally, dark colours tested for higher levels of metals than light colours.

While it doesn’t mention underpants as such, there’s a November 8, 2019 article ‘Five things everyone with a vagina should know‘ by Paula McGrath for BBC news online. McGrath’s health expert is Dr. Jen Gunter, a physician whose specialties are obstetrics, gynaecology, and pain.

Preventing corrosion in oil pipelines at the nanoscale

A June 7, 2019 news item on Azonano announces research into the process of oil pipeline corrosion at the nanoscale (Note: A link has been removed),

Steel pipes tend to rust and sooner or later fail. To anticipate disasters, oil companies and others have developed computer models to foretell when replacement is necessary. However, if the models themselves are incorrect, they can be amended only through experience, an expensive problem if detection happens too late.

Currently, scientists at Sandia National Laboratories, the Department of Energy’s Center for Integrated Nanotechnologies and the Aramco Research Center in Boston, have discovered that a specific form of nanoscale corrosion is responsible for suddenly diminishing the working life of steel pipes, according to a paper recently published in Nature’s Materials Degradation journal.

A June 6, 2019 Sandia National Laboratories news release (also on EurekAlert), which originated the news item, provides more technical detail,

Using transmission electron microscopes, which shoot electrons through targets to take pictures, the researchers were able to pin the root of the problem on a triple junction formed by a grain of cementite — a compound of carbon and iron — and two grains of ferrite, a type of iron. This junction forms frequently during most methods of fashioning steel pipe.

Iron atoms slip-sliding away

The researchers found that disorder in the atomic structure of those triple junctions made it easier for the corrosive solution to remove iron atoms along that interface.
In the experiment, the corrosive process stopped when the triple junction had been consumed by corrosion, but the crevice left behind allowed the corrosive solution to attack the interior of the steel.

“We thought of a possible solution for forming new pipe, based on changing the microstructure of the steel surface during forging, but it still needs to be tested and have a patent filed if it works,” said Sandia’s principle investigator Katherine Jungjohann, a paper author and lead microscopist. “But now we think we know where the major problem is.”

Aramco senior research scientist Steven Hayden added, “This was the world’s first real-time observation of nanoscale corrosion in a real-world material — carbon steel — which is the most prevalent type of steel used in infrastructure worldwide. Through it, we identified the types of interfaces and mechanisms that play a role in the initiation and progression of localized steel corrosion. The work is already being translated into models used to prevent corrosion-related catastrophes like infrastructure collapse and pipeline breaks.”

To mimic the chemical exposure of pipe in the field, where the expensive, delicate microscopes could not be moved, very thin pipe samples were exposed at Sandia to a variety of chemicals known to pass through oil pipelines.

Sandia researcher and paper author Khalid Hattar put a dry sample in a vacuum and used a transmission electron microscope to create maps of the steel grain types and their orientation, much as a pilot in a plane might use a camera to create area maps of farmland and roads, except that Hattar’s maps had approximately 6 nanometers resolution. (A nanometer is one-billionth of a meter.)

“By comparing these maps before and after the liquid corrosion experiments, a direct identification of the first phase that fell out of the samples could be identified, essentially identifying the weakest link in the internal microstructure,” Hattar said.

Sandia researcher and paper author Paul Kotula said, “The sample we analyzed was considered a low-carbon steel, but it has relatively high-carbon inclusions of cementite which are the sites of localized corrosion attacks.

“Our transmission electron microscopes were a key piece of this work, allowing us to image the sample, observe the corrosion process, and do microanalysis before and after the corrosion occurred to identify the part played by the ferrite and cementite grains and the corrosion product.”

When Hayden first started working in corrosion research, he said, “I was daunted at how complex and poorly understood corrosion is. This is largely because realistic experiments would involve observing complex materials like steel in liquid environments and with nanoscale resolution, and the technology to accomplish such a feat had only recently been developed and yet to be applied to corrosion. Now we are optimistic that further work at Sandia and the Center for Integrated Nanotechnologies will allow us to rethink manufacturing processes to minimize the expression of the susceptible nanostructures that render the steel vulnerable to accelerated decay mechanisms.”

Invisible path of localized corrosion

Localized corrosion is different from uniform corrosion. The latter occurs in bulk form and is highly predictable. The former is invisible, creating a pathway observable only at its endpoint and increasing bulk corrosion rates by making it easier for corrosion to spread.

“A better understanding of the mechanisms by which corrosion initiates and progresses at these types of interfaces in steel will be key to mitigating corrosion-related losses,” according to the paper.

Here’s a link to and a citation for the paper,

Localized corrosion of low-carbon steel at the nanoscale by Steven C. Hayden, Claire Chisholm, Rachael O. Grudt, Jeffery A. Aguiar, William M. Mook, Paul G. Kotula, Tatiana S. Pilyugina, Daniel C. Bufford, Khalid Hattar, Timothy J. Kucharski, Ihsan M. Taie, Michele L. Ostraat & Katherine L. Jungjohann. npj Materials Degradation volume 3, Article number: 17 (2019) DOI: https://doi.org/10.1038/s41529-019-0078-1 Published 12 April 2019

This paper is open access.

Creating nanofibres from your old clothing (cotton waste)

Researchers at the University of British Columbia (UBC; Canada) have discovered a way to turn cotton waste into a potentially higher value product. An October 15, 2019 UBC news release makes the announcement (Note: Links have been removed),

In the materials engineering labs at UBC, surrounded by Bunsen burners, microscopes and spinning machines, professor Frank Ko and research scientist Addie Bahi have developed a simple process for converting waste cotton into much higher-value nanofibres.

These fibres are the building blocks of advanced products like surgical implants, antibacterial wound dressings and fuel cell batteries.

“More than 28 million tonnes of cotton are produced worldwide each year, but very little of that is actually recycled after its useful life,” explains Bahi, a materials engineer who previously worked on recycling waste in the United Kingdom. “We wanted to find a viable way to break down waste cotton and convert it into a value-added product. This is one of the first successful attempts to make nanofibres from fabric scraps – previous research has focused on using a ready cellulose base to make nanofibres.”

Compared to conventional fibres, nanofibres are extremely thin (a nanofibre can be 500 times smaller than the width of the human hair) and so have a high surface-to-volume ratio. This makes them ideal for use in applications ranging from sensors and filtration (think gas sensors and water filters) to protective clothing, tissue engineering and energy storage.
Ko and Bahi developed their process in collaboration with ecologyst, a B.C.-based company that manufactures sustainable outdoor apparel, and with the participation of materials engineering student Kosuke Ayama.

They chopped down waste cotton fabric supplied by ecologyst into tiny strips and soaked it in a chemical bath to remove all additives and artificial dyes from the fabric. The resulting gossamer-thin material was then fed to an electrospinning machine to produce very fine, smooth nanofibres. These can be further processed into various finished products.

“The process itself is relatively simple, but what we’re thrilled about is that we’ve proved you can extract a high-value product from something that would normally go to landfill, where it will eventually be incinerated. It’s estimated that only a fraction of cotton clothing is recycled. The more product we can re-process, the better it will be for the environment,” said lead researcher Frank Ko, a Canada Research Chair in advanced fibrous materials in UBC’s faculty of applied science.

The process Bahi and Ko developed is lab-scale, supported by a grant from the Natural Sciences and Engineering Research Council of Canada. In the future, the pair hope to refine and scale up their process and eventually share their methods with industry partners.

“We started with cotton because it’s one of the most popular fabrics for clothing,” said Bahi. “Once we’re able to develop the process further, we can look at converting other textiles into value-added materials. Achieving zero waste [emphasis mine] for the fashion and textile industries is extremely challenging – this is simply one of the many first steps towards that goal.”

The researchers have a 30 sec. video illustrating the need to recycle cotton materials,

You can find the researchers’ industrial partner, ecologyst here.

At the mention of ‘zero waste’, I was reminded of an upcoming conference, Oct. 30 -31, 2019 in Vancouver (Canada) where UBC is located. It’s called the 2019 Zero Waste Conference and, oddly,there’s no mention of Ko or Bahi or Ayama or ecologyst on the speakers’ list. Maybe I was looking at the wrong list or the organizers didn’t have enough lead time to add more speakers.

One final comment, I wish there was a little more science (i.e., more technical details) in the news release.

Graphene from gum trees

Caption: Eucalyptus bark extract has never been used to synthesise graphene sheets before. Courtesy: RMIT University

It’s been quite educational reading a June 24, 2019 news item on Nanowerk about deriving graphene from Eucalyptus bark (Note: Links have been removed),

Graphene is the thinnest and strongest material known to humans. It’s also flexible, transparent and conducts heat and electricity 10 times better than copper, making it ideal for anything from flexible nanoelectronics to better fuel cells.

The new approach by researchers from RMIT University (Australia) and the National Institute of Technology, Warangal (India), uses Eucalyptus bark extract and is cheaper and more sustainable than current synthesis methods (ACS Sustainable Chemistry & Engineering, “Novel and Highly Efficient Strategy for the Green Synthesis of Soluble Graphene by Aqueous Polyphenol Extracts of Eucalyptus Bark and Its Applications in High-Performance Supercapacitors”).

A June 24, 2019 RMIT University news release (also on EurekAlert), which originated the news item, provides a little more detail,

RMIT lead researcher, Distinguished Professor Suresh Bhargava, said the new method could reduce the cost of production from $USD100 per gram to a staggering $USD0.5 per gram.

“Eucalyptus bark extract has never been used to synthesise graphene sheets before and we are thrilled to find that it not only works, it’s in fact a superior method, both in terms of safety and overall cost,” said Bhargava.

“Our approach could bring down the cost of making graphene from around $USD100 per gram to just 50 cents, increasing it availability to industries globally and enabling the development of an array of vital new technologies.”

Graphene’s distinctive features make it a transformative material that could be used in the development of flexible electronics, more powerful computer chips and better solar panels, water filters and bio-sensors.

Professor Vishnu Shanker from the National Institute of Technology, Warangal, said the ‘green’ chemistry avoided the use of toxic reagents, potentially opening the door to the application of graphene not only for electronic devices but also biocompatible materials.

“Working collaboratively with RMIT’s Centre for Advanced Materials and Industrial Chemistry we’re harnessing the power of collective intelligence to make these discoveries,” he said.

A novel approach to graphene synthesis:

Chemical reduction is the most common method for synthesising graphene oxide as it allows for the production of graphene at a low cost in bulk quantities.

This method however relies on reducing agents that are dangerous to both people and the environment.

When tested in the application of a supercapacitor, the ‘green’ graphene produced using this method matched the quality and performance characteristics of traditionally-produced graphene without the toxic reagents.

Bhargava said the abundance of eucalyptus trees in Australia made it a cheap and accessible resource for producing graphene locally.

“Graphene is a remarkable material with great potential in many applications due to its chemical and physical properties and there’s a growing demand for economical and environmentally friendly large-scale production,” he said.

Here’s a link to and a citation for the paper,

Novel and Highly Efficient Strategy for the Green Synthesis of Soluble Graphene by Aqueous Polyphenol Extracts of Eucalyptus Bark and Its Applications in High-Performance Supercapacitors by Saikumar ManchalaV. S. R. K. Tandava, Deshetti Jampaiah, Suresh K. Bhargava, Vishnu Shanker. ACS Sustainable Chem. Eng.2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/acssuschemeng.9b01506 Publication Date:June 13, 2019

Copyright © 2019 American Chemical Society

This paper is behind a paywall.

Low-cost carbon sequestration and eco-friendly manufacturing for chemicals with nanobio hybrid organisms

Years ago I was asked about carbon sequestration and nanotechnology and could not come up with any examples. At last I have something for the next time the question is asked. From a June 11, 2019 news item on ScienceDaily,

University of Colorado Boulder researchers have developed nanobio-hybrid organisms capable of using airborne carbon dioxide and nitrogen to produce a variety of plastics and fuels, a promising first step toward low-cost carbon sequestration and eco-friendly manufacturing for chemicals.

By using light-activated quantum dots to fire particular enzymes within microbial cells, the researchers were able to create “living factories” that eat harmful CO2 and convert it into useful products such as biodegradable plastic, gasoline, ammonia and biodiesel.

A June 11, 2019 University of Colorado at Boulder news release (also on EurekAlert) by Trent Knoss, which originated the news item, provides a deeper dive into the research,

“The innovation is a testament to the power of biochemical processes,” said Prashant Nagpal, lead author of the research and an assistant professor in CU Boulder’s Department of Chemical and Biological Engineering. “We’re looking at a technique that could improve CO2 capture to combat climate change and one day even potentially replace carbon-intensive manufacturing for plastics and fuels.”

The project began in 2013, when Nagpal and his colleagues began exploring the broad potential of nanoscopic quantum dots, which are tiny semiconductors similar to those used in television sets. Quantum dots can be injected into cells passively and are designed to attach and self-assemble to desired enzymes and then activate these enzymes on command using specific wavelengths of light.

Nagpal wanted to see if quantum dots could act as a spark plug to fire particular enzymes within microbial cells that have the means to convert airborne CO2 and nitrogen, but do not do so naturally due to a lack of photosynthesis.

By diffusing the specially-tailored dots into the cells of common microbial species found in soil, Nagpal and his colleagues bridged the gap. Now, exposure to even small amounts of indirect sunlight would activate the microbes’ CO2 appetite, without a need for any source of energy or food to carry out the energy-intensive biochemical conversions.

“Each cell is making millions of these chemicals and we showed they could exceed their natural yield by close to 200 percent,” Nagpal said.

The microbes, which lie dormant in water, release their resulting product to the surface, where it can be skimmed off and harvested for manufacturing. Different combinations of dots and light produce different products: Green wavelengths cause the bacteria to consume nitrogen and produce ammonia while redder wavelengths make the microbes feast on CO2 to produce plastic instead.

The process also shows promising signs of being able to operate at scale. The study found that even when the microbial factories were activated consistently for hours at a time, they showed few signs of exhaustion or depletion, indicating that the cells can regenerate and thus limit the need for rotation.

“We were very surprised that it worked as elegantly as it did,” Nagpal said. “We’re just getting started with the synthetic applications.”

The ideal futuristic scenario, Nagpal said, would be to have single-family homes and businesses pipe their CO2 emissions directly to a nearby holding pond, where microbes would convert them to a bioplastic. The owners would be able to sell the resulting product for a small profit while essentially offsetting their own carbon footprint.

“Even if the margins are low and it can’t compete with petrochemicals on a pure cost basis, there is still societal benefit to doing this,” Nagpal said. “If we could convert even a small fraction of local ditch ponds, it would have a sizeable impact on the carbon output of towns. It wouldn’t be asking much for people to implement. Many already make beer at home, for example, and this is no more complicated.”

The focus now, he said, will shift to optimizing the conversion process and bringing on new undergraduate students. Nagpal is looking to convert the project into an undergraduate lab experiment in the fall semester, funded by a CU Boulder Engineering Excellence Fund grant. Nagpal credits his current students with sticking with the project over the course of many years.

“It has been a long journey and their work has been invaluable,” he said. “I think these results show that it was worth it.”

Here’s a link to and a citation for the paper,

Nanorg Microbial Factories: Light-Driven Renewable Biochemical Synthesis Using Quantum Dot-Bacteria Nanobiohybrids by Yuchen Ding, John R. Bertram, Carrie Eckert, Rajesh Reddy Bommareddy, Rajan Patel, Alex Conradie, Samantha Bryan, Prashant Nagpal. J. Am. Chem. Soc.2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/jacs.9b02549 Publication Date:June 7, 2019
Copyright © 2019 American Chemical Society

This paper is behind a paywall.