Category Archives: social implications

Summer (2019) Institute on AI (artificial intelligence) Societal Impacts, Governance, and Ethics. Summer Institute In Alberta, Canada

The deadline for applications is April 7, 2019. As for whether or not you might like to attend, here’s more from a joint March 11, 2019 Alberta Machine Intelligence Institute (Amii)/
Canadian Institute for Advanced Research (CIFAR)/University of California at Los Angeles (UCLA) Law School news release
(also on,

What will Artificial Intelligence (AI) mean for society? That’s the question scholars from a variety of disciplines will explore during the inaugural Summer Institute on AI Societal Impacts, Governance, and Ethics. Summer Institute, co-hosted by the Alberta Machine Intelligence Institute (Amii) and CIFAR, with support from UCLA School of Law, takes place July 22-24, 2019 in Edmonton, Canada.

“Recent advances in AI have brought a surge of attention to the field – both excitement and concern,” says co-organizer and UCLA professor, Edward Parson. “From algorithmic bias to autonomous vehicles, personal privacy to automation replacing jobs. Summer Institute will bring together exceptional people to talk about how humanity can receive the benefits and not get the worst harms from these rapid changes.”

Summer Institute brings together experts, grad students and researchers from multiple backgrounds to explore the societal, governmental, and ethical implications of AI. A combination of lectures, panels, and participatory problem-solving, this comprehensive interdisciplinary event aims to build understanding and action around these high-stakes issues.

“Machine intelligence is opening transformative opportunities across the world,” says John Shillington, CEO of Amii, “and Amii is excited to bring together our own world-leading researchers with experts from areas such as law, philosophy and ethics for this important discussion. Interdisciplinary perspectives will be essential to the ongoing development of machine intelligence and for ensuring these opportunities have the broadest reach possible.”

Over the three-day program, 30 graduate-level students and early-career researchers will engage with leading experts and researchers including event co-organizers: Western University’s Daniel Lizotte, Amii’s Alona Fyshe and UCLA’s Edward Parson. Participants will also have a chance to shape the curriculum throughout this uniquely interactive event.

Summer Institute takes place prior to Deep Learning and Reinforcement Learning Summer School, and includes a combined event on July 24th [2019] for both Summer Institute and Summer School participants.

Visit to apply; applications close April 7, 2019.

View our Summer Institute Biographies & Boilerplates for more information on confirmed faculty members and co-hosting organizations. Follow the conversation through social media channels using the hashtag #SI2019.

Media Contact: Spencer Murray, Director of Communications & Public Relations, Amii
t: 587.415.6100 | c: 780.991.7136 | e:

There’s a bit more information on The Summer Institute on AI and Society webpage (on the Deep Learning and Reinforcement Learning Summer School 2019 website) such as this more complete list of speakers,

Confirmed speakers at Summer Institute include:

Alona Fyshe, University of Alberta/Amii (SI co-organizer)
Edward Parson, UCLA (SI co-organizer)
Daniel Lizotte, Western University (SI co-organizer)
Geoffrey Rockwell, University of Alberta
Graham Taylor, University of Guelph/Vector Institute
Rob Lempert, Rand Corporation
Gary Marchant, Arizona State University
Richard Re, UCLA
Evan Selinger, Rochester Institute of Technology
Elana Zeide, UCLA

Two questions, why are all the summer school faculty either Canada- or US-based? What about South American, Asian, Middle Eastern, etc. thinkers?

One last thought, I wonder if this ‘AI & ethics summer institute’ has anything to do with the Pan-Canadian Artificial Intelligence Strategy, which CIFAR administers and where both the University of Alberta and Vector Institute are members.

Scientometrics and science typologies

Caption: As of 2013, there were 7.8 million researchers globally, according to UNESCO. This means that 0.1 percent of the people in the world professionally do science. Their work is largely financed by governments, yet public officials are not themselves researchers. To help governments make sense of the scientific community, Russian mathematicians have devised a researcher typology. The authors initially identified three clusters, which they tentatively labeled as “leaders,” “successors,” and “toilers.” Credit: Lion_on_helium/MIPT Press Office

A June 28, 2018 Moscow Institute of Physics and Technology (MIPT; Russia) press release (also on EurekAlert) announces some intriguing research,

Researchers in various fields, from psychology to economics, build models of human behavior and reasoning to categorize people. But it does not happen as often that scientists undertake an analysis to classify their own kind.

However, research evaluation, and therefore scientist stratification as well, remain highly relevant. Six years ago, the government outlined the objective that Russian scientists should have 50 percent more publications in Web of Science- and Scopus-indexed journals. As of 2011, papers by researchers from Russia accounted for 1.66 percent of publications globally. By 2015, this number was supposed to reach 2.44%. It did grow but this has also sparked a discussion in the scientific community about the criteria used for evaluating research work.

The most common way of gauging the impact of a researcher is in terms of his or her publications. Namely, whether they are in a prestigious journal and how many times they have been cited. As with any good idea, however, one runs the risk of overdoing it. In 2005, U.S. physicist Jorge Hirsch proposed his h-index, which takes into account the number of publications by a given researcher and the number of times they have been cited. Now, scientists are increasingly doubting the adequacy of using bibliometric data as the sole independent criterion for evaluating research work. One obvious example of a flaw of this metric is that a paper can be frequently cited to point out a mistake in it.

Scientists are increasingly under pressure to publish more often. Research that might have reasonably been published in one paper is being split up into stages for separate publication. This calls for new approaches to the evaluation of work done by research groups and individual authors. Similarly, attempts to systematize the existing methods in scientometrics and stratify scientists are becoming more relevant, too. This is arguably even more important for Russia, where the research reform has been stretching for years.

One of the challenges in scientometrics is identifying the prominent types of researchers in different fields. A typology of scientists has been proposed by Moscow Institute of Physics and Technology Professor Pavel Chebotarev, who also heads the Laboratory of Mathematical Methods for Multiagent Systems Analysis at the Institute of Control Sciences of the Russian Academy of Sciences, and Ilya Vasilyev, a master’s student at MIPT.

In their paper, the two authors determined distinct types of scientists based on an indirect analysis of the style of research work, how papers are received by colleagues, and what impact they make. A further question addressed by the authors is to what degree researcher typology is affected by the scientific discipline.

“Each science has its own style of work. Publication strategies and citation practices vary, and leaders are distinguished in different ways,” says Chebotarev. “Even within a given discipline, things may be very different. This means that it is, unfortunately, not possible to have a universal system that would apply to anyone from a biologist to a philologist.”

“All of the reasonable systems that already exist are adjusted to particular disciplines,” he goes on. “They take into account the criteria used by the researchers themselves to judge who is who in their field. For example, scientists at the Institute for Nuclear Research of the Russian Academy of Sciences are divided into five groups based on what research they do, and they see a direct comparison of members of different groups as inadequate.”

The study was based on the citation data from the Google Scholar bibliographic database. To identify researcher types, the authors analyzed citation statistics for a large number of scientists, isolating and interpreting clusters of similar researchers.

Chebotarev and Vasilyev looked at the citation statistics for four groups of researchers returned by a Google Scholar search using the tags “Mathematics,” “Physics,” and “Psychology.” The first 515 and 556 search hits were considered in the case of physicists and psychologists, respectively. The authors studied two sets of mathematicians: the top 500 hits and hit Nos. 199-742. The four sets thus included frequently cited scientists from three disciplines indicating their general field of research in their profiles. Citation dynamics over each scientist’s career were examined using a range of indexes.

The authors initially identified three clusters, which they tentatively labeled as “leaders,” “successors,” and “toilers.” The leaders are experienced scientists widely recognized in their fields for research that has secured an annual citation count increase for them. The successors are young scientists who have more citations than toilers. The latter earn their high citation metrics owing to yearslong work, but they lack the illustrious scientific achievements.

Among the top 500 researchers indicating mathematics as their field of interest, 52 percent accounted for toilers, with successors and leaders making up 25.8 and 22.2 percent, respectively.

For physicists, the distribution was slightly different, with 48.5 percent of the set classified as toilers, 31.7 percent as successors, and 19.8 percent as leaders. That is, there were more successful young scientists, at the expense of leaders and toilers. This may be seen as a confirmation of the solitary nature of mathematical research, as compared with physics.

Finally, in the case of psychologists, toilers made up 47.7 percent of the set, with successors and leaders accounting for 18.3 and 34 percent. Comparing the distributions for the three disciplines investigated in the study, the authors conclude that there are more young achievers among those doing mathematical research.

A closer look enabled the authors to determine a more fine-grained cluster structure, which turned out to be remarkably similar for mathematicians and physicists. In particular, they identified a cluster of the youngest and most successful researchers, dubbed “precocious,” making up 4 percent of the mathematicians and 4.3 percent of the physicists in the set, along with the “youth” — successful researchers whose debuts were somewhat less dramatic: 29 and 31.7 percent of scientists doing math and physics research, respectively. Two further clusters were interpreted as recognized scientific authorities, or “luminaries,” and experienced researchers who have not seen an appreciable growth in the number of citations recently. Luminaries and the so-called inertia accounted for 52 and 15 percent of mathematicians and 50 and 14 percent of physicists, respectively.

There is an alternative way of clustering physicists, which recognizes a segment of researchers, who “caught the wave.” The authors suggest this might happen after joining major international research groups.

Among psychologists, 18.3 percent have been classified as precocious, though not as young as the physicists and mathematicians in the corresponding group. The most experienced and respected psychology researchers account for 22.5 percent, but there is no subdivision into luminaries and inertia, because those actively cited generally continue to be. Relatively young psychologists make up 59.2 percent of the set. The borders between clusters are relatively blurred in the case of psychology, which might be a feature of the humanities, according to the authors.

“Our pilot study showed even more similarity than we’d expected in how mathematicians and physicists are clustered,” says Chebotarev. “Whereas with psychology, things are noticeably different, yet the breakdown is slightly closer to math than physics. Perhaps, there is a certain connection between psychology and math after all, as some people say.”

“The next stage of this research features more disciplines. Hopefully, we will be ready to present the new results soon,” he concludes.

I think that they are attempting to create a new way of measuring scientific progress (scientometrics) by establishing a more representative means of measuring individual contributions based on the analysis they provide of the ways in which these ‘typologies’ are expressed across various disciplines.

For anyone who wants to investigate further, you will need to be able to read Russian. You can download the paper from here on,.

Here’s my best attempt at a citation for the paper,

Making a typology of scientists on the basis of bibliometric data by I. Vasilyev, P. Yu. Chebotarev. Large-scale System Control (UBS), 2018, Issue 72, Pages 138–195 (Mi ubs948)

I’m glad to see this as there is a fair degree of dissatisfaction about the current measures for scientific progress used in any number of reports on the topic. As far as I can tell, this dissatisfaction is felt internationally.

The Center for Nanotechnology in Society at the University of California at Santa Barbara offers a ‘swan song’ in three parts

I gather the University of California at Santa Barbara’s (UCSB) Center for Nanotechnology in Society is ‘sunsetting’ as its funding runs out. A Nov. 9, 2016 UCSB news release by Brandon Fastman describes the center’s ‘swan song’,

After more than a decade, the UCSB Center for Nanotechnology in Society research has provided new and deep knowledge of how technological innovation and social change impact one another. Now, as the national center reaches the end of its term, its three primary research groups have published synthesis reports that bring together important findings from their 11 years of activity.

The reports, which include policy recommendations, are available for free download at the CNS web site at

The ever-increasing ability of scientists to manipulate matter on the molecular level brings with it the potential for science fiction-like technologies such as nanoelectronic sensors that would entail “merging tissue with electronics in a way that it becomes difficult to determine where the tissue ends and the electronics begin,” according to a Harvard chemist in a recent CQ Researcher report. While the life-altering ramifications of such technologies are clear, it is less clear how they might impact the larger society to which they are introduced.

CNS research, as detailed the reports, addresses such gaps in knowledge. For instance, when anthropologist Barbara Herr Harthorn and her collaborators at the UCSB Center for Nanotechnology in Society (CNS-UCSB), convened public deliberations to discuss the promises and perils of health and human enhancement nanotechnologies, they thought that participants might be concerned about medical risks. However, that is not exactly what they found.

Participants were less worried about medical or technological mishaps than about the equitable distribution of the risks and benefits of new technologies and fair procedures for addressing potential problems. That is, they were unconvinced that citizens across the socioeconomic spectrum would share equal access to the benefits of therapies or equal exposure to their pitfalls.

In describing her work, Harthorn explained, “Intuitive assumptions of experts and practitioners about public perceptions and concerns are insufficient to understanding the societal contexts of technologies. Relying on intuition often leads to misunderstandings of social and institutional realities. CNS-UCSB has attempted to fill in the knowledge gaps through methodologically sophisticated empirical and theoretical research.”

In her role as Director of CNS-UCSB, Harthorn has overseen a larger effort to promote the responsible development of sophisticated materials and technologies seen as central to the nation’s economic future. By pursuing this goal, researchers at CNS-UCSB, which closed its doors at the end of the summer, have advanced the role for the social, economic, and behavioral sciences in understanding technological innovation.

Harthorn has spent the past 11 years trying to understand public expectations, values, beliefs, and perceptions regarding nanotechnologies. Along with conducting deliberations, she has worked with toxicologists and engineers to examine the environmental and occupational risks of nanotechnologies, determine gaps in the U.S. regulatory system, and survey nanotechnology experts. Work has also expanded to comparative studies of other emerging technologies such as shale oil and gas extraction (fracking).

Along with Harthorn’s research group on risk perception and social response, CNS-UCSB housed two other main research groups. One, led by sociologist Richard Appelbaum, studied the impacts of nanotechnology on the global economy. The other, led by historian Patrick McCray, studied the technologies, communities, and individuals that have shaped the direction of nanotechnology research.

Appelbaum’s research program included studying how state policies regarding nanotechnology – especially in China and Latin America – has impacted commercialization. Research trips to China elicited a great understanding of that nation’s research culture and its capacity to produce original intellectual property. He also studied the role of international collaboration in spurring technological innovation. As part of this research, his collaborators surveyed and interviewed international STEM graduate students in the United States in order to understand the factors that influence their choice whether to remain abroad or return home.

In examining the history of nanotechnology, McCray’s group explained how the microelectronics industry provided a template for what became known as nanotechnology, examined educational policies aimed at training a nano-workforce, and produced a history of the scanning tunneling microscope. They also penned award-winning monographs including McCray’s book, The Visioneers: How a Group of Elite Scientists Pursued Space Colonies, Nanotechnologies, and Limitless Future.

Reaching the Real World

Funded as a National Center by the US National Science Foundation in 2005, CNS-UCSB was explicitly intended to enhance the understanding of the relationship between new technologies and their societal context. After more than a decade of funding, CNS-UCSB research has provided a deep understanding of the relationship between technological innovation and social change.

New developments in nanotechnology, an area of research that has garnered $24 billion in funding from the U.S. federal government since 2001, impact sectors as far ranging as agriculture, medicine, energy, defense, and construction, posing great challenges for policymakers and regulators who must consider questions of equity, sustainability, occupational and environmental health and safety, economic and educational policy, disruptions to privacy, security and even what it means to be human. (A nanometer is roughly 10,000 times smaller than the diameter of a human hair.)  Nanoscale materials are already integrated into food packaging, electronics, solar cells, cosmetics, and pharmaceuticals. They are far in development for drugs that can target specific cells, microscopic spying devices, and quantum computers.

Given such real-world applications, it was important to CNS researchers that the results of their work not remain confined within the halls of academia. Therefore, they have delivered testimony to Congress, federal and state agencies (including the National Academies of Science, the Centers for Disease Control and Prevention, the Presidential Council of Advisors on Science and Technology, the U.S. Presidential Bioethics Commission and the National Nanotechnology Initiative), policy outfits (including the Washington Center for Equitable Growth), and international agencies (including the World Bank, European Commission, and World Economic Forum). They’ve collaborated with nongovernmental organizations. They’ve composed policy briefs and op eds, and their work has been covered by numerous news organizations including, recently, NPR, The New Yorker, and Forbes. They have also given many hundreds of lectures to audiences in community groups, schools, and museums.

Policy Options

Most notably, in their final act before the center closed, each of the three primary research groups published synthesis reports that bring together important findings from their 11 years of activity. Their titles are:

Exploring Nanotechnology’s Origins, Institutions, and Communities: A Ten Year Experiment in Large Scale Collaborative STS Research

Globalization and Nanotechnology: The Role of State Policy and International Collaboration

Understanding Nanotechnologies’ Risks and Benefits: Emergence, Expertise and Upstream Participation.

A sampling of key policy recommendations follows:

1.     Public acceptability of nanotechnologies is driven by: benefit perception, the type of application, and the risk messages transmitted from trusted sources and their stability over time; therefore transparent and responsible risk communication is a critical aspect of acceptability.

2.     Social risks, particularly issues of equity and politics, are primary, not secondary, drivers of perception and need to be fully addressed in any new technology development. We have devoted particular attention to studying how gender and race/ethnicity affect both public and expert risk judgments.

3.     State policies aimed at fostering science and technology development should clearly continue to emphasize basic research, but not to the exclusion of supporting promising innovative payoffs. The National Nanotechnology Initiative, with its overwhelming emphasis on basic research, would likely achieve greater success in spawning thriving businesses and commercialization by investing more in capital programs such as the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, self-described as “America’s seed fund.”

4.     While nearly half of all international STEM graduate students would like to stay in the U.S. upon graduation, fully 40 percent are undecided — and a main barrier is current U.S. immigration policy.

5.     Although representatives from the nanomaterials industry demonstrate relatively high perceived risk regarding engineered nanomaterials, they likewise demonstrate low sensitivity to variance in risks across type of engineered nanomaterials, and a strong disinclination to regulation. This situation puts workers at significant risk and probably requires regulatory action now (beyond the currently favored voluntary or ‘soft law’ approaches).

6.     The complex nature of technological ecosystems translates into a variety of actors essential for successful innovation. One species is the Visioneer, a person who blends engineering experience with a transformative vision of the technological future and a willingness to promote this vision to the public and policy makers.

Leaving a Legacy

Along with successful outreach efforts, CNS-UCSB also flourished when measured by typical academic metrics, including nearly 400 publications and 1,200 talks.

In addition to producing groundbreaking interdisciplinary research, CNS-UCSB also produced innovative educational programs, reaching 200 professionals-in-training from the undergraduate to postdoctoral levels. The Center’s educational centerpiece was a graduate fellowship program, referred to as “magical” by an NSF reviewer, that integrated doctoral students from disciplines across the UCSB campus into ongoing social science research projects.

For social scientists, working side-by-side with science and engineering students gave them an appreciation for the methods, culture, and ethics of their colleagues in different disciplines. It also led to methodological innovation. For their part, scientists and engineers were able to understand the larger context of their work at the bench.

UCSB graduates who participated in CNS’s educational programs have gone on to work as postdocs and professors at universities (including MIT, Stanford, U Penn), policy experts (at organizations like the Science Technology and Policy Institute and the Canadian Institute for Advanced Research), researchers at government agencies (like the National Institute for Standards and Technology), nonprofits (like the Kauffman Foundation), and NGOs. Others work in industry, and some have become entrepreneurs, starting their own businesses.

CNS has spawned lines of research that will continue at UCSB and the institutions of collaborators around the world, but its most enduring legacy will be the students it trained. They bring a true understanding of the complex interconnections between technology and society — along with an intellectual toolkit for examining them — to every sector of the economy, and they will continue to pursue a world that is as just as it technologically advanced.

I found the policy recommendations interesting especially this one:

5.     Although representatives from the nanomaterials industry demonstrate relatively high perceived risk regarding engineered nanomaterials, they likewise demonstrate low sensitivity to variance in risks across type of engineered nanomaterials, and a strong disinclination to regulation. This situation puts workers at significant risk and probably requires regulatory action now (beyond the currently favored voluntary or ‘soft law’ approaches).

Without having read the documents, I’m not sure how to respond but I do have a question.  Just how much regulation are they suggesting?

I offer all of the people associated with the center my thanks for all their hard work and my gratitude for the support I received from the center when I presented at the Society for the Study of Nanotechnologies and Other Emerging Technology (S.Net) in 2012. I’m glad to see they’re going out with a bang.

Ageing population could drive progress in nanotechnology and robotics

A couple of theoreticians are proposing a generational gap as being a key source of conflict and technological process in the near future. From a July 27, 2016 news item on Nanotechnology Now,

The UN estimates that the number of people aged 65 and older will have reached almost a billion by 2030. The proportion of those aged over 80 will grow at particularly high rates, and their numbers are expected to reach 200 million by 2030 and triple that forty years later.

Due to a combination of an ageing population and declining birthrates, the demographic structure of most countries will change towards lower proportions of children and young people. As a result, the global division will no longer be between first- and third-world nations [also called developed and developing nations], but between old and young ones.

A July 25, 2016 National Research University Higher School of Economics [Russia] press release (also on EurekAlert), which originated the news item, expands on the theme,

According to the report of Senior Research Fellow of the HSE [Higher School of Economics] Laboratory for Monitoring the Risks of Socio-Political Destabilization Leonid Grinin and Senior Research Fellow of the International Centre for Education, Social and Humanitarian Studies Anton Grinin “Global Population Ageing and the Threat of Political Risks in the Light of Radical Technological Innovation in the Coming Decades.”, an increase in the number of older people will:

  • encourage societies facing workforce shortages to seek solutions to improve older people’s employability by helping them stay healthy, fit and full of energy for much longer than today;
  • encourage societies to focus more on rehabilitation of people with disabilities and provide them with new technology to support their employment;
  • encourage the development of labour-saving technologies, such as robotics, to assist caregivers;
  • lead to breakthroughs in medicine. Indeed, medical services will be the first to enter a new phase of technological revolution, radically changing the structure of production and people’s lives. Such a breakthrough will be associated what the authors call MANBRIC, i.e. a technological paradigm based on medicine, additive, nano- and bio- technologies, robotic, IT, and cognitive technologies;
  • boost government spending on healthcare, which today accounts for at least 10% of global GDP and can vary vastly across countries, e.g. reaching 17% in the U.S.;
  • promote the development of peripheral countries through higher spending on health care, leading to the emergence of a middle class, poverty reduction, literacy, and a better quality of life;
  • increase the demand for innovation and its financing from accumulated funds such as pensions and public allocations to medical and social needs;
  • lead to higher investment in supporting the health of ageing populations and the growing middle class.

Longevity Comes at a Cost

A confrontation between generations in the labor market and the weakening of democracy are the key risks associated with longer life expectancy.

Longer life spans and a lower proportion of young people in society may lead to the predominance of ‘third age’ voters. Politicians will need to tailor their messages to older and perhaps more conservative electorates. According to the researchers, “democracy can transform into a form of gerontocracy which may be hard to overcome; under such circumstances, competition for voters may lead to a crisis of democratic governance.”

A conflict between generations is another potential risk. As the retirement age increases, older employees will stay in the workforce longer – a situation which may hinder younger people’s careers and slow down technological progress.

A tendency towards gerontocracy has been particularly noticeable in Western Europe and the U.S., where democratic traditions are the strongest, but ethnic and cultural imbalances are increasingly visible. As a result, the U.S. may face confrontation between its younger Latinos and older white populations, and Europe may experience tensions between older white Christians and younger Muslims. Hence, globalization will inevitably cause such conflicts to transcend national borders and become global challenges.

I was not able to find the report mentioned in this release but I certainly would have liked to have looked at it. This redraws the conflict map in some interesting ways.

Korea Advanced Institute of Science and Technology (KAIST) at summer 2016 World Economic Forum in China

From the Ideas Lab at the 2016 World Economic Forum at Davos to offering expertise at the 2016 World Economic Forum in Tanjin, China that is taking place from June 26 – 28, 2016.

Here’s more from a June 24, 2016 KAIST news release on EurekAlert,

Scientific and technological breakthroughs are more important than ever as a key agent to drive social, economic, and political changes and advancements in today’s world. The World Economic Forum (WEF), an international organization that provides one of the broadest engagement platforms to address issues of major concern to the global community, will discuss the effects of these breakthroughs at its 10th Annual Meeting of the New Champions, a.k.a., the Summer Davos Forum, in Tianjin, China, June 26-28, 2016.

Three professors from the Korea Advanced Institute of Science and Technology (KAIST) will join the Annual Meeting and offer their expertise in the fields of biotechnology, artificial intelligence, and robotics to explore the conference theme, “The Fourth Industrial Revolution and Its Transformational Impact.” The Fourth Industrial Revolution, a term coined by WEF founder, Klaus Schwab, is characterized by a range of new technologies that fuse the physical, digital, and biological worlds, such as the Internet of Things, cloud computing, and automation.

Distinguished Professor Sang Yup Lee of the Chemical and Biomolecular Engineering Department will speak at the Experts Reception to be held on June 25, 2016 on the topic of “The Summer Davos Forum and Science and Technology in Asia.” On June 27, 2016, he will participate in two separate discussion sessions.

In the first session entitled “What If Drugs Are Printed from the Internet?” Professor Lee will discuss the future of medicine being impacted by advancements in biotechnology and 3D printing technology with Nita A. Farahany, a Duke University professor, under the moderation of Clare Matterson, the Director of Strategy at Wellcome Trust in the United Kingdom. The discussants will note recent developments made in the way patients receive their medicine, for example, downloading drugs directly from the internet and the production of yeast strains to make opioids for pain treatment through systems metabolic engineering, and predicting how these emerging technologies will transform the landscape of the pharmaceutical industry in the years to come.

In the second session, “Lessons for Life,” Professor Lee will talk about how to nurture life-long learning and creativity to support personal and professional growth necessary in an era of the new industrial revolution.

During the Annual Meeting, Professors Jong-Hwan Kim of the Electrical Engineering School and David Hyunchul Shim of the Aerospace Department will host, together with researchers from Carnegie Mellon University and AnthroTronix, an engineering research and development company, a technological exhibition on robotics. Professor Kim, the founder of the internally renowned Robot World Cup, will showcase his humanoid micro-robots that play soccer, displaying their various cutting-edge technologies such as imaging processing, artificial intelligence, walking, and balancing. Professor Shim will present a human-like robotic piloting system, PIBOT, which autonomously operates a simulated flight program, grabbing control sticks and guiding an airplane from take offs to landings.

In addition, the two professors will join Professor Lee, who is also a moderator, to host a KAIST-led session on June 26, 2016, entitled “Science in Depth: From Deep Learning to Autonomous Machines.” Professors Kim and Shim will explore new opportunities and challenges in their fields from machine learning to autonomous robotics including unmanned vehicles and drones.

Since 2011, KAIST has been participating in the World Economic Forum’s two flagship conferences, the January and June Davos Forums, to introduce outstanding talents, share their latest research achievements, and interact with global leaders.

KAIST President Steve Kang said, “It is important for KAIST to be involved in global talks that identify issues critical to humanity and seek answers to solve them, where our skills and knowledge in science and technology could play a meaningful role. The Annual Meeting in China will become another venue to accomplish this.”

I mentioned KAIST and the Ideas Lab at the 2016 Davos meeting in this Nov. 20, 2015 posting and was able to clear up my (and possible other people’s) confusion as to what the Fourth Industrial revolution might be in my Dec. 3, 2015 posting.

Societal implications of emerging technologies (a Washington, D.C. event)

Here are the details about this book launch event,

Assessing the Societal Implications of Emerging Technologies: Book Launch

Please join us for the launch of Evan Michelson’s new book, Assessing the Societal Implications of Emerging Technologies: Anticipatory Governance in Action, which offers tangible insights into strategies deployed by well-known, high-profile organizations involved in anticipating the societal and policy implications of nanotechnology and synthetic biology.

The book lays out one of the first actionable roadmaps that interested stakeholders can follow when working toward institutionalizing anticipatory governance practices throughout the policymaking process.

David Rejeski, director of the Science & Technology Innovation Program at the Wilson Center, will lead the discussion. A light lunch will be served at noon.

For more information, please visit:


Evan Michelson, author, Assessing the Societal Implications of Emerging Technologies

David Rejeski, Director, Science and Technology Innovation Program

Thursday, June 9th, 2016
12:00pm – 1:30pm

5th Floor Conference Room

Wilson Center
Ronald Reagan Building and
International Trade Center
One Woodrow Wilson Plaza
1300 Pennsylvania, Ave., NW
Washington, D.C. 20004

If planning to attend in person, you can RSVP here.

Unfortunately, there is no indication as to whether or not the event will be livestreamed or webcast at a later date.

I have found a little more information about the author, Evan Michelson on the Alfred P. Sloan Foundation website,

Evan S. Michelson, Ph.D. is a Program Director at the Alfred P. Sloan Foundation. Dr. Michelson is responsible for overseeing the Foundation’s Energy and Environment Program, which seeks to advance understanding about the economic, environmental, security, and policy tradeoffs associated with the increased deployment of low- and no-carbon resources and technologies across the energy system. He also manages the Foundation’s grantmaking to the Sloan Digital Sky Survey (IV), an international astrophysics research collaboration focused on exploring the evolution and structure of the universe, the formation of stars and galaxies, the history of the Milky Way, and the science behind dark matter.


Public relations (PR) and nanotechnology

Shannon Bowen of the University of South Carolina has written an March 18, 2016 essay about public relations (PR) and nanotechnology for PR Week,

As a responsible public relations professional, you try to be proactive, keeping up with changes in technology and the resulting demands from your organization or clients. More companies are becoming involved in nanotechnology, and PR pros should not treat the subject as some black hole from which to run. Issues surrounding nanotechnology will have to be dealt with, from media relations to issues management to ethics. Like neurotechnology, the field of nanotechnology is growing at an exponential rate. It is so new that no one is really sure what development will come next — nanotech researchers are currently developing specialty areas such as nanobiology, nanopharmacology, and nanorobots.

Maybe your organization or client has no interest in nanotechnology yet, but as an up-to-date PR pro, you should be able to help separate myth or fear from fact if needed. The implications of nanotechnology in the medical field alone are numerous. In the book The Future of the Mind, physicist Michio Kaku writes of nanobots:

“On the surface, the nanobot is simple: an atomic machine with arms and clippers that grabs molecules, cuts them at specific points, and then splices them back together. By cutting and pasting various atoms, the nanobot can create almost any know molecule, like a magician pulling something out of a hat. It can also self-reproduce, so it is necessary to build only one nanobot. This nanobot will then take raw materials, digest them, and create millions of other nanobots.”

Bowen seems to have discovered nanotechnology relatively recently and seems not to realize how prevalent nanotechnology-enabled products are already,

Soon, nanotech will be unavoidable. It will cut across vast sectors of industry, from computing to defense to mechanical engineering of consumer products. All these business sectors will need communication about safety protocols, privacy concerns, public policy, regulation and lobbying, and the pros and cons of using nanotech. Public relations for the nano world will become huge — figuratively speaking.

It’s an interesting essay with some good points but Bowen is not very well informed about nanotechnology. For example, there’s this from her list of ethical and social issues,

Research ethics
Are some research projects, such as military projects, too dangerous to pursue?

Nano medications
In addition to safety, this also raises privacy concerns about tracking. Human trials of such drugs begin in about two years.

The ship has sailed with regard to military research. So, the question turns from “Should we be doing this?” to “Should we continue doing this? and, possibly, Can we get everyone (all countries) to agree to stop?”

And, there are already human trials of nanotechnology-enabled drug delivery and other biomedical applications. For example there’s this from a March 21, 2016 California Institute of Technology (CalTech) news release about nanoparticles for cancer therapy,

These nanoparticles are currently being tested in a number of phase-II clinical trials. (Information about trials of the nanoparticles, denoted CRLX101, is available at

For anyone unfamiliar with the phases for clinical trials, there’s this from Patients at Heart website on the Clinical Trials Essentials webpage in the section on Research Phases,

Target Patient Population Average Number of Patients
Phase I Healthy patients 20 to 80 participants
Phase II First evaluation in patients with the target disease 100 to 300 participants
Phase III Patients with the target disease 300 to 3,000 participants
Health Canada approval for use in the general population
Phase IV Patients with the target disease Variable – large numbers

Getting back to the essay, as Bowen notes there is a field designated as nanoethics. I found this Nanoethics Group based at California Polytechnic State University and this NanoEthics journal. I’m sure there’s much more out there should you care to search.