Monthly Archives: February 2011

Intelligence, computers, and robots

Starting tonight, Feb. 14, 2011, you’ll be able to watch a computer compete against two former champions on the US television quiz programme, Jeopardy.  The match between the IBM computer, named Watson, and the most accomplished champions that have ever played on Jeopardy, Ken Jennings and Brad Rutter, has been four years in the making. From the article by Julie Beswald on physorg.com,

“Let’s finish, ‘Chicks Dig Me’,” intones the somewhat monotone, but not unpleasant, voice of Watson, IBM’s new supercomputer built to compete on the game show Jeopardy!

The audience chuckles in response to the machine-like voice and its all-too-human assertion. But fellow contestant Ken Jennings gets the last laugh as he buzzes in and garners $1,000.

This exchange is part of a January 13 practice round for the world’s first man vs. machine game show. Scheduled to air February 14-16, the match pits Watson against the two best Jeopardy! players of all time. Jennings holds the record for the most consecutive games won, at 74. The other contestant, Brad Rutter, has winnings totaling over $3.2 million.

On Feb. 9, 2011, PBS’s NOVA science program broadcast a documentary about Watson whose name is derived from the company founder, Paul Watson, and not Sherlock Holmes’s companion and biographer, Dr. Watson. Titled the Smartest Machine on Earth, the show highlighted Watson’s learning process and some of the principles behind artificial intelligence. PBS’s website is featuring a live blogging event of tonight’s and the Feb. 15 and 16 matches. From the website,

On Monday [Feb. 14, 2011], our bloggers will be Nico Schlaefer and Hideki Shima, two Ph.D. students at Carnegie Mellon University’s Language Technologies Institute who worked on the Watson project.

At the same time that the ‘Watson’ event was being publicized last week, another news item on artificial intelligence and learning was making the rounds. From a Feb. 9, 2011 article by Mark Ward on BBC News ,

Robots could soon have an equivalent of the internet and Wikipedia.

European scientists have embarked on a project to let robots share and store what they discover about the world.

Called RoboEarth it will be a place that robots can upload data to when they master a task, and ask for help in carrying out new ones.

Researchers behind it hope it will allow robots to come into service more quickly, armed with a growing library of knowledge about their human masters. [emphasis mine]

You can read a first person account of the RoboEarth project on the IEEE (Institute of Electrical and Electronics Engineering) Spectrum’s Automaton Robotics blog in a posting by Markus Waibel,

As part of the European project RoboEarth, I am currently one of about 30 people working towards building an Internet for robots: a worldwide, open-source platform that allows any robot with a network connection to generate, share, and reuse data. The project is set up to deliver a proof of concept to show two things:

* RoboEarth greatly speeds up robot learning and adaptation in complex tasks.

* Robots using RoboEarth can execute tasks that were not explicitly planned for at design time.

The vision behind RoboEarth is much larger: Allow robots to encode, exchange, and reuse knowledge to help each other accomplish complex tasks. This goes beyond merely allowing robots to communicate via the Internet, outsourcing computation to the cloud, or linked data.

But before you yell “Skynet!,” think again. While the most similar things science fiction writers have imagined may well be the artificial intelligences in Terminator, the Space Odyssey series, or the Ender saga, I think those analogies are flawed. [emphasis mine] RoboEarth is about building a knowledge base, and while it may include intelligent web services or a robot app store, it will probably be about as self-aware as Wikipedia.

That said, my colleagues and I believe that if robots are to move out of the factories and work alongside humans, they will need to systematically share data and build on each other’s experience.

Unfortunately, Markus Waibel doesn’t explain why he thinks the analogies are flawed but he does lay out the reasoning for why robots should share information. For a more approachable and much briefer account, you can check out Ariel Schwartz’s Feb. 10, 2011 article on the Fast Company website,

The EU-funded [European Union] RoboEarth project is bringing together European scientists to build a network and database repository for robots to share information about the world. They will, if all goes as planned, use the network to store and retrieve information about objects, locations (including maps), and instructions about completing activities. Robots will be both the contributors and the editors of the repository.

With RoboEarth, one robot’s learning experiences are never lost–the data is passed on for other robots to mine. As RedOrbit explains, that means one robot’s experiences with, say, setting a dining room table could be passed on to others, so the butler robot of the future might know how to prepare for dinner guests without any prior programming.

There is a RoboEarth website, so we humans can get more information and hopefully keep up with the robots.

Happily and as there is with increasing frequency, there’s a Youtube video. This one features a robot downloading information from RoboEarth and using that information in a quasi hospital setting,

I find this use of popular entertainment, particularly obvious with Watson, to communicate about scientific advances quite interesting. On this same theme of popular culture as a means of science communication, I featured a Lady Gaga parody by a lab working on Alzheimer’s in my Jan. 28, 2011 posting.  I also find the reference to “human masters” in the BBC article along with Waibel’s flat assertion that some science fiction analogies about artificial intelligence are flawed indicative of some very old anxieties as expressed in Mary Shelley’s Frankenstein.

ETA Feb. 14, 2011: The latest posting on the Pasco Phronesis blog, I, For One, Welcome Our Robot Game Show Overlords, features another opinion about the Watson appearances on Jeopardy. From the posting,

What will this mean? Given that a cursory search suggests opinion is divided on whether Watson will win this week, I have no idea. While it will likely be entertaining, and does represent a significant step forward in computing capabilities, I can’t help but think about the supercomputing race that makes waves only when a new computational record is made. It’s nice, and might prompt government action should they lose the number one standing. But what does it mean? What new outcomes do we have because of this? The conversation is rarely about what, to me, seems more important.

Canadian cameras acquire nanocoatings

A Canadian company that produces marine cameras recently formed a strategic partnership with Diamon-Fusion International (DFI), a US company that specializes in nanocoatings. From the Feb. 9, 2011 news item on Nanowerk,

Diamon-Fusion International, Inc. (DFI), global developer and exclusive licensor of patented hydrophobic nanotechnologies, announced today it has entered into a strategic marketing partnership with Canadian-based Current Corporation, manufacturers of high-end day and night vision camera systems for commercial, private, high-speed, law enforcement and military marine vessels. Utilizing the award-winning, patented Diamon-Fusion® nanocoating on the Night Navigator camera glass protects the lens from harsh sea salt and environmental elements. In addition, the coating provides better visibility, reducing night glare as well as the corrosion and mineral buildup that can occur by ever-present saltwater.

This marks the second time I’ve come across an item about DFI and a Canadian company. From my Nov. 26, 2009 posting,

I’m always happy to see innovations with glass and mirrors (I hate window cleaning as I always leave streaks no matter how hard I try). So this news warmed my heart: an Alberta-based (Canada) company, House of Mirrors and Glass, has signed a licensing agreement with Diamon-Fusion International [DFI Nanotechnology] for a coating. From the news item on Nanowerk,

The agreement provides distribution of DFI’s NanoPax™ product throughout the Province of Alberta and further expands DFI’s applications into a diverse niche of architectural markets province-wide.

I gather DFI is expanding into the marine market via this partnership agreement with Current Corporation, which is located in Port Moody, British Columbia. Here’s a picture of one of Current Corporation”s cameras,

Image from Current Corporation website.

This camera’s ability to detect whale spouts successfully passed a round of tests recently. From the company’s Feb. 9, 2011 news release,

The purpose of the testing was to prove that ships can detect whale spouts at great distances, night and day, through high-resolution thermal imaging. This allows ships to avoid collisions with marine mammals.

Two separate camera systems were used during testing; a Night Navigator 3 with a thermal optical dual field of view of 20° and 6.8° (25 micron pitch), and a Night Navigator 3 with a thermal optical dual field of view of 13.8° and 4.6° (17 micron pitch). Both systems also feature image-intensified night vision and high-definition day cameras.

To simulate the spout of a whale, an air compressor was customized to eject from 0.5-2 liters of mammal temperature (98°F) and ocean temperature (60°F) seawater and freshwater. When initiated, the simulator blew the contents approximately 3-6 meters into the air. The simulator was placed on a 13 meter test barge which was then sent to varying distances of 100, 250, 500, 1000, 1500 and 2000 meters. At each distance, night and day, the simulator made several blows. In each instance the spout could clearly be seen through the thermal imager.

The testing was overseen by Professor Joe Mobley, PhD, MA, Professor, of the University of Hawaii, a leading expert in whale research, who validated the results. “I’ve been presented with a lot of papers, proposals and products over the years and have never seen what was demonstrated to me in Vancouver by Current Corporation”. [sic]

As for DFI, from their home page,

For over a decade, Diamon-Fusion International (DFI), a California-based and privately-held US Company has pioneered the use of protective coatings for surface care.

Known throughout the world as a leader in the glass protection and protective coatings industry, DFI has developed, produced and distributed a variety of products designed for the restoration, protection and maintenance of not only glass but ALL silica-based surfaces, such as granite, ceramic tile, porcelain, quartz, among the main ones. The breadth of DFI’s product offering ranges from award-winning and patented, professional quality products only available through authorized distributors (licensees) to easy-to-use highly-effective, do-it-yourself products for consumers.

Here’s an explanation of why their coating technology is described as a ‘nanocoating’ (from the company’s Nanotechnology page),

DFI’s coating, a patented process, works at nanoscale levels, approximately 30 nanometers. The change of the molecular composition of the silica-based surface created by DFI’s chemistry and bonding nanoparticles, along with the cross-linking, branching, and final “capping”, enables the full efficiency of the coating process at an atomic scale.

Good luck to the strategic partnership!

Thoughts on part 4 of (PBS) Nova’s Making Stuff series

Last night (Feb.9.11) PBS aired the final part of the Making Stuff  series as part of its Nova tv programming. It was titled Making Stuff Smarter and did not feature a single bot of any kind or any nanoscale computers or labs on chips thereby frustrating (not in a bad way) some of my expectations but I should have become accustomed to that by now.

There was a focus on something called biomimicry, a term I did not hear used while I was watching (confession: I didn’t watch every single minute of the show), where researchers try to make materials that mimic a process or ability observed in nature. They used sharkskin as an example for making a ‘smarter’ material. Scientists have observed that nanoscale structures on a shark’s skin have antibacterial properties. This is especially important when we have a growing problem with bacteria that are antibiotic resistant. David Pogue’s (the program host) interviewed scientists at Sharklet and highlighted their work producing a plastic with nanostructures similar to those found on sharkskin for use in hospitals, restaurants, etc.  I found this on the Sharklet website (from a rotating graphic on the home page),

The World Health Organization calls antibiotic resistance a leading threat to human health.

Sharkjet provides a non-toxic approach to bacterial control and doesn’t create resistance.

The reason that the material does not create resistance is that it doesn’t kill the bacteria (antibiotics kill most bacteria but cannot kill all of them with the consequence that only the resistant survive and reproduce). Excerpted from Sharklet’s technology page,

While the Sharklet pattern holds great promise to improve the way humans co-exist with microorganisms, the pattern was developed far outside of a laboratory. In fact, Sharklet was discovered via a seemingly unrelated problem: how to keep algae from coating the hulls of submarines and ships. In 2002, Dr. Anthony Brennan, a materials science and engineering professor at the University of Florida, was visiting the U.S. naval base at Pearl Harbor in Oahu as part of Navy-sponsored research. The U.S. Office of Naval Research solicited Dr. Brennan to find new antifouling strategies to reduce use of toxic antifouling paints and trim costs associated with dry dock and drag.

Dr. Brennan was convinced that using an engineered topography could be a key to new antifouling technologies. Clarity struck as he and several colleagues watched an algae-coated nuclear submarine return to port. Dr. Brennan remarked that the submarine looked like a whale lumbering into the harbor. In turn, he asked which slow moving marine animals don’t foul. The only one? The shark.

Dr. Brennan was inspired to take an actual impression of shark skin, or more specifically, its dermal denticles. Examining the impression with scanning electron microscopy, Dr. Brennan confirmed his theory. Shark skin denticles are arranged in a distinct diamond pattern with tiny riblets. Dr. Brennan measured the ribs’ width-to-height ratios which corresponded to his mathematical model for roughness – one that would discourage microorganisms from settling. The first test of Sharklet yielded impressive results. Sharklet reduced green algae settlement by 85 percent compared to smooth surfaces.

There’s more to the story so I encourage you to take a look at the page. What I find compelling about biomimicry is that we are learning from nature and mimicking it rather than try to control or destroy what we view as dangerous to us or, in some cases, not valuable. Interestingly, this program featured the military quite prominently in other segments while, as far as I’m aware, failing to mention biomimcry  which suggests (I’m putting on my semiotic hat) that our ideas about controlling nature and using warlike metaphors to describe scientific and medical efforts are still dominant socially and being reproduced.

I enjoyed (with qualifications regarding some of the subtext) the program series (all three of the shows I managed to watch) but, as I’ve noted previously, I’m not the target market so some of it was a bit too fluffy for me.

I found this fourth installment the most interesting and I was delighted to see that they featured climbing robots (based on geckos and mentioned in my Aug. 2, 2010 posting) and invisibility (mentioned most recently in my Jan. 26, 2011 posting although that features a different approach than the one mentioned in the program) along with a few items that were new to me.

Coincidentally the National Film Board of Canada is featuring a film short titled, Magic Molecule in its Feb. 9, 2011 newsletter. Produced in 1964, it introduces us to the fabulous world of plastics. In some ways, it’s very similar to the Making Stuff series. The tone is upbeat and very much pro plastics and its wonders.

Nanosilver history

According to Empa researchers, Bernd Nowack and Harald Krug, together with Murray Heights of the company HeiQ, silver at the nanoscale has a long history. From the Jan. 31,2011 news item on physorg.com,

Nanosilver is not a new discovery by nanotechnologists — it has been used in various products for over a hundred years, as is shown by a new Empa study. The antimicrobial effects of minute silver particles, which were then known as “colloidal silver,” were known from the earliest days of its use.

Their paper showing that nanosilver is not a 21st century discovery is being published in Environmental Science & Technology. From the news item,

Silver particles with diameters of seven to nine nm were mentioned as early as 1889. They were used in medications or as biocides to prevent the growth of bacteria on surfaces, for example in antibacterial water filters or in algaecides for swimming pools.

The nanoparticles were known as “colloidal silver” in those days, but what was meant was the same then as now – extremely small particles of silver. The only new aspect is the use today of the prefix “nano”. “However,” according to Bernd Nowack, “nano does not mean something new, and nor does it mean something that is harmful.” When “colloidal silver” became available on the market in large quantities in the 1920s it was the topic of numerous studies and subject to appropriate regulation by the authorities. [emphasis mine]

This suggests that there has been sufficient research on what we now call nano silver and its impact on the environment and on health. By contrast, the California Department of Toxic Substances Control (DTSC) had this to say in its recent call for information about analytical test methods for nanomaterials (from the Dec. 27, 2010 news item on Nanowerk),

Nano Silver

Nano silver is used increasingly in many consumer products. These include food contact materials (storage containers, cups, bowls and cutting boards), children’s toys and infant products, disinfectants, cosmetics, cleaning agents and machines, textiles, athletic apparel, dyes/paints, varnishes, polymers, and in medical products and applications. Given these diverse applications, nano silver is likely entering the environment. Several scientific studies describe potential adverse effects of nano silver on publicly owned treatment works (wastewater collection, treatment, and disposal systems).

Silver has been known historically as a potent antibacterial, antifungal, and antiviral agent. In recent years, silver is used as a biocide in solution, suspension, and in nano-particulate form. The strong antimicrobial activity is a major reason for the development of products that contain nano silver. Nano silver may also have applications in agricultural, vector, and urban pest control. However, little or no information about detecting and measuring the effect of nano silver in the environment exists. Recent published papers point out difficulties in quantifying the existence of nano particles in environmental and biological contexts, which presents challenges in estimating and assessing the hazards and risks of nano silver. [emphasis mine]

Nowack, one of the Empa researchers, provides evidence for his position in a commentary that was previously published in the journal Science (from the news item),

A commentary by Bernd Nowack in the scientific journal Science discusses the implications of the newest studies on nanosilver in sewage treatment plants. More than 90% remains bound in the sewage sludge in the form of silver sulfide, a substance which is extremely insoluble and orders of magnitude less poisonous than free silver ions. [emphasis mine] It apparently does not matter what the original form of the silver in the wastewater was, whether as metallic nanoparticles, as silver ions in solution or as precipitated insoluble silver salts.

“As far as the environmental effects are concerned, it seems that nanosilver in consumer goods is no different than other forms of silver and represents only a minor problem for eco-systems,” says Nowack. What is still to be clarified, however, is in what form the unbound silver is present in the treated water released from sewage works, and what happens to the silver sulfide in natural waters. Is this stable and unreactive or is it transformed into other forms of silver? [emphasis mine]

The two approaches are not directly contradictory but I do find the totality confusing. Which challenges about the hazards and risks of nano silver are the folks in California referring to? It seems they’re not familiar with the older research cited by Nowack or perhaps they know something Nowack and his colleagues do not. Meanwhile, Nowack’s Science commentary is reassuring but whoever wrote the news item was careful to point out that there is still some important work to be done before declaring nano silver to be a ‘safe’ substance.

I posted about the DTSC call for information, Feb. 7, 2011.

Science outreach and Nova’s Making Stuff series on PBS

The February 2011 NISE (Nanoscale Informal Science Education) Net newsletter pointed me towards a video interview with Amy Moll, a materials scientist (Boise State University) being interviewed by Joe McEntee, group editor IOP Publishing, for the physicsworld.com video series,

Interesting discussion, yes? The Making Stuff series on PBS is just part of their (materials scientists’ working through their professional association, the Materials Research Society) science outreach effort. The series itself has been several years in the planning but is just one piece of a much larger effort.

All of which puts another news item into perspective. From the Feb. 7, 2011 news item on Nanowerk,

The Arizona Science Center is enlisting the expertise of professors in Arizona State University’s Ira A. Fulton Schools of Engineering in showcasing the latest advances in materials science and engineering.

The engineering schools are among organizations collaborating with the science center to present the Making Stuff Festival Feb. 18-20. [emphasis mine]

The event will explore how new kinds of materials are shaping the future of technology – in medicine, computers, energy, space travel, transportation and an array of personal electronic devices.

No one is making a secret of the connection,

The festival is being presented in conjunction with the broadcast of “Making Stuff”, a multi-part television series of the Public Broadcasting Service program NOVA that focuses on advances in materials technologies. It’s airing locally on KAET-Channel 8.

Channel 8 is another collaborator on the Making Stuff Festival, along with ASU’s Consortium for Science, Policy and Outcomes, the Arizona Technology Council, Medtronic, Intel and Science Foundation Arizona.

I highlight these items to point out how much thought, planning, and effort can go into science outreach.

Nano haikus (from the Feb. 2011 issue of the NISE Net Newsletter,

We received two Haikus from Michael Flynn expressing his hopes and fears for nanotechnology:

Miracle fibers
Weave a new reality
Built from the ground up

Too Small to be seen
This toxin is nanoscale
Can’t tell if it spilled

University of Michigan offers a nanotechnology webcast on Feb. 8, 2011

Unsurprisingly, I came across information about a nano webcast on Andrew Maynard’s 2020 Science blog. Unsurprising since Andrew is the director of the institution, which is hosting this event, the University of Michigan’s Risk Science Center (UMRSC). From Andrew’s Feb. 1, 2011 posting,

Under the tagline “No PowerPoint, no script; just stimulating conversation”, the Unplugged series will be engaging experts in lively conversation on a range of topics. Each event will be webcast (and archived), and will allow on-line discussion around the topic of focus.

Nanotechnology is the topic of the first event, being held on February 8. Under my “strict and provocative” moderation, three leading experts will engage in conversation about what nanotechnology is, what it’s significance to public health is, and how we as a society might exploit it safely and responsibly.

Nanotechnology Unplugged is being held tomorrow from 11 am to 12 pm PST (2-3 pm EST). You can go here to view the live webcast (scroll to the bottom of the page).

I have found some more information about the three nanotechnology experts (their names, titles, and provocative opening statements), from the UMRSC Nanotechnology Unplugged web page,

Martin Philbert
Dean, School of Public Health

“Nanotechnology is a myth – something that was invented to stimulate funding and encourage scientists to work together in new ways. But engineering matter at the nanoscale is real – and is leading to new risks as well as new opportunities. Realizing these opportunities will require new approaches to understanding and addressing the potential risks”

Mark Banaszak-Holl
Professor of Chemistry, College of Literature, Science, and the Arts

“We have an opportunity to revolutionize biology and medicine in a manner analogous to the great strides previously achieved at the molecular and micron scales and to achieve a much greater understanding of complex, hierarchical biological materials. This new knowledge will engender more effective therapeutics, prosthetics, artificial tissues, and tissue regeneration; however, new risks and ethical problems will arise alongside these new capabilities.”

Shobita Parthasarathy
Assistant Professor of Public Policy, Gerald R. Ford School of Public Policy

“The new opportunities and challenges presented by nanoscale science and engineering raise critical new policy issues. How can we ensure these new technologies are developed and used most effectively, without harming people?”

California’s call for information about nanomaterials

A little late but better than never, the US state of California has issued a call for information focused on analytical test methods, i.e., lab procedures for testing, nano silver, nano zero valent iron, nano titanium dioxide, nano zinc oxide, nano cerium oxide, and quantum dots. The deadline for a response is Dec. 21, 2011, one year from the date of the request. From the Dec. 27, 2010 news item on Nanowerk,

DTSC [Department of Toxic Substances Control] has conducted a search of known public sources for analytical test methods for these six nanomaterials. We have compiled our research in this bibliography. DTSC has also contacted and consulted with manufacturers, researchers, environmental laboratory experts, other governments, and stakeholders regarding analytical test methods for these nanomaterials in these matrices. We convened public workshops and symposia on nanotechnology and, in particular, these six nanomaterials.

From our research, consultations, and workshops, we have determined that little or no information on analytical test methods for these nanomaterials in the human body or the environment now exists. To better understand the behavior, fate and transport of the se six nanomaterials, appropriate analytical test methods are needed for manufacturers, for contract and reference laboratories, and for regulatory agencies.

You can get more information about the call from the DTSC site including a list of companies that received the ‘call for information’ letter.

Brief bit about science in Egypt and brief bit about Iran’s tech fair in Syria

I came across (via Twitter) this article  in Nature magazine about scientists in Egypt and their response to the current protests, ‘Deep fury’ of Egyptian scientists,

As the protests against President Hosni Mubarak gather pace across Egypt, the growing possibility of regime change is inspiring hope among many sectors of the population. The swelling number of protestors has seen academics add their voices to the call for change (see ‘Scientists join protests on streets of Cairo to call for political reform’).

The article goes on to recount a Q & A (Questions and Answers) session with Michael Harms of the German Academic Exchange Service offering his view from Cairo,

How would you describe Egyptian science?

There are many problems. Universities are critically under-funded and academic salaries are so low that most scientists need second jobs to be able to make a living. [emphasis mine] Tourist guides earn more money than most scientists. You just can’t expect world-class research under these circumstances. Also, Egypt has no large research facilities, such as particle accelerators. Some 750,000 students graduate each year and flood the labour market, yet few find suitable jobs – one reason for the current wave of protests.

But there are some good scientists here, particularly those who have been able to study and work abroad for a while. The Egyptian Ministry of Higher Education has started some promising initiatives. For example, in 2007 it created the Science and Technology Development Fund (STDF), a Western-style funding agency. And Egypt is quite strong in renewable energies and, at least in some universities, in cancer research and pharmaceutical research.

(Harms has more interesting comments in the article.) I must say the bit about needing 2nd jobs was an eye-opener for me.

There’s been some talk about the role that social media may or may not played in the civil unrest in Tunisia and Egypt. Jenara Nerenberg in her article, Iran Tech Expo Features Nuclear Might, Doubts, Concerns, for Fast Company, highlights comments from a Nobel Laureate who has no doubts that social media played a role in those countries and suggests the same could occur in Iran.

In fact, Iran is holding a five-day technology fair (starting this Saturday, Feb. 5, 2011) boasting its accomplishments. It has held such fairs before but for the first time Iran is holding its fair in another country, Syria. From Nerenberg’s  Feb. 3, 2011 article,

“Technological achievements” appears to be handy code words for nuclear achievements, based on recent reports and statements. [sic] But rockets, satellites, nanotechnology, and aerospace technology are all expected to be exhibited.

The event also comes at a time when there is growing use of consumer technology for political purposes, as seen in the case of Tunisia and Egypt. Nobel Laureate Shirin Ebadi, in reference to recent events in those two countries, said, “I can tell you that thanks to technology dictators can’t get a good night’s sleep. As to what is going to happen in the future it is too early to say. But I can say the people in Iran are extremely unhappy with the current situation. Iran is like the fire underneath the ashes and the ashes can suddenly make way for the fire at the slightest event.”

I present these two bits because they point to the fact that science and technology are deeply entwined in society and have social impacts that we don’t always understand very well. There have been social uprising and revolutions that owed nothing to “consumer technology”. There are many questions to be asked including, does scientific or technological change somehow foment social unrest? Perhaps we should be calling on the philosophers.

Haiti, cholera, University of Alberta, and nano-syringes

As I’ve noted before the word nano pops up in unexpected places, in this case, in a news release about a University of Alberta medical researcher’s work on cholera bacteria. We tend not to think about cholera in Canada these days but it was a serious problem here as it still is elsewhere. From the Canadian Encyclopedia essay on cholera in Canada,

Cholera first reached Canada in 1832, brought by immigrants from Britain. Epidemics occurred in 1832, 1834, 1849, 1851, 1852 and 1854. There were cases in Halifax in 1881. The epidemics killed at least 20 000 people in Canada. Cholera was feared because it was deadly and no one understood how it spread or how to treat it. The death rate for untreated cases is extremely high. Grosse Île, near Québec, was opened in 1832 as a quarantine station and all ships stopped there for inspection.

The essay goes on to note that between 1995 and 2004 Canada’s reported annual number of cases ranged from one to eight. Meanwhile, Haiti is experiencing a serious outbreak of cholera as it recovers from last year’s earthquake. From the University of Alberta’s Feb. 3, 2010 news release,

Just over a year after the earthquake in Haiti killed 222,000 people there’s a new problem that is killing Haitians. A cholera outbreak has doctors in the area scrambling and the water-borne illness has already claimed 3600 lives according to officials with Médicin Sans Frontières (Doctors without Borders) [sic].

Bacteriologist Stefan Pukatzki recently achieved a breakthrough understanding of cholera’s disease process which will hopefully help stem outbreaks in the future.

Pukatzki discovered that Vibrio cholerae uses molecular nano-syringes to puncture host cells and secrete toxins straight in to the other organism; this is called the type six secretion system. [emphasis mine]

“Vibrio cholerae uses these syringes so when it comes in contact with another bacteria, like E. coli, which is a gut bacterium, it kills it,” said Pukatzki. “That’s a novel phenomenon. We knew it [Vibrio cholerae] competed with cells of the immune system but we didn’t know it was able to kill other bacteria.

“Keep in mind these syringes are sitting on the outside of the bacterium so they make good vaccine targets,” said Pukatzki. “That’s actually better because you could either inhibit the type six function or you could induce an immune response with these components that are sitting on the outside.”

I’m very interested to see that he (or the writer of the news release) used ‘nano’ as a prefix given that it was already described as molecular. I don’t make much of it other than the fact that it served to grab my attention.

Thoughts on part 3 of (PBS) Nova’s Making Stuff series

Since the title of the programme was Making Stuff Cleaner, my hopes were up. Anyone who reads me with any frequency knows that I’m obsessed with windows, especially the self-cleaning type. Sadly, my hopes for part 3 of (PBS) Nova’s Making Stuff series were frustrated as the focus was largely on cars (with Jay Leno being prominently featured) and petroleum products as they pertain to climate change and energy requirements.

Leno, for anyone who may not know, is a serious car collector and, as one could see, he’s also well informed about the history of the car and alternatives to the car’s current reliance on petroleum products.

As I’m learning to expect, they didn’t talk about the nanotechnology research for several minutes. I didn’t time it for part three but in part one it was roughly 30 minutes before they got to it.

There was a lot of discussion about the various kinds of batteries that are available and new, more environmentally clean batteries being developed, while we got to watch a lot of people driving cars.

The car companies are also working on materials to replace the plastics that are used in car interiors. Fascinatingly, one project involves growing a car part from bacteria. (This reminds of a visual artist who grows clothing from bacteria as mentioned in my Bacteria as couture and transgenic salmon? posting, July 12, 2010.)

It was a very upbeat, positive take on the work being done to find new energy sources and to deal with climate change issues. I think that someone using this programme as a primary source of information might be persuaded we are much closer to replacing our use of petroleum with more environmentally sound practices than is the case. The Friends of the Earth (FoE), civil society group, released a fairly pointed report in November 2010 titled, Nanotechnology, climate and energy: Over-heated promises and hot air?, which suggests otherwise. I’m given to understand that there is good research in this report but anything not supporting their main thesis has been omitted.

The two agendas: Making Stuff Cleaner programme and FOE’s report, curiously enough, mirror each other with their relentless insistence on interpreting the information in a light that highlights their perspective only. Let’s not discount either; let’s refer to both, judiciously.

I did miss part 2 of the series, Making Stuff Smaller and cannot view it on the PBS website since I’m  not living in the right region. Next week, the fourth and final part: Making Stuff Smarter.

ETA Feb.4.11: According my NISE Net newsletter for Feb. 2011, tonight’s episode of tv programme Jeopardy will feature Making Stuff  as a full category. (For anyone not familiar Je0pardy,  it’s a quiz show where contestants choose categories of answers for which they must determine the questions. E.g. The category ‘Whose Bob?’ might feature the clue ‘birds’ to which the contestant would reply, ‘What kind of animal are bobolinks?’)  I’m not sure how including the category ‘Making Stuff’ will work given that there’s one more episode to be broadcast. From the newsletter,

For those of you Jeopardy! fans out there, Making Stuff will be a full category on the program airing Friday, February 4th.