Category Archives: environment

Greener cellulose-based products

A May 3, 2023 North Carolina State University news release (also on EurekAlert) describes research into making more environmentally friendly products based on cellulose, Note: A link has been removed,

Water isn’t just a universal solvent that remains unaffected by its interactions. New publications from North Carolina State University show that water can change its solubility characteristics depending upon what it interacts with. Specifically, when water interacts with cellulose, it can stack in layered shells to control chemical reactions within, and physical properties of, the material. The work has implications for more sustainable and efficient design of cellulose-based products.

“Cellulose is the world’s most abundant biopolymer, and it’s used in applications that range from bandages to electronics,” says Lucian Lucia, professor of forest biomaterials and chemistry at NC State and corresponding author of a new study in Matter. “But cellulose processing has been mostly done by trial and error, and some of it utilizes incredibly harsh chemicals. To find better ways to process cellulose, we need to understand its most fundamental interactions – for example, with water.”

To do so, he worked with colleague Jim Martin, professor of chemistry at NC State, who studies the fundamental properties of water as a solvent.

“Water has the uncanny ability to change characteristics depending on what it’s with, which gives it wide range of solubility characteristics,” Martin says. Martin is the author of an opinion piece in Matter that is a companion to Lucia’s study.

“We change the nature of water by what we dissolve in it, and by the concentrations of those solutes in water,” Martin says. “Think of the continuum between Kool-Aid and hard candy. You start with sugar. In Kool-Aid the sugar is completely dissolved. As you remove the water, you get taffy, then hard candy, then back to crystalline sugar.”

“We know that water is critical to how cellulose is laid down,” Lucia says. “So in this study we probed how it orients itself and plays a reactive role in mitigating or leveraging chemistry.”

The researchers physically manipulated different types of wood fibers and looked at how water bound to itself and other molecules within the resulting structures. They saw that at lower water contents, the water distribution and resulting molecular interactions between the water and the fibers create bridging structures within the material that cause it to lose flexibility.

In fact, they saw that the water can “hide” itself within the cellulose network, forming strong hydrogen bonds. This bonding in turn dictates the tightness or looseness of the bridging structures.

“The water forms shells around the fibers that can stack, like a nesting Russian doll,” Martin says. “The fewer shells, or layers, the harder the fibers. But when you add more layers, the connection between fibers grows farther away and the material becomes softer.”

The researchers hope to explore the variety of bonds water forms within these structures in future work.

“Studying these interactions at the molecular level paves the way toward manipulating water in cellulose to design better products and processes,” Lucian says. “Understanding what is happening from fundamental principles lets us design approaches that take advantage of water’s properties for everything from drug delivery to designing electronics.”

The research paper, “Computational and experimental insights into the molecular architecture of water-cellulose networks,” and the editorial piece, “Water under the influence of solutes: on the non-innocence of a universal solvent,” both appear in the May 3 edition of Matter. The work was supported in part by the National Science Foundation. Former NC State Ph.D. student Kandoker Samaher Salem is first author of the research paper. Co-authors include former NC State Ph.D. student Nelson Barrios, and current NC State faculty Hasan Jameel and Lokendra Pal.

Here are links and citations for the two papers in the news release with the research paper coming first and the editorial coming second,

Computational and experimental insights into the molecular architecture of water-cellulose networks by Khandoker Samaher Salem, Nelson Barrios, Hasan Jameel, Lokendra Pal, Lucian Lucia. Matter Matter Volume 6, Issue 5, 3 May 2023, Pages 1366-1381 DOI: https://doi.org/10.1016/j.matt.2023.03.021

Water under the influence of solutes: On the non-innocence of a universal solvent by James D. Martin. Matter Volume 6, Issue 5, 3 May 2023, Pages 1316-1319 https://doi.org/10.1016/j.matt.2023.03.020

Both research paper and editorial are behind paywalls.

European medieval monks, Japanese scribes, and Middle Eastern chroniclers all contributed to volcanology

Volcanoes are not often a topic on this blog, which is focused on emerging science and technology. However, stories featuring scientific information from unexpected sources has long been a fascination of mine and this April 5, 2023 news item on ScienceDaily shines a light on an unusual cast of medieval scientific observers spanning the globe,

By observing the night sky, medieval monks unwittingly recorded some of history’s largest volcanic eruptions. An international team of researchers, led by the University of Geneva (UNIGE), drew on readings of 12th and 13th century European and Middle Eastern chronicles, along with ice core and tree ring data, to accurately date some of the biggest volcanic eruptions the world has ever seen. Their results, reported in the journal Nature, uncover new information about one of the most volcanically active periods in Earth’s history, which some think helped to trigger the Little Ice Age, a long interval of cooling that saw the advance of European glaciers.

llumination from the late 14th or early 15th century, which portrays two individuals observing a lunar eclipse. It features the words «La lune avant est eclipsee», «The moon is eclipsed» in english. © Source gallica.bnf.fr / BnF Courtesy: Université de Genève

An April 5, 2023 Université de Genève (UNIGE) press release (also on EurekAlert), which originated the news item, includes observations from Japanese scribes along with those from medieval European monks and Middle Eastern scholars,

It took the researchers almost five years to examine hundreds of annals and chronicles from across Europe and the Middle East, in search of references to total lunar eclipses and their colouration. Total lunar eclipses occur when the moon passes into the Earth’s shadow. Typically, the moon remains visible as a reddish orb because it is still bathed in sunlight bent round the Earth by its atmosphere. But after a very large volcanic eruption, there can be so much dust in the stratosphere – the middle part of the atmosphere starting roughly where commercial aircraft fly – that the eclipsed moon almost disappears.

Medieval chroniclers recorded and described all kinds of historical events, including the deeds of kings and popes, important battles, and natural disasters and famines. Just as noteworthy were the celestial phenomena that might foretell such calamities. Mindful of the Book of Revelation, a vision of the end times that speaks of a blood-red moon, the monks were especially careful to take note of the moon’s coloration. Of the 64 total lunar eclipses that occurred in Europe between 1100 and 1300, the chroniclers had faithfully documented 51. In five of these cases, they also reported that the moon was exceptionally dark.

The contribution of Japanese scribes 

Asked what made him connect the monks’ records of the brightness and colour of the eclipsed moon with volcanic gloom, the lead author of the work, Sébastien Guillet, senior research associate at the Institute for environmental sciences at the UNIGE,  said: “I was listening to Pink Floyd’s Dark Side of the Moon album when I realised that the darkest lunar eclipses all occurred within a year or so of major volcanic eruptions. Since we know the exact days of the eclipses, it opened the possibility of using the sightings to narrow down when the eruptions must have happened.”

The researchers found that scribes in Japan took equal note of lunar eclipses. One of the best known, Fujiwara no Teika, wrote of an unprecedented dark eclipse observed on 2 December 1229: ‘the old folk had never seen it like this time, with the location of the disk of the Moon not visible, just as if it had disappeared during the eclipse… It was truly something to fear.’ The stratospheric dust from large volcanic eruptions was not only responsible for the vanishing moon. It also cooled summer temperatures by limiting the sunlight reaching the Earth’s surface. This in turn could bring ruin to agricultural crops.

Cross-checking text and data 

“We know from previous work that strong tropical eruptions can induce global cooling on the order of roughly 1°C over a few years,” said Markus Stoffel, full professor at the Institute for environmental sciences at the UNIGE and last author of the study, a specialist in converting measurements of tree rings into climate data, who co-designed the study. “They can also lead to rainfall anomalies with droughts in one place and floods in another.”

Despite these effects, people at the time could not have imagined that the poor harvests or the unusual lunar eclipses had anything to do with volcanoes – the eruptions themselves were all but one undocumented. “We only knew about these eruptions because they left traces in the ice of Antarctica and Greenland,” said co-author Clive Oppenheimer, professor at the Department of Geography at the University of Cambridge. “By putting together the information from ice cores and the descriptions from medieval texts we can now make better estimates of when and where some of the biggest eruptions of this period occurred.”

Climate and society affected 

To make the most of this integration, Sébastien Guillet worked with climate modellers to compute the most likely timing of the eruptions. “Knowing the season when the volcanoes erupted is essential, as it influences the spread of the volcanic dust and the cooling and other climate anomalies associated with these eruptions,” he said.

As well as helping to narrow down the timing and intensity of these events, what makes the findings significant is that the interval from 1100 to 1300 is known from ice core evidence to be one of the most volcanically active periods in history. Of the 15 eruptions considered in the new study, one in the mid-13th century rivals the famous 1815 eruption of Tambora that brought on ‘the year without a summer’ of 1816. The collective effect of the medieval eruptions on Earth’s climate may have led to the Little Ice Age, when winter ice fairs were held on the frozen rivers of Europe. “Improving our knowledge of these otherwise mysterious eruptions, is crucial to understanding whether and how past volcanism affected not only climate but also society during the Middle Ages,” concludes the researcher.

Here’s a link to and a citation for the paper,

Lunar eclipses illuminate timing and climate impact of medieval volcanism by Sébastien Guillet, Christophe Corona, Clive Oppenheimer, Franck Lavigne, Myriam Khodri, Francis Ludlow, Michael Sigl, Matthew Toohey, Paul S. Atkins, Zhen Yang, Tomoko Muranaka, Nobuko Horikawa & Markus Stoffel. Nature volume 616, pages 90–95 (2023) Issue Date: 06 April 2023 DOI: https://doi.org/10.1038/s41586-023-05751-z Published online: 05 April 2023

This paper is open access.

Reducing microplastic pollution from when you wash your clothes with a new coating

A January 26, 2023 University of Toronto news release (also found on EurekAlert and here but published on January 30, 2023) by Safa Jinje announced a coating the minimizes the amount of microplastic entering the water when your clothes are washed, Note: Links have been removed,

A team of University of Toronto Engineering researchers, led by Professor Kevin Golovin, have designed a solution to reduce the amount of microplastic fibres that are shed when clothes made of synthetic fabrics are washed.   

In a world swamped by fast fashion — an industry that produces a high-volume of cheaply made clothing at an immense cost to the environment — more than two-thirds of clothes are now made of synthetic fabrics. 

When clothes made from synthetic fabrics, such as nylon, polyester, acrylic and rayon, are washed in washing machines, the friction caused by cleaning cycles produces tiny tears in the fabric. These tears in turn cause microplastic fibres measuring less than 500 micrometres in length to break off and make their way down laundry drains to enter waterways.   

Once microplastics end up in oceans and freshwater lakes and rivers, the particles are difficult to remove and will take decades or more to fully break down. The accumulation of this debris in bodies of water can threaten marine life. It can also become part of the human food chain through its presence in food and tap water, with effects on human health that are not yet clear.  

Governments around the world have been looking for ways to minimize the pollution that comes from washing synthetic fabrics. One example is washing machine filters, which have emerged as a leading fix to stop microplastic fibres from entering waterways. In Ontario, legislative members have introduced a bill that would require filters in new washing machines in the province.  

“And yet, when we look at what governments around the world are doing, there is no trend towards preventing the creation of microplastic fibres in the first place,” says Golovin.  

“Our research is pushing in a different direction, where we actually solve the problem rather than putting a Band-Aid on the issue.”   

Golovin and his team have created a two-layer coating made of polydimethylsiloxane (PDMS) brushes, which are linear, single polymer chains grown from a substrate to form a nanoscale surface layer.  

Experiments conducted by the team showed that this coating can significantly reduce microfibre shedding of nylon clothing after repeated laundering. The researchers share their findings in a new paper published in Nature Sustainability

“My lab has been working with this coating on other surfaces, including glass and metals, for a few years now,” says Golovin. “One of the properties we have observed is that it is quite slippery, meaning it has very low friction.” 

PDMS is a silicon-based organic polymer that is found in many household products. Its presence in shampoos makes hair shiny and slippery. It is also used as a food additive in oils to prevent liquids from foaming when bottled. 

Dr. Sudip Kumar Lahiri, a postdoctoral researcher in Golovin’s lab and lead author of the study, had the idea that if they could reduce the friction that occurs during wash cycles with a PDMS-based fabric finish, then that could stop fibres from rubbing together and breaking off during laundering.  

One of the biggest challenges the researchers faced during their study was ensuring the PDMS brushes stayed on the fabric. Lahiri, who is a textile engineer by trade, developed a molecular primer based on his understanding of fabric dyes.  

Lahiri reasoned that the type of bonding responsible for keeping dyed apparel colourful after repeated washes could work for the PDMS coating as well.  

Neither the primer nor the PDMS brushes work separately to decrease the microplastic-fibre shedding. But together, they created a strong finish that reduced the release of microfibres by more than 90% after nine washes.  

“PDMS brushes are environmentally friendly because they are not derived from petroleum like many polymers used today,” says Golovin, who was awarded a Connaught New Researcher award for this work.  

“With the addition of Sudip’s primer, our coating is robust enough to remain on the garment and continue to reduce micro-fibre shedding over time.”  

Since PDMS is naturally a hydrophobic (water-repellent) material, the researchers are currently working on making the coating hydrophilic, so that coated fabrics will be better able to wick away sweat. The team has also expanded the research to look beyond nylon fabrics, including polyester and synthetic-fabric blends.  

“Many textiles are made of multiple types of fibres,” says Golovin. “We are working to formulate the correct polymer architecture so that our coating can durably adhere to all of those fibres simultaneously.” 

Here’s a link to and a citation for the paper,

Polydimethylsiloxane-coated textiles with minimized microplastic pollution by Sudip Kumar Lahiri, Zahra Azimi Dijvejin & Kevin Golovin. Nature Sustainability (2023) DOI: https://doi.org/10.1038/s41893-022-01059-4 Published: 26 January 2023

This paper is behind a paywall.

A roly-poly (woodlouse) gold rush

This environmental monitoring story focused on the roly-poly was announced in an April 18, 2023 news item on Statnano,

The woodlouse goes by many names: roly-poly, pill bug, potato bug, tomato bug, butchy boy, cheesy bob, and chiggy pig, to name just a few. It is best known for contracting into a ball when agitated. This crustacean (yes, it’s a crustacean, not an insect) thrives in heavily metal-contaminated areas due to its specialized digestive organ, called a hepatopancreas, that stores and expels unwanted metals.

Metal nanoparticles are common in industrial and research plants. However, they can leach into the surrounding environment. Currently, little is known about the toxicity of metal nanoparticles for nearby organisms because detecting metal nanoparticles, particularly gold, requires microscopic, 3D imaging that cannot be done in the field

….

Caption: (a) Cartoon of a woodlouse depicting the hepatopancreas (HP) and the hind gut (HG). (b) Transmission overview of a single HP tubule, showing the helical structure. (c) Section from a HP tubule with the nuclei fluorescently labeled in blue. Credit: Iestyn Pope, Nuno G.C. Ferreira, Peter Kille, Wolfgang Langbein, and Paola Borri

An April 11, 2023 American Institute of Physics (AIP) news release (also on EurekAlert), which originated the news item, describes a new approach to detecting gold nanoparticles in roly-polys,

In Applied Physics Letters, by AIP Publishing, researchers from Cardiff University in the U.K. introduce a novel imaging method to detect gold nanoparticles in woodlice. With information about the quantity, location, and impact of gold nanoparticles within the organism, scientists can better understand the potential harm other metals may have on nature.

“Gold nanoparticles are used extensively for biological research applications owing to their biocompatibility and photostability and are available in a large range of shapes and sizes,” said author Wolfgang Langbein. “By using gold nanoparticles, which would not normally be present in the woodlice diet, we can study the journey of nanoparticles inside complex biological systems.”

The researchers developed an imaging method known as four-wave mixing microscopy, which flashes light that the gold nanoparticles absorb. The light flashes again and the subsequent scattering reveals the nanoparticles’ locations. Using this state-of-the-art technique, they locate the individual gold nanoparticles in the 3D cellular environment.

“By precisely pinpointing the fate of individual gold nanoparticles in the hepatopancreas of woodlice, we can gain a better understanding of how these organisms sequester and respond to metals ingested from the environment,” said Langbein. “Tracking this metal within these organisms is the first step enabling further study to determine, for example, if gold is collected within specific cells, or if it can interfere with the metabolisms in high doses.”

The use of gold nanoparticles in medical devices is increasing and with it, their abundance in the environment. This imaging technique will provide clarity into the little-understood mechanisms in the woodlice hepatopancreas and will also provide helpful environmental monitoring.

In the future, background-free four-wave mixing microscopy could be used to detect other metal nanoparticles and may be applied to organisms like fish larvae and even human cell cultures.

Here’s a link to and a citation for the paper,

Background-free four-wave mixing microscopy of small gold nanoparticles inside a multi-cellular organ by Iestyn Pope, Nuno G.C. Ferreira, Peter Kille, Wolfgang Langbein, and Paola Borri. Appl. Phys. Lett. 122, 153701 (2023) DOI: https://doi.org/10.1063/5.0140651Published online April 11, 2023

This paper is open access.

The sound of dirt

So you don’t get your hopes up, this acoustic story doesn’t offer any accompanying audio/acoustic files, i.e., I couldn’t find the sound of dirt.

In any event, there’s still an interesting story in an April 10, 2023 news item on phys.org,

U.K. and Australian ecologists have used audio technology to record different types of sounds in the soils of a degraded and restored forest to indicate the health of ecosystems.

Non-invasive acoustic monitoring has great potential for scientists to gather long-term information on species and their abundance, says Flinders University [Australia] researcher Dr. Jake Robinson, who conducted the study while at the University of Sheffield in England.

Photo: Pixabay

An April 8, 2023 Flinders University press release, which originated the news item, delves into the researcher’s work, Note: Links have been removed,

“Eco-acoustics can measure the health lf landscapes affected by farming, mining and deforestation but can also monitor their recovery following revegetation,” he says.  

“From earthworms and plant roots to shifting soils and other underground activity, these subtle sounds were stronger and more diverse in healthy soils – once background noise was blocked out.”   

The subterranean study used special microphones to collect almost 200 sound samples, each about three minutes long, from soil samples collected in restored and cleared forests in South Yorkshire, England. 

“Like underwater and above-ground acoustic monitoring, below-ground biodiversity monitoring using eco-acoustics has great potential,” says Flinders University co-author, Associate Professor Martin Breed. 

Since joining Flinders University, Dr Robinson has released his first book, entitled Invisible Friends (DOI: 10.53061/NZYJ2969) [emphasis mine], which covers his core research into ‘how microbes in the environment shape our lives and the world around us’. 

Now a researcher in restoration genomics at the College of Science and Engineering at Flinders University, the new book examines the powerful role invisible microbes play in ecology, immunology, psychology, forensics and even architecture.  

“Instead of considering microbes the bane of our life, as we have done during the global pandemic, we should appreciate the many benefits they bring in keeping plants animals, and ourselves, alive.”  

In another new article, Dr Robinson and colleagues call for a return to ‘nature play’ for children [emphasis mine] to expose their developing immune systems to a diverse array of microbes at a young age for better long-term health outcomes. 

“Early childhood settings should optimise both outdoor and indoor environments for enhanced exposure to diverse microbiomes for social, cognitive and physiological health,” the researchers say.  

“It’s important to remember that healthy soils feed the air with these diverse microbes,” Dr Robinson adds.  

It seems Robinson has gone on a publicity blitz, academic style, for his book. There’s a May 22, 2023 essay by Robinson, Carlos Abrahams (Senior Lecturer in Environmental Biology – Director of Bioacoustics, Nottingham Trent University); and Martin Breed (Associate Professor in Biology, Flinders University) on the Conversation, Note: A link has been removed,

Nurturing a forest ecosystem back to life after it’s been logged is not always easy.

It can take a lot of hard work and careful monitoring to ensure biodiversity thrives again. But monitoring biodiversity can be costly, intrusive and resource-intensive. That’s where ecological acoustic survey methods, or “ecoacoustics”, come into play.

Indeed, the planet sings. Think of birds calling, bats echolocating, tree leaves fluttering in the breeze, frogs croaking and bush crickets stridulating. We live in a euphonious theatre of life.

Even the creatures in the soil beneath our feet emit unique vibrations as they navigate through the earth to commute, hunt, feed and mate.

Robinson has published three papers within five months of each other, in addition to the book, which seems like heavy output to me.

First, here’s a link to and a citation for the education paper,

Optimising Early Childhood Educational Settings for Health Using Nature-Based Solutions: The Microbiome Aspect by Jake M. Robinson and Alexia Barrable. Educ. Sci. 2023, 13 (2), 211 DOI: https://doi.org/10.3390/educsci13020211
Published: 16 February 2023

This is an open access paper.

For these two links and citations, the articles seem to be very closely linked.,

The sound of restored soil: Measuring soil biodiversity in a forest restoration chronosequence with ecoacoustics by Jake M. Robinson, Martin F. Breed, Carlos Abrahams. doi: https://doi.org/10.1101/2023.01.23.525240 Posted January 23, 2023

The sound of restored soil: using ecoacoustics to measure soil biodiversity in a temperate forest restoration context by Jake M. Robinson, Martin F. Breed, Carlos Abrahams. Restoration Ecology, Online Version of Record before inclusion in an issue e13934 DOI: https://doi.org/10.1111/rec.13934 First published: 22 May 2023

Both links lead to open access papers.

Finally, there’s the book,

Invisible Friends; How Microbes Shape Our Lives and the World Around Us by Jake Robinson. Pelagic Publishing, 2022. ISBN 9781784274337 DOI: 10.53061/NZYJ2969

This you have to pay for.

For those would would like to hear something from nature, I have a May 27, 2022 posting, The sound of the mushroom. Enjoy!

A new species of frog named after J. R. R. Tolkien

Caption: Hyloscirtus tolkieni Credit: Juan Carlos Sánchez-Nivicela / Archive Museo de Zoología, Universidad San Francisco de Quito

Magnificent is the word for this frog described in a February 13, 2023 news item on phys.org,

A magnificent [emphasis mine] new species of stream frog from the Andes of Ecuador was named after J. R. R. Tolkien, creator of Middle-earth and author of famous fantasy works “The Hobbit” and “The Lord of the Rings.” It lives in the pristine streams of the Río Negro-Sopladora National Park, a recently declared protected area that preserves thousands of hectares of almost primary forests in southeastern Ecuador.

A February 14, 2023 Pensoft Publishers blog entry (issued as a February 13, 2023 news release for EurekAlert), which originated the news item, describes stream frogs and the research required to find new species, Note: A link has been removed,

Stream frogs are a group of amphibians that inhabit the high Andes of Venezuela, Colombia, Ecuado, Peru, and Bolivia. Their life is closely linked to the pure rivers and streams in the mountain areas of the Andes, hence the name “stream frogs”. The adults live in the riparian vegetation, and their tadpoles develop among the rocks of the rapid waters of the rivers.

The researchers, Juan C. Sánchez-Nivicela, José M. Falcón-Reibán, and Diego F. Cisneros-Heredia, named the new frog Hyloscirtus tolkieni in honour of one of their favourite writer. JRR Tolkien, a renowned author, poet, philologist and academic, is the creator of Middle-earth and the father of fantastic works such as “The Hobbit” and “The Lord of the Rings”. The amazing colours of this new frog species reminded them of the magnificent creatures from Tolkien’s fantasy worlds. 

Expeditions carried out since 2020 in the Río Negro-Sopladora National Park in Ecuador have allowed the discovery of a large number of species yet unknown to science. A protected area since 2018, this national park, located in the south of the country, is home to large forested areas that remain unstudied.

“For weeks, we explored different areas of the Río Negro-Sopladora National Park, walking from paramo grasslands at 3,100 meters elevation to forests at 1,000 m. We found a single individual of this new species of frog, which we found impressive due to its colouration and large size.”, indicated Juan Carlos Sánchez Nivicela, associate researcher at the Museum of Zoology of the Universidad San Francisco de Quito USFQ and the National Institute of Biodiversity, and co-author of the study where the frog is described.

The Río Negro Stream Frog is easily differentiated from all its frog releatives by its appearance and unique colouration. It is relatively large (65 mm long), a greyish green back with yellow spots and black specks, and a pale pink and black iris. Its throat, belly and flanks as well as the undersides of its legs are golden yellow with large black spots and dots, and its fingers and toes have black bars and spots and broad skin stripes.

The new species of frog has amazing colours, and it would seem that it lives in a universe of fantasies, like those created by Tolkien. The truth is that the tropical Andes are magical ecosystems where some of the most wonderful species of flora, funga, and fauna in the world are present. Unfortunately, few areas are well protected from the negative impacts caused by humans. Deforestation, unsustainable agricultural expansion, mining, invasive species, and climate changes are seriously affecting Andean biodiversity”, said Diego F. Cisneros-Heredia, director of the Museum of Zoology of the Universidad San Francisco de Quito USFQ and associate researcher of the National Institute of Biodiversity, and co-author of the study.

The species is still only known from one locality and one individual, so information is insufficient to assess its conservation status and the risk of extinction. However, the authors agree that it is urgent to establish research and monitoring actions to study its life history and ecology, as well as its population size and dynamics. In addition, they suggest exploring new sites where additional populations may exist, and assessing whether their long-term conservation is affected by any threats, such as invasive species, mining, emerging diseases, or climate change.

The description of new species is an important mechanism to support global strategies for the conservation of vulnerable environments, since it reveals the great wealth of biodiversity that is linked to countless natural resources and environmental services. For example, amphibians are important pest controllers and play vital ecological roles in the stability of nature. Unfortunately, 57% of amphibian species in Ecuador are threatened by extinction.

This study was published in the international journal ZooKeys, in a scientific article that can be freely downloaded at the following link: https://doi.org/10.3897/zookeys.1141.90290

Here’s a link to and a citation for the paper,

A new stream treefrog of the genus Hyloscirtus (Amphibia, Hylidae) from the Río Negro-Sopladora National Park, Ecuador by Juan C. Sánchez-Nivicela, José M. Falcón-Reibán, Diego F. Cisneros-Heredia. ZooKeys 1141: 75-92 DOI: https://doi.org/10.3897/zookeys.1141.90290 Published: January 19, 2023?

This paper is open access.

BTW, my March 30, 2023 posting features Frog Finders, a citizen science project concerned with conservancy of frogs taking place in my home province of British Columbia.

Fairy-like robot powered by wind and light

Caption: For their artificial fairy, Hao Zeng and Jianfeng Yang got inspired by dandelion seeds. Credit: Jianfeng Yang / Tampere University

That image makes me think of Tinker Bell (the fairy in the novel/play/movie with ‘Peter Pan’ in its titles) but I can also see how the researchers were inspired by dandelion seeds, which we used to call ‘wishes’.

Dandelion Seeds Free Stock Photo – Public Domain Pictures

A January 30, 2023 news item on ScienceDaily announces the fairy-like robot,

The development of stimuli-responsive polymers has brought about a wealth of material-related opportunities for next-generation small-scale, wirelessly controlled soft-bodied robots. For some time now, engineers have known how to use these materials to make small robots that can walk, swim and jump. So far, no one has been able to make them fly.

Researchers of the Light Robots group at Tampere University [Finland] are now researching how to make smart material fly. Hao Zeng, Academy Research Fellow and the group leader, and Jianfeng Yang, a doctoral researcher, have come up with a new design for their project called FAIRY — Flying Aero-robots based on Light Responsive Materials Assembly. They have developed a polymer-assembly robot that flies by wind and is controlled by light.

A January 26, 2023 Tampere University press release (also on EurekAlert but published January 30, 2023), which originated the news item, elucidates why the researchers are excited about their work,

Superior to its natural counterparts, this artificial seed is equipped with a soft actuator. The actuator is made of light-responsive liquid crystalline elastomer, which induces opening or closing actions of the bristles upon visible light excitation,” explains Hao Zeng.

The artificial fairy is controlled by light

The artificial fairy developed by Zeng and Yang has several biomimetic features. Because of its high porosity (0.95) and lightweight (1.2 mg) structure, it can easily float in the air directed by the wind. What is more, a stable separated vortex ring generation enables long-distance wind-assisted travelling.

“The fairy can be powered and controlled by a light source, such as a laser beam or LED,” Zeng says.

This means that light can be used to change the shape of the tiny dandelion seed-like structure. The fairy can adapt manually to wind direction and force by changing its shape. A light beam can also be used to control the take-off and landing actions of the polymer assembly.

Potential application opportunities in agriculture

Next, the researchers will focus on improving the material sensitivity to enable the operation of the device in sunlight. In addition, they will up-scale the structure so that it can carry micro-electronic devices such as GPS and sensors as well as biochemical compounds.

According to Zeng, there is potential for even more significant applications.

“It sounds like science fiction, but the proof-of-concept experiments included in our research show that the robot we have developed provides an important step towards realistic applications suitable for artificial pollination,” he reveals.

In the future, millions of artificial dandelion seeds carrying pollen could be dispersed freely by natural winds and then steered by light toward specific areas with trees awaiting pollination.

“This would have a huge impact on agriculture globally since the loss of pollinators due to global warming has become a serious threat to biodiversity and food production,” Zeng says.

Challenges remain to be solved

However, many problems need to be solved first. For example, how to control the landing spot in a precise way, and how to reuse the devices and make them biodegradable? These issues require close collaboration with materials scientists and people working on microrobotics.

The FAIRY project started in September 2021 and will last until August 2026. It is funded by the Academy of Finland. The flying robot is researched in cooperation with Dr. Wenqi Hu from Max Planck Institute for Intelligent Systems (Germany) and Dr. Hang Zhang from Aalto University.

Here’s a link to and a citation for the paper,

Dandelion-Inspired, Wind-Dispersed Polymer-Assembly Controlled by Light by Jianfeng Yang, Hang Zhang, Alex Berdin, Wenqi Hu, Hao Zeng. Advanced Science Volume 10, Issue 7 March 3, 2023 2206752 DOI: https://doi.org/10.1002/advs.202206752 First published online: 27 December 2022

This paper is open access.

The 2023 Canadian federal budget: science & technology of health, the clean economy, reconciliation, and more (1 of 2)

The Canadian federal government released its 2023 budget on Tuesday, March 28, 2023. There were no flashy science research announcements in the budget. Trudeau and his team like to trumpet science initiatives and grand plans (even if they’re reannouncing something from a previous budget) but like last year—this year—not so much.

Consequently, this posting about the annual federal budget should have been shorter than usual. What happened?

Partly, it’s the military spending (chapter 5 of the budget in part 2 of this 2023 budget post). For those who are unfamiliar with the link between military scientific research and their impact on the general population, there are a number of inventions and innovations directly due to military research, e.g., plastic surgery, television, and the internet. (You can check a November 6, 2018 essay for The Conversation by Robert Kirby, Professor of Clinical Education and Surgery at Keele University, for more about the impact of World War 1 and medical research, “World War I: the birth of plastic surgery and modern anaesthesia.”)

So, there’s a lot to be found by inference. Consequently, I found Chapter 3 to also be unexpectedly rich in science and technology efforts.

Throughout both parts of this 2023 Canadian federal budget post, you will find excerpts from individual chapters of the federal budget followed my commentary directly after. My general commentary is reserved for the end.

Sometimes, I have included an item because it piqued my interest. E.g., Canadian agriculture is dependent on Russian fertilizer!!! News to me and I imagine many others. BTW, this budget aims to wean us from this dependency.

Chapter 2: Investing in Public Health Care and Affordable Dental Care

Here goes: from https://www.budget.canada.ca/2023/report-rapport/toc-tdm-en.html,

2.1 Investing in Public Health Care

Improving Canada’s Readiness for Health Emergencies

Vaccines and other cutting-edge life-science innovations have helped us to take control of the COVID-19 pandemic. To support these efforts, the federal government has committed significant funding towards the revitalization of Canada’s biomanufacturing sector through a Biomanufacturing and Life Sciences Strategy [emphasis mine]. To date, the government has invested more than $1.8 billion in 32 vaccine, therapeutic, and biomanufacturing projects across Canada, alongside $127 million for upgrades to specialized labs at universities across the country. Canada is building a life sciences ecosystem that is attracting major investments from leading global companies, including Moderna, AstraZeneca, and Sanofi.

To build upon the progress of the past three years, the government will explore new ways to be more efficient and effective in the development and production of the vaccines, therapies, and diagnostic tools that would be required for future health emergencies. As a first step, the government will further consult Canadian and international experts on how to best organize our readiness efforts for years to come. …

Gold rush in them thar life sciences

I have covered the rush to capitalize on Canadian life sciences research (with a special emphasis on British Columbia) in various posts including (amongst others): my December 30, 2020 posting “Avo Media, Science Telephone, and a Canadian COVID-19 billionaire scientist,” and my August 23, 2021 posting “Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?” There’s also my August 20, 2021 posting “Getting erased from the mRNA/COVID-19 story,” highlighting how brutal the competition amongst these Canadian researchers can be.

Getting back to the 2023 budget, ‘The Biomanufacturing and Life Sciences Strategy’ mentioned in this latest budget was announced in a July 28, 2021 Innovation, Science and Economic Development Canada news release. You can find the strategy here and an overview of the strategy here. You may want to check out the overview as it features links to,

What We Heard Report: Results of the consultation on biomanufacturing and life sciences capacity in Canada

Ontario’s Strategy: Taking life sciences to the next level

Quebec’s Strategy: 2022–2025 Québec Life Sciences Strategy

Nova Scotia’s Strategy: BioFuture2030 Prince Edward Island’s Strategy:

The Prince Edward Island Bioscience Cluster [emphases mine]

2022 saw one government announcement concerning the strategy, from a March 3, 2022 Innovation, Science and Economic Development Canada news release, Note: Links have been removed,

Protecting the health and safety of Canadians and making sure we have the domestic capacity to respond to future health crises are top priorities of the Government of Canada. With the guidance of Canada’s Biomanufacturing and Life Sciences Strategy, the government is actively supporting the growth of a strong, competitive domestic life sciences sector, with cutting-edge biomanufacturing capabilities.

Today [March 3, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, announced a $92 million investment in adMare BioInnovations to drive company innovation, scale-up and training activities in Canada’s life sciences sector. This investment will help translate commercially promising health research into innovative new therapies and will see Canadian anchor companies provide the training required and drive the growth of Canada’s life science companies.

The real action took place earlier this month (March 2023) just prior to the budget. Oddly, I can’t find any mention of these initiatives in the budget document. (Confession: I have not given the 2023 budget a close reading although I have been through the whole budget once and viewed individual chapters more closely a few times.)

This March 2, 2023 (?) Tri-agency Institutional Programs Secretariat news release kicked things off, Note 1: I found the date at the bottom of their webpage; Note 2: Links have been removed,

The Government of Canada’s main priority continues to be protecting the health and safety of Canadians. Throughout the pandemic, the quick and decisive actions taken by the government meant that Canada was able to scale up domestic biomanufacturing capacity, which had been in decline for over 40 years. Since then, the government is rebuilding a strong and competitive biomanufacturing and life sciences sector brick by brick. This includes strengthening the foundations of the life sciences ecosystem through the research and talent of Canada’s world-class postsecondary institutions and research hospitals, as well as fostering increased collaboration with innovative companies.

Today [March 2, 2023?], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, announced an investment of $10 million in support of the creation of five research hubs [emphasis mine]:

  • CBRF PRAIRIE Hub, led by the University of Alberta
  • Canada’s Immuno-Engineering and Biomanufacturing Hub, led by The University of British Columbia
  • Eastern Canada Pandemic Preparedness Hub, led by the Université de Montréal
  • Canadian Pandemic Preparedness Hub, led by the University of Ottawa and McMaster University
  • Canadian Hub for Health Intelligence & Innovation in Infectious Diseases, led by the University of Toronto

This investment, made through Stage 1 of the integrated Canada Biomedical Research Fund (CBRF) and Biosciences Research Infrastructure Fund (BRIF) competition, will bolster research and talent development efforts led by the institutions, working in collaboration with their partners. The hubs combine the strengths of academia, industry and the public and not-for-profit sectors to jointly improve pandemic readiness and the overall health and well-being of Canadians.

The multidisciplinary research hubs will accelerate the research and development of next-generation vaccines and therapeutics and diagnostics, while supporting training and development to expand the pipeline of skilled talent. The hubs will also accelerate the translation of promising research into commercially viable products and processes. This investment helps to strengthen the resilience of Canada’s life sciences sector by supporting leading Canadian research in innovative technologies that keep us safe and boost our economy.

Today’s [March 2, 2023?] announcement also launched Stage 2 of the CBRF-BRIF competition. This is a national competition that includes $570 million in available funding for proposals, aimed at cutting-edge research, talent development and research infrastructure projects associated with the selected research hubs. By strengthening research and talent capacity and leveraging collaborations across the entire biomanufacturing ecosystem, Canada will be better prepared to face future pandemics, in order to protect Canadian’s health and safety. 

Then, the Innovation, Science and Economic Development Canada’s March 9, 2023 news release made this announcement, Note: Links have been removed,

Since March 2020, major achievements have been made to rebuild a vibrant domestic life sciences ecosystem to protect Canadians against future health threats. The growth of the sector is a top priority for the Government of Canada, and with over $1.8 billion committed to 33 projects to boost our domestic biomanufacturing, vaccine and therapeutics capacity, we are strengthening our resiliency for current health emergencies and our readiness for future ones.

The COVID-19 Vaccine Task Force played a critical role in guiding and supporting the Government of Canada’s COVID-19 vaccine response. Today [March 9, 2023], recognizing the importance of science-based decisions, the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, and the Honourable Jean-Yves Duclos, Minister of Health, are pleased to announce the creation of the Council of Expert Advisors (CEA). The 14 members of the CEA, who held their first official meeting earlier this week, will advise the Government of Canada on the long-term, sustainable growth of Canada’s biomanufacturing and life sciences sector, and on how to enhance our preparedness and capacity to protect the health and safety of Canadians.

The membership of the CEA comprises leaders with in-depth scientific, industrial, academic and public health expertise. The CEA co-chairs are Joanne Langley, Professor of Pediatrics and of Community Health and Epidemiology at the Dalhousie University Faculty of Medicine, and Division Head of Infectious Diseases at the IWK Health Centre; and Marco Marra, Professor in Medical Genetics at the University of British Columbia (UBC), UBC Canada Research Chair in Genome Science and distinguished scientist at the BC Cancer Foundation.

The CEA’s first meeting focused on the previous steps taken under Canada’s Biomanufacturing and Life Sciences Strategy and on its path forward. The creation of the CEA is an important milestone in the strategy, as it continues to evolve and adapt to new technologies and changing conditions in the marketplace and life sciences ecosystem. The CEA will also inform on investments that enhance capacity across Canada to support end-to-end production of critical vaccines, therapeutics and essential medical countermeasures, and to ensure that Canadians can reap the full economic benefits of the innovations developed, including well-paying jobs.

As I’m from British Columbia, I’m highlighting this University of British Columbia (UBC) March 17, 2023 news release about their involvement, Note: Links have been removed,

Canada’s biotech ecosystem is poised for a major boost with the federal government announcement today that B.C. will be home to Canada’s Immuno-Engineering and Biomanufacturing Hub (CIEBH).

The B.C.-based research and innovation hub, led by UBC, brings together a coalition of provincial, national and international partners to position Canada as a global epicentre for the development and manufacturing of next-generation immune-based therapeutics.

A primary goal of CIEBH is to establish a seamless drug development pipeline that will enable Canada to respond to future pandemics and other health challenges in fewer than 100 days.

This hub will build on the strengths of B.C.’s biotech and life sciences industry, and those of our national and global partners, to make Canada a world leader in the development of lifesaving medicines,” said Dr. Deborah Buszard, interim president and vice-chancellor of UBC. “It’s about creating a healthier future for all Canadians. Together with our outstanding alliance of partners, we will ensure Canada is prepared to respond rapidly to future health challenges with homegrown solutions.”

CIEBH is one of five new research hubs announced by the federal government that will work together to improve pandemic readiness and the overall health and well-being of Canadians. Federal funding of $570 million is available over the next four years to support project proposals associated with these hubs in order to advance Canada’s Biomanufacturing and Life Sciences Strategy.

More than 50 organizations representing the private, public, not-for-profit and academic sectors have come together to form the hub, creating a rich environment that will bolster biomedical innovation in Canada. Among these partners are leading B.C. biotech companies that played a key role in Canada’s COVID-19 pandemic response and are developing cutting-edge treatments for a range of human diseases.

CIEBH, led by UBC, will further align the critical mass of biomedical research strengths concentrated at B.C. academic institutions, including the B.C. Institute of Technology, Simon Fraser University and the University of Victoria, as well as the clinical expertise of B.C. research hospitals and health authorities. With linkages to key partners across Canada, including Dalhousie University, the University of Waterloo, and the Vaccine and Infectious Disease Organization, the hub will create a national network to address gaps in Canada’s drug development pipeline.

In recent decades, B.C. has emerged as a global leader in immuno-engineering, a field that is transforming how society treats disease by harnessing and modulating the immune system.

B.C. academic institutions and prominent Canadian companies like Precision NanoSystems, Acuitas Therapeutics and AbCellera have developed significant expertise in advanced immune-based therapeutics such as lipid nanoparticle- and mRNA-based vaccines, engineered antibodies, cell therapies and treatments for antimicrobial resistant infections. UBC professor Dr. Pieter Cullis, a member of CIEBH’s core scientific team, has been widely recognized for his pioneering work developing the lipid nanoparticle delivery technology that enables mRNA therapeutics such as the highly effective COVID-19 mRNA vaccines.

As noted previously, I’m a little puzzled that the federal government didn’t mention the investment in these hubs in their budget. They usually trumpet these kinds of initiatives.

On a related track, I’m even more puzzled that the province of British Columbia does not have its own life sciences research strategy in light of that sector’s success. Certainly it seems that Ontario, Quebec, Nova Scotia, and Prince Edward are all eager to get a piece of the action. Still, there is a Life Sciences in British Columbia: Sector Profile dated June 2020 and an undated (likely from some time between July 2017 to January 2020 when Bruce Ralston whose name is on the document was the relevant cabinet minister) British Columbia Technology and Innovation Policy Framework.

In case you missed the link earlier, see my August 23, 2021 posting “Who’s running the life science companies’ public relations campaign in British Columbia (Vancouver, Canada)?” which includes additional information about the BC life sciences sector, federal and provincial funding, the City of Vancouver’s involvement, and other related matters.

Chapter 3: A Made-In-Canada Plan: Affordable Energy, Good Jobs, and a Growing Clean Economy

The most science-focused information is in Chapter 3, from https://www.budget.canada.ca/2023/report-rapport/toc-tdm-en.html,

3.2 A Growing, Clean Economy

More than US$100 trillion in private capital is projected to be spent between now and 2050 to build the global clean economy.

Canada is currently competing with the United States, the European Union, and countries around the world for our share of this investment. To secure our share of this global investment, we must capitalize on Canada’s competitive advantages, including our skilled and diverse workforce, and our abundance of critical resources that the world needs.

The federal government has taken significant action over the past seven years to support Canada’s net-zero economic future. To build on this progress and support the growth of Canada’s clean economy, Budget 2023 proposes a range of measures that will encourage businesses to invest in Canada and create good-paying jobs for Canadian workers.

This made-in-Canada plan follows the federal tiered structure to incent the development of Canada’s clean economy and provide additional support for projects that need it. This plan includes:

  • Clear and predictable investment tax credits to provide foundational support for clean technology manufacturing, clean hydrogen, zero-emission technologies, and carbon capture and storage;
  • The deployment of financial instruments through the Canada Growth Fund, such as contracts for difference, to absorb certain risks and encourage private sector investment in low-carbon projects, technologies, businesses, and supply chains; and,
  • Targeted clean technology and sector supports delivered by Innovation, Science and Economic Development Canada to support battery manufacturing and further advance the development, application, and manufacturing of clean technologies.

Canada’s Potential in Critical Minerals

As a global leader in mining, Canada is in a prime position to provide a stable resource base for critical minerals [emphasis mine] that are central to major global industries such as clean technology, auto manufacturing, health care, aerospace, and the digital economy. For nickel and copper alone, the known reserves in Canada are more than 10 million tonnes, with many other potential sources at the exploration stage.

The Buy North American provisions for critical minerals and electric vehicles in the U.S. Inflation Reduction Act will create opportunities for Canada. In particular, U.S. acceleration of clean technology manufacturing will require robust supply chains of critical minerals that Canada has in abundance. However, to fully unleash Canada’s potential in critical minerals, we need to ensure a framework is in place to accelerate private investment.

Budget 2022 committed $3.8 billion for Canada’s Critical Minerals Strategy to provide foundational support to Canada’s mining sector to take advantage of these new opportunities. The Strategy was published in December 2022.

On March 24, 2023, the government launched the Critical Minerals Infrastructure Fund [emphasis mine; I cannot find a government announcement/news release for this fund]—a new fund announced in Budget 2022 that will allocate $1.5 billion towards energy and transportation projects needed to unlock priority mineral deposits. The new fund will complement other clean energy and transportation supports, such as the Canada Infrastructure Bank and the National Trade Corridors Fund, as well as other federal programs that invest in critical minerals projects, such as the Strategic Innovation Fund.

The new Investment Tax Credit for Clean Technology Manufacturing proposed in Budget 2023 will also provide a significant incentive to boost private investment in Canadian critical minerals projects and create new opportunities and middle class jobs in communities across the country.

An Investment Tax Credit for Clean Technology Manufacturing

Supporting Canadian companies in the manufacturing and processing of clean technologies, and in the extraction and processing of critical minerals, will create good middle class jobs for Canadians, ensure our businesses remain competitive in major global industries, and support the supply chains of our allies around the world.

While the Clean Technology Investment Tax Credit, first announced in Budget 2022, will provide support to Canadian companies adopting clean technologies, the Clean Technology Manufacturing Investment Tax Credit will provide support to Canadian companies that are manufacturing or processing clean technologies and their precursors.

  • Budget 2023 proposes a refundable tax credit equal to 30 per cent of the cost of investments in new machinery and equipment used to manufacture or process key clean technologies, and extract, process, or recycle key critical minerals, including:
    • Extraction, processing, or recycling of critical minerals essential for clean technology supply chains, specifically: lithium, cobalt, nickel, graphite, copper, and rare earth elements;
    • Manufacturing of renewable or nuclear energy equipment;
    • Processing or recycling of nuclear fuels and heavy water; [emphases mine]
    • Manufacturing of grid-scale electrical energy storage equipment;
    • Manufacturing of zero-emission vehicles; and,
    • Manufacturing or processing of certain upstream components and materials for the above activities, such as cathode materials and batteries used in electric vehicles.

The investment tax credit is expected to cost $4.5 billion over five years, starting in 2023-24, and an additional $6.6 billion from 2028-29 to 2034-35. The credit would apply to property that is acquired and becomes available for use on or after January 1, 2024, and would no longer be in effect after 2034, subject to a phase-out starting in 2032.

3.4 Reliable Transportation and Resilient Infrastructure

Supporting Resilient Infrastructure Through Innovation

The Smart Cities Challenge [emphasis mine] was launched in 2017 to encourage cities to adopt new and innovative approaches to improve the quality of life for their residents. The first round of the Challenge resulted in $75 million in prizes across four winning applicants: Montreal, Quebec; Guelph, Ontario; communities of Nunavut; and Bridgewater, Nova Scotia.

New and innovative solutions are required to help communities reduce the risks and impacts posed by weather-related events and disasters triggered by climate change. To help address this issue, the government will be launching a new round of the Smart Cities Challenge later this year, which will focus on using connected technologies, data, and innovative approaches to improve climate resiliency.

3.5 Investing in Tomorrow’s Technology

With the best-educated workforce on earth, world-class academic and research institutions, and robust start-up ecosystems across the country, Canada’s economy is fast becoming a global technology leader – building on its strengths in areas like artificial intelligence. Canada is already home to some of the top markets for high-tech careers in North America, including the three fastest growing markets between 2016 and 2021: Vancouver, Toronto, and Quebec City.

However, more can be done to help the Canadian economy reach its full potential. Reversing a longstanding trend of underinvestment in research and development by Canadian business [emphasis mine] is essential our long-term economic growth.

Budget 2023 proposes new measures to encourage business innovation in Canada, as well as new investments in college research and the forestry industry that will help to build a stronger and more innovative Canadian economy.

Attracting High-Tech Investment to Canada

In recent months, Canada has attracted several new digital and high-tech projects that will support our innovative economy, including:

  • Nokia: a $340 million project that will strengthen Canada’s position as a leader in 5G and digital innovation;
  • Xanadu Quantum Technologies: a $178 million project that will support Canada’s leadership in quantum computing;
  • Sanctuary Cognitive Systems Corporation: a $121 million project that will boost Canada’s leadership in the global Artificial Intelligence market; and,
  • EXFO: a $77 million project to create a 5G Centre of Excellence that aims to develop one of the world’s first Artificial Intelligence-based automated network solutions.

Review of the Scientific Research and Experimental Development Tax Incentive Program

The Scientific Research and Experimental Development (SR&ED) tax incentive program continues to be a cornerstone of Canada’s innovation strategy by supporting research and development with the goal of encouraging Canadian businesses of all sizes to invest in innovation that drives economic growth.

In Budget 2022, the federal government announced its intention to review the SR&ED program to ensure it is providing adequate support and improving the development, retention, and commercialization of intellectual property, including the consideration of adopting a patent box regime. [emphasis mine] The Department of Finance will continue to engage with stakeholders on the next steps in the coming months.

Modernizing Canada’s Research Ecosystem

Canada’s research community and world-class researchers solve some of the world’s toughest problems, and Canada’s spending on higher education research and development, as a share of GDP, has exceeded all other G7 countries. 

Since 2016, the federal government has committed more than $16 billion of additional funding to support research and science across Canada. This includes:

  • Nearly $4 billion in Budget 2018 for Canada’s research system, including $2.4 billion for the Canada Foundation for Innovation and the granting councils—the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada and the Canadian Institutes of Health Research; [emphases mine]
  • More than $500 million in Budget 2019 in total additional support to third-party research and science organizations, in addition to the creation of the Strategic Science Fund, which will announce successful recipients later this year;
  • $1.2 billion in Budget 2021 for Pan-Canadian Genomics and Artificial Intelligence Strategies, and a National Quantum Strategy;
  • $1 billion in Budget 2021 to the granting councils and the Canada Foundation for Innovation for life sciences researchers and infrastructure; and,
  • The January 2023 announcement of Canada’s intention to become a full member in the Square Kilometre Array Observatory, which will provide Canadian astronomers with access to its ground-breaking data. The government is providing up to $269.3 million to support this collaboration.

In order to maintain Canada’s research strength—and the knowledge, innovations, and talent it fosters—our systems to support science and research must evolve. The government has been consulting with stakeholders, including through the independent Advisory Panel on the Federal Research Support System, to seek advice from research leaders on how to further strengthen Canada’s research support system.

The government is carefully considering the Advisory Panel’s advice, with more detail to follow in the coming months on further efforts to modernize the system.

Using College Research to Help Businesses Grow

Canada’s colleges, CEGEPs, and polytechnic institutes use their facilities, equipment, and expertise to solve applied research problems every day. Students at these institutions are developing the skills they need to start good careers when they leave school, and by partnering with these institutions, businesses can access the talent and the tools they need to innovate and grow.

  • To help more Canadian businesses access the expertise and research and development facilities they need, Budget 2023 proposes to provide $108.6 million over three years, starting in 2023-24, to expand the College and Community Innovation Program, administered by the Natural Sciences and Engineering Research Council.

Supporting Canadian Leadership in Space

For decades, Canada’s participation in the International Space Station has helped to fuel important scientific advances, and showcased Canada’s ability to create leading-edge space technologies, such as Canadarm2. Canadian space technologies have inspired advances in other fields, such as the NeuroArm, the world’s first robot capable of operating inside an MRI, making previously impossible surgeries possible.

  • Budget 2023 proposes to provide $1.1 billion [emphasis mine] over 14 years, starting in 2023-24, on a cash basis, to the Canadian Space Agency [emphasis mine] to continue Canada’s participation in the International Space Station until 2030.

Looking forward, humanity is returning to the moon [emphasis mine]. Canada intends to join these efforts by contributing a robotic lunar utility vehicle to perform key activities in support of human lunar exploration. Canadian participation in the NASA-led Lunar Gateway station—a space station that will orbit the moon—also presents new opportunities for innovative advances in science and technology. Canada is providing Canadarm3 to the Lunar Gateway, and a Canadian astronaut will join Artemis II, the first crewed mission to the moon since 1972. In Budget 2023, the government is providing further support to assist these missions.

  • Budget 2023 proposes to provide $1.2 billion [emphasis mine] over 13 years, starting in 2024-25, to the Canadian Space Agency to develop and contribute a lunar utility vehicle to assist astronauts on the moon.
  • Budget 2023 proposes to provide $150 million [emphasis mine[ over five years, starting in 2023-24, to the Canadian Space Agency for the next phase of the Lunar Exploration Accelerator Program to support the Canada’s world-class space industry and help accelerate the development of new technologies.
  • Budget 2023 also proposes to provide $76.5 million [emphasis mine] over eight years, starting in 2023-24, on a cash basis, to the Canadian Space Agency in support of Canadian science on the Lunar Gateway station.

Investing in Canada’s Forest Economy

The forestry sector plays an important role in Canada’s natural resource economy [emphasis mine], and is a source of good careers in many rural communities across Canada, including Indigenous communities. As global demand for sustainable forest products grows, continued support for Canada’s forestry sector will help it innovate, grow, and support good middle class jobs for Canadians.

  • Budget 2023 proposes to provide $368.4 million over three years, starting in 2023-24, with $3.1 million in remaining amortization, to Natural Resources Canada to renew and update forest sector support, including for research and development, Indigenous and international leadership, and data. Of this amount, $30.1 million would be sourced from existing departmental resources.

Establishing the Dairy Innovation and Investment Fund

The dairy sector is facing a growing surplus of solids non-fat (SNF) [emphasis mine], a by-product of dairy processing. Limited processing capacity for SNF results in lost opportunities for dairy processors and farmers.

  • Budget 2023 proposes to provide $333 million over ten years, starting in 2023-24, for Agriculture and Agri-Food Canada to support investments in research and development of new products based on SNF, market development for these products, and processing capacity for SNF-based products more broadly.

Supporting Farmers for Diversifying Away from Russian Fertilizers

Russia’s illegal invasion of Ukraine has resulted in higher prices for nitrogen fertilizers, which has had a notable impact on Eastern Canadian farmers who rely heavily on imported fertilizer.

  • Budget 2023 proposes to provide $34.1 million over three years, starting in 2023-24, to Agriculture and Agri-Food Canada’s On-Farm Climate Action Fund to support adoption of nitrogen management practices by Eastern Canadian farmers, that will help optimize the use and reduce the need for fertilizer.

Providing Interest Relief for Agricultural Producers

Farm production costs have increased in Canada and around the world, including as a result Russia’s illegal invasion of Ukraine and global supply chain disruptions. It is important that Canada’s agricultural producers have access to the cash flow they need to cover these costs until they sell their products.

  • Budget 2023 proposes to provide $13 million in 2023-24 to Agriculture and Agri-Food Canada to increase the interest-free limit for loans under the Advance Payments Program from $250,000 to $350,000 for the 2023 program year.

Additionally, the government will consult with provincial and territorial counterparts to explore ways to extend help to small agricultural producers who demonstrate urgent financial need.

Maintaining Livestock Sector Exports with a Foot-and-Mouth Disease Vaccine Bank

Foot-and-Mouth Disease (FMD) is a highly transmissible illness that can affect cattle, pigs, and other cloven-hoofed animals. Recent outbreaks in Asia and Africa have increased the risk of global spread, and a FMD outbreak in Canada would cut off exports for all livestock sectors, with major economic implications. However, the impact of a potential outbreak would be significantly reduced with the early vaccination of livestock. 

  • Budget 2023 proposes to provide $57.5 million over five years, starting in 2023-24, with $5.6 million ongoing, to the Canadian Food Inspection Agency to establish a FMD vaccine bank for Canada, and to develop FMD response plans. The government will seek a cost-sharing arrangement with provinces and territories.

Canadian economic theory (the staples theory), mining, nuclear energy, quantum science, and more

Critical minerals are getting a lot of attention these days. (They were featured in the 2022 budget, see my April 19, 2022 posting, scroll down to the Mining subhead.) This year, US President Joe Biden, in his first visit to Canada as President, singled out critical minerals at the end of his 28 hour state visit (from a March 24, 2023 CBC news online article by Alexander Panetta; Note: Links have been removed),

There was a pot of gold at the end of President Joe Biden’s jaunt to Canada. It’s going to Canada’s mining sector.

The U.S. military will deliver funds this spring to critical minerals projects in both the U.S. and Canada. The goal is to accelerate the development of a critical minerals industry on this continent.

The context is the United States’ intensifying rivalry with China.

The U.S. is desperate to reduce its reliance on its adversary for materials needed to power electric vehicles, electronics and many other products, and has set aside hundreds of millions of dollars under a program called the Defence Production Act.

The Pentagon already has told Canadian companies they would be eligible to apply. It has said the cash would arrive as grants, not loans.

On Friday [March 24, 2023], before Biden left Ottawa, he promised they’ll get some.

The White House and the Prime Minister’s Office announced that companies from both countries will be eligible this spring for money from a $250 million US fund.

Which Canadian companies? The leaders didn’t say. Canadian officials have provided the U.S. with a list of at least 70 projects that could warrant U.S. funding.

“Our nations are blessed with incredible natural resources,” Biden told Canadian parliamentarians during his speech in the House of Commons.

Canada in particular has large quantities of critical minerals [emphasis mine] that are essential for our clean energy future, for the world’s clean energy future.

I don’t believe that Joe Biden has ever heard of the Canadian academic Harold Innis (neither have most Canadians) but Biden is echoing a rather well known theory, in some circles, about Canada’s economy (from the Harold Innis Wikipedia entry),

Harold Adams Innis FRSC (November 5, 1894 – November 9, 1952) was a Canadian professor of political economy at the University of Toronto and the author of seminal works on media, communication theory, and Canadian economic history. He helped develop the staples thesis, which holds that Canada’s culture, political history, and economy have been decisively influenced by the exploitation and export of a series of “staples” such as fur, fish, lumber, wheat, mined metals, and coal. The staple thesis dominated economic history in Canada from the 1930s to 1960s, and continues to be a fundamental part of the Canadian political economic tradition.[8] [all emphases mine]

The staples theory is referred to informally as “hewers of wood and drawers of water.”

Critical Minerals Infrastructure Fund

I cannot find an announcement for this fund (perhaps it’s a US government fund?) but there is a March 7, 2023 Natural Resources Canada news release, Note: A link has been removed,

Simply put, our future depends on critical minerals. The Government of Canada is committed to investing in this future, which is why the Canadian Critical Minerals Strategy — launched by the Honourable Jonathan Wilkinson, Minister of Natural Resources, in December 2022 — is backed by up to $3.8 billion in federal funding. [emphases mine] Today [March 7, 2023], Minister Wilkinson announced more details on the implementation of this Strategy. Over $344 million in funding is supporting the following five new programs and initiatives:

  • Critical Minerals Technology and Innovation Program – $144.4 million for the research, development, demonstration, commercialization and adoption of new technologies and processes that support sustainable growth in Canadian critical minerals value chains and associated innovation ecosystems. 
  • Critical Minerals Geoscience and Data Initiative – $79.2 million to enhance the quality and availability of data and digital technologies to support geoscience and mapping that will accelerate the efficient and effective development of Canadian critical minerals value chains, including by identifying critical minerals reserves and developing pathways for sustainable mineral development. 
  • Global Partnerships Program – $70 million to strengthen Canada’s global leadership role in enhancing critical minerals supply chain resiliency through international collaborations related to critical minerals. 
  • Northern Regulatory Initiative – $40 million to advance Canada’s northern and territorial critical minerals agenda by supporting regulatory dialogue, regional studies, land-use planning, impact assessments and Indigenous consultation.
  • Renewal of the Critical Minerals Centre of Excellence (CMCE) – $10.6 million so the CMCE can continue the ongoing development and implementation of the Canadian Critical Minerals Strategy.

Commentary from the mining community

Mariaan Webb wrote a March 29,2023 article about the budget and the response from the mining community for miningweekly.com, Note: Links have been removed,

The 2023 Budget, delivered by Finance Minister Chrystia Freeland on Tuesday, bolsters the ability of the Canadian mining sector to deliver for the country, recognising the industry’s central role in enabling the transition to a net-zero economy, says Mining Association of Canada (MAC) president and CEO Pierre Gratton.

“Without mining, there are no electric vehicles, no clean power from wind farms, solar panels or nuclear energy, [emphasis mine] and no transmission lines,” said Gratton.

What kind of nuclear energy?

There are two kinds of nuclear energy: fission and fusion. (Fission is the one where the atom is split and requires minerals. Fusion energy is how stars are formed. Much less polluting than fission energy, at this time it is not a commercially viable option nor is it close to being so.)

As far as I’m aware, fusion energy does not require any mined materials. So, Gratton appears to be referring to fission nuclear energy when he’s talking about the mining sector and critical minerals.

I have an October 28, 2022 posting, which provides an overview of fusion energy and the various projects designed to capitalize on it.

Smart Cities in Canada

I was happy to be updated on the Smart Cities Challenge. When I last wrote about it (a March 20, 2018 posting; scroll down to the “Smart Cities, the rest of the country, and Vancouver” subhead). I notice that the successful applicants are from Montreal, Quebec; Guelph, Ontario; communities of Nunavut; and Bridgewater, Nova Scotia. It’s about time northern communities got some attention. It’s hard not to notice that central Canada (i.e., Ontario and Quebec) again dominates.

I look forward to hearing more about the new, upcoming challenge.

The quantum crew

I first made note of what appears to be a fracture in the Canadian quantum community in a May 4, 2021 posting (scroll down to the National Quantum Strategy subhead) about the 2021 budget. I made note of it again in a July 26, 2022 posting (scroll down to the Canadian quantum scene subhead).

In my excerpts from the 3.5 Investing in Tomorrow’s Technology section of the 2023 budget, Xanadu Quantum Technologies, headquartered in Toronto, Ontario is singled out with three other companies (none of which are in the quantum computing field). Oddly, D-Wave Systems (located in British Columbia), which as far as I’m aware is the star of Canada’s quantum computing sector, has yet to be singled out in any budget I’ve seen yet. (I’m estimating I’ve reviewed about 10 budgets.)

Canadians in space

Shortly after the 2023 budget was presented, Canadian astronaut Jeremy Hansen was revealed as one of four astronauts to go on a mission to orbit the moon. From a Canadian Broadcasting (CBC) April 3, 2023 news online article by Nicole Mortillaro (Note: A link has been removed),

Jeremy Hansen is heading to the moon.

The 47-year old Canadian astronaut was announced today as one of four astronauts — along with Christina Koch, Victor Glover and Reid Wiseman — who will be part of NASA’s [US National Aeronautics and Space Administration] Artemis II mission.

Hansen was one of four active Canadian astronauts that included Jennifer Sidey-Gibbons, Joshua Kutryk and David Saint-Jacques vying for a seat on the Orion spacecraft set to orbit the moon.

Artemis II is the second step in NASA’s mission to return astronauts to the surface of the moon. 

The astronauts won’t be landing, but rather they will orbit for 10 days in the Orion spacecraft, testing key components to prepare for Artemis III that will place humans back on the moon some time in 2025 for the first time since 1972.

Canada gets a seat on Artemis II due to its contributions to Lunar Gateway, a space station that will orbit the moon. But Canada is also building a lunar rover provided by Canadensys Aerospace.

On Monday [April 3, 2023], Hansen noted there are two reasons a Canadian is going to the moon, adding that it “makes me smile when I say that.”

The first, he said, is American leadership, and the decision to curate an international team.

“The second reason is Canada’s can-do attitude,” he said proudly.

In addition to our ‘can-do attitude,” we’re also spending some big money, i.e., the Canadian government has proposed in its 2023 budget some $2.5B to various space and lunar efforts over the next several years.

Chapter 3 odds and sods

First seen in the 2022 budget, the patent box regime makes a second appearance in the 2023 budget where apparently ‘stakeholders will be engaged’ later this year. At least, they’re not rushing into this. (For the original announcement and an explanation of a patent box regime, see my April 19, 2022 budget review; scroll down to the Review of Tax Support to R&D and Intellectual Property subhead.)

I’m happy to see the Dairy Innovation and Investment Fund. I’m particularly happy to see a focus on finding uses for solids non-fat (SNF) by providing “$333 million over ten years, starting in 2023-24, … research and development of new products based on SNF [emphasis mine], market development for these products, and processing capacity for SNF-based products more broadly.”

This investment contrasts with the approach to cellulose nanocrystals (CNC) derived from wood (i.e., the forest economy), where the Canadian government invested heavily in research and even opened a production facility under the auspices of a company, CelluForce. It was a little problematic.

By 2013, the facility had a stockpile of CNC and nowhere to sell it. That’s right, no market for CNC as there had been no product development. (See my May 8, 2012 posting where that lack is mentioned, specifically there’s a quote from Tim Harper in an excerpted Globe and Mail article. My August 17, 2016 posting notes that the stockpile was diminishing. The CelluForce website makes no mention of it now in 2023.)

It’s good to see the government emphasis on research into developing products for SNFs especially after the CelluForce stockpile and in light of US President Joe Biden’s recent enthusiasm over our critical minerals.

Chapter 4: Advancing Reconciliation and Building a Canada That Works for Everyone

Chapter 4: Advancing Reconciliation and Building a Canada That Works for Everyone offers this, from https://www.budget.canada.ca/2023/report-rapport/toc-tdm-en.html,

4.3 Clean Air and Clean Water

Progress on Biodiversity

Montreal recently hosted the Fifteenth Conference of the Parties (COP15) to the United Nations Convention on Biological Diversity, which led to a new Post-2020 Global Biodiversity Framework. During COP15, Canada announced new funding for biodiversity and conservation measures at home and abroad that will support the implementation of the Global Biodiversity Framework, including $800 million to support Indigenous-led conservation within Canada through the innovative Project Finance for Permanence model.

Protecting Our Freshwater

Canada is home to 20 per cent of the world’s freshwater supply. Healthy lakes and rivers are essential to Canadians, communities, and businesses across the country. Recognizing the threat to freshwater caused by climate change and pollution, the federal government is moving forward to establish a new Canada Water Agency and make major investments in a strengthened Freshwater Action Plan.

  • Budget 2023 proposes to provide $650 million over ten years, starting in 2023-24, to support monitoring, assessment, and restoration work in the Great Lakes, Lake Winnipeg, Lake of the Woods, St. Lawrence River, Fraser River, Saint John River, Mackenzie River, and Lake Simcoe. Budget 2023 also proposes to provide $22.6 million over three years, starting in 2023-24, to support better coordination of efforts to protect freshwater across Canada.
  • Budget 2023 also proposes to provide $85.1 million over five years, starting in 2023-24, with $0.4 million in remaining amortization and $21 million ongoing thereafter to support the creation of the Canada Water Agency [emphasis mine], which will be headquartered in Winnipeg. By the end of 2023, the government will introduce legislation that will fully establish the Canada Water Agency as a standalone entity.

Cleaner and Healthier Ports

Canada’s ports are at the heart of our supply chains, delivering goods to Canadians and allowing our businesses to reach global markets. As rising shipping levels enable and create economic growth and good jobs, the federal government is taking action to protect Canada’s coastal ecosystems and communities.

  • Budget 2023 proposes to provide $165.4 million over seven years, starting in 2023-24, to Transport Canada to establish a Green Shipping Corridor Program to reduce the impact of marine shipping on surrounding communities and ecosystems. The program will help spur the launch of the next generation of clean ships, invest in shore power technology, and prioritize low-emission and low-noise vessels at ports.

Water, water everywhere

I wasn’t expecting to find mention of establishing a Canada Water Agency and details are sketchy other than, It will be in Winnipeg, Manitoba and there will be government funding. Fingers crossed that this agency will do some good work (whatever that might be). Personally, I’d like to see some action with regard to droughts.

In British Columbia (BC) where I live and which most of us think of as ‘water rich’, is suffering under conditions such that our rivers and lakes are at very low levels according to an April 6, 2023 article by Glenda Luymes for the Vancouver Sun (print version, p. A4),

On the North American WaterWatch map, which codes river flows using a series of coloured dots, high flows are represented in various shades of blue while low flows are represented in red hues. On Wednesday [April 5, 2023], most of BC was speckled red, brown and orange, with the majority of the province’s rivers flowing “much below normal.”

“It does not bode well for the fish populations,” said Marvin Rosenau, a fisheries and ecosystems instructor at BCIT [British Columbia Institute of Technology]. …

Rosenau said low water last fall [2022], when much of BC was in the grip of drought, decreased salmon habitat during spawning season. …

BC has already seen small early season wildfires, including one near Merritt last weekend [April 1/2, 2023]. …

Getting back to the Canada Water Agency, there’s this March 29, 2023 CBC news online article by Bartley Kives,

The 2023 federal budget calls for a new national water agency to be based in Winnipeg, provided Justin Trudeau’s Liberal government remains in power long enough to see it established [emphasis mine] in the Manitoba capital.

The budget announced on Tuesday [March 28, 2023] calls for the creation of the Canada Water Agency, a new federal entity with a headquarters in Winnipeg.

While the federal government is still determining precisely what the new agency will do, one Winnipeg-based environmental organization expects it to become a one-stop shop for water science, water quality assessment and water management [emphasis mine].

“This is something that we don’t actually have in this country at the moment,” said Matt McCandless, a vice-president for the non-profit International Institute for Sustainable Development.

Right now, municipalities, provinces and Indigenous authorities take different approaches to managing water quality, water science, flooding and droughts, said McCandless, adding a national water agency could provide more co-ordination.

For now, it’s unknown how many employees will be based at the Canada Water Agency’s Winnipeg headquarters. According to the budget, legislation to create the agency won’t be introduced until later this year [emphasis mine].

That means the Winnipeg headquarters likely won’t materialize before 2024, one year before the Trudeau minority government faces re-election, assuming it doesn’t lose the confidence of the House of Commons beforehand [emphasis mine].

Nonetheless, several Canadian cities and provinces were vying for the Canada Water Agency’s headquarters, including Manitoba.

The budget also calls for $65 million worth of annual spending on lake science and restoration, with an unstated fraction of that cash devoted to Lake Winnipeg.

McCandless calls the spending on water science an improvement over previous budgets.

Kives seems a tad jaundiced but you get that way (confession: I have too) when covering government spending promises.

Part 2 (military spending and general comments) will be posted sometime during the week of April 24-28, 2023.

Frog Finders

Joelle Krol has a March 24, 2023 article in The Tyee (an online publication named after a type of salmon) about a frog project in British Columbia’s Fraser Valley (Canada),

As a junior biologist working for the Fraser Valley Conservancy, I’ve been working on putting together a map of our frog and salamander observations. So much of this data is collected by citizen scientists, who submit their photos or videos to programs like iNaturalist or Fraser Valley Conservancy’s Frog Finders program.

The conservancy focuses a lot of our efforts on amphibians. We do annual surveys in the spring, searching wetlands for frogs and salamanders. We also make efforts to protect and enhance their habitat. But before any of these activities can happen, we need to know where they are. That’s where all these amphibian observations come in.

Thousands of the points on the map started as photos, videos and audio clips that were submitted by citizens — and I’m hoping that if you live in Metro Vancouver, I can convince you to do some citizen science, too. Looking through all the data, you learn how much of an impact a single photo can have.

I found that huge portions of the Fraser Valley are lacking amphibian observations, but other portions are rich with amphibians. From here, I was able to identify “amphibian observation hot spots.” These are areas where many amphibians have been sighted and reported. I also identified areas of interest — where there haven’t been many observations but could be great for amphibians. Many of the hot spots surround public parks or protected areas. Whereas many of the areas of interest contain private land.

[downloaded from https://thetyee.ca/Opinion/2023/03/23/Frog-Finders-Fraser-Valley/]

Here’s the request or call to action from a March 9, 2023 Fraser Valley Conservancy (FVC) news release by Joelle Krol, which originated the article in The Tyee,

Ryder Lake provides a great example of how a picture can make a big difference. Residents of the community noticed toads dying on the roadways that sit between the forest and the wetland. They reported these sightings and reached out for help, which got the conservancy involved.

Because of these reports from the community, the FVC was able to tell which location along the road would be the best place to build a tunnel for the toads. Projects like this make a huge difference for the toads’ survival and wouldn’t be possible without those initial citizen reports.

So many strategies for protecting wildlife begin with citizen science data. While there are a decent number of observations in parks and protected wildlife areas, there are shockingly few on private land. It’s not that amphibians aren’t there, but that they aren’t being reported. That’s where you and your photos come in. Submitting photos to citizen science programs helps to fill the map and can result in real change.

You can find a form on the FVC’s home page so you can submit your sighting. If you want to preview the form, you can find it here.

Turning asphaltene into graphene

Asphaltene (or asphaltenes are) is waste material that can be turned into graphene according to scientists at Rice University (Texas, US), from a November 18, 2022 news item on ScienceDaily,

Asphaltenes, a byproduct of crude oil production, are a waste material with potential. Rice University scientists are determined to find it by converting the carbon-rich resource into useful graphene.

Muhammad Rahman, an assistant research professor of materials science and nanoengineering, is employing Rice’s unique flash Joule heating process to convert asphaltenes instantly into turbostratic (loosely aligned) graphene and mix it into composites for thermal, anti-corrosion and 3D-printing applications.

The process makes good use of material otherwise burned for reuse as fuel or discarded into tailing ponds and landfills. Using at least some of the world’s reserve of more than 1 trillion barrels of asphaltene as a feedstock for graphene would be good for the environment as well.

A November 17, 2022 Rice University news release (also on EurekAlert), which originated the news item, expands on this exciting news, Note: Links have been removed,

“Asphaltene is a big headache for the oil industry, and I think there will be a lot of interest in this,” said Rahman, who characterized the process as both a scalable and sustainable way to reduce carbon emissions from burning asphaltene.

Rahman is a lead corresponding author of the paper in Science Advances co-led by Rice chemist James Tour, whose lab developed flash Joule heating, materials scientist Pulickel Ajayan and Md Golam Kibria, an assistant professor of chemical and petroleum engineering at the University of Calgary, Canada.

Asphaltenes are 70% to 80% carbon already. The Rice lab combines it with about 20% of carbon black to add conductivity and flashes it with a jolt of electricity, turning it into graphene in less than a second. Other elements in the feedstock, including hydrogen, nitrogen, oxygen and sulfur, are vented away as gases.

“We try to keep the carbon black content as low as possible because we want to maximize the utilization of asphaltene,” Rahman said.

“The government has been putting pressure on the petroleum industries to take care of this,” said Rice graduate student and co-lead author M.A.S.R. Saadi. “There are billions of barrels of asphaltene available, so we began working on this project primarily to see if we could make carbon fiber. That led us to think maybe we should try making graphene with flash Joule heating.”

Assured that Tour’s process worked as well on asphaltene as it did on various other feedstocks, including plastic, electronic waste, tires, coal fly ash and even car parts, the researchers set about making things with their graphene. 

Saadi, who works with Rahman and Ajayan, mixed the graphene into composites, and then into polymer inks bound for 3D printers. “We’ve optimized the ink rheology to show that it is printable,” he said, noting the inks have no more than 10% of graphene mixed in. Mechanical testing of printed objects is forthcoming, he said.

Rice graduate student Paul Advincula, a member of the Tour lab, is co-lead author of the paper. Co-authors are Rice graduate students Md Shajedul Hoque Thakur, Ali Khater, Jacob Beckham and Minghe Lou, undergraduate Aasha Zinke and postdoctoral researcher Soumyabrata Roy; research fellow Shabab Saad, alumnus Ali Shayesteh Zeraati, graduate student Shariful Kibria Nabil and postdoctoral associate Md Abdullah Al Bari of the University of Calgary; graduate student Sravani Bheemasetti and Venkataramana Gadhamshetty, an associate professor, at the South Dakota School of Mines and Technology and its 2D Materials of Biofilm Engineering Science and Technology Center; and research assistant Yiwen Zheng and Aniruddh Vashisth, an assistant professor of mechanical engineering, of the University of Washington.

The research was funded by the Alberta Innovates for Carbon Fiber Grand Challenge programs, the Air Force Office of Scientific Research (FA9550-19-1-0296), the U.S. Army Corps of Engineers (W912HZ-21-2-0050) and the National Science Foundation (1849206, 1920954).  

Here’s a link to and a citation for the paper,

Sustainable valorization of asphaltenes via flash joule heating by M.A.S.R. Saadi, Paul A. Advincula, Md Shajedul Hoque Thakur, Ali Zein Khater, Shabab Saad, Ali Shayesteh Zeraati, Shariful Kibria Nabil, Aasha Zinke, Soumyabrata Roy, Minghe Lou, Sravani N. Bheemasetti, Md Abdullah Al Bari, Yiwen Zheng, Jacob L. Beckham, Venkataramana Gadhamshetty, Aniruddh Vashisth, Md Golam Kibria, James M. Tour, Pulickel M. Ajayan, and Muhammad M. Rahman. Science Advances 18 Nov 2022 Vol 8, Issue 46 DOI: 10.1126/sciadv.add3555

This paper is open access.