Monthly Archives: February 2014

Affordable desktop nanocoating system makes devices water repellent

I like the idea of having a waterproof smartphone, unfortunately, that day has not yet arrived but this Feb. 24, 2014 news item on Azonano hints at an acceptable alternative in the shorter term,

DryWired™ announced today that it is expanding its customized surface modification product portfolio to include the DryWired™ Nebula and the Nebula Junior. These revolutionary patent- pending desktop nanocoating systems are low cost, compact, and ideal for electronic retailers looking to offer invisible water repellent nanocoatings directly to their customers.

There’s more about the Nebula and Nebula Junior (which are being introduced at the World Mobile Congress in Barcelona from Feb. 24 – 27, 2014,) from their product page on the DryWired website,

The DryWired™ Nebula and Nebula Junior are revolutionary patent pending bench top nanocoating systems that are affordable, compact and ideal for electronic retailers looking to offer invisible water repellent nanocoatings directly to their customers.The Nebula systems are a perfect solution for consumer facing mobile phone retailers, repair/service centers, mobile phone accessory providers and other small businesses due to their small footprint and performance reliability.The award-winning Nebula systems are designed and manufactured in California.

Nebula systems can be used to Nanocoat:

•Mobile phones
•iPads and other tablets
•Gaming consoles
•Headsets, headphones and ear buds
•Hearing Aids
•Cameras
•Electronic assemblies

•Other high value items

Nebula Features:

• Two tiered configuration in the chamber allowing flexibility for multiple applications.
• Larger chamber size
• Can accommodate approximately 28 smartphones per cycle at full capacity.

• Process time cycles under 95 minutes at full capacity, including vacuum pump down.

Nebula Jr. Features:

• Single tier configuration.
• Smaller chamber size
• Can accommodate approximately 5 smartphones per cycle at full capacity.
• Process time cycles under 45 minutes including vacuum pump down.

The Nebula and Nebula Jr.Advantage:

• Repeatability: within-batch, and batch-to–batch uniformity.
• Lowest Cost-of-Ownership systems in the industry.
• Efficient and minimal chemical usage featuring single-use or multiple dose cartridges.
• Compact design with no restrictive ancillary requirements.
• Safe and user friendly with programmable settings.
• Ideal for retailers, repair/service centers, mobile ventures, and kiosks.
• Our chemical cartridges are non-hazardous, non-toxic and can be shipped worldwide without restrictions.
• Optional self-contained customized cart for consumer facing operations

Getting back to the news item, which notes some opportunities to see the products,

DryWired™ will present the Nebula systems to the public this week in Barcelona, Spain at the 2014 Mobile World Congress. The systems will be available for viewing and live demonstration by appointment only at the DryWired meeting room from Monday February 24th through Thursday February 27th, and thereafter at DryWired’s Los Angeles & Miami showrooms. DryWired is now taking pre-orders on its Nebula systems for shipment beginning March 1st. To schedule a meeting or place a pre-order on either system, please contact Alex Nesic at alex@drywired.com.

Smart suits for US soldiers—an update of sorts from the Lawrence Livermore National Laboratory

The US military has funded a program named: ‘Dynamic Multifunctional Material for a Second Skin Program’ through its Defense Threat Reduction Agency’s (DTRA) Chemical and Biological Technologies Department and Sharon Gaudin’s Feb. 20,  2014 article for Computer World offers a bit of an update on this project,which was first reported in 2012,

A U.S. soldier is on patrol with his squad when he kneels to check something out, unknowingly putting his knee into a puddle of contaminants.

The soldier isn’t harmed, though, because he or she is wearing a smart suit that immediately senses the threat and transforms the material covering his knee into a protective state that repels the potential deadly bacteria.

Scientists at the Lawrence Livermore National Laboratory, a federal government research facility in Livermore, Calif., are using nanotechnology to create clothing designed to protect U.S. soldiers from chemical and biological attacks.

“The threat is nanoscale so we need to work in the nano realm, which helps to keep it light and breathable,” said Francesco Fornasiero, a staff scientist at the lab. “If you have a nano-size threat, you need a nano-sized defense.”

Fornasiero said the task is a difficult one, and the suits may not be ready for the field for another 10 to 20 years. [emphasis mine]

One option is to use carbon nanotubes in a layer of the suit’s fabric. Sweat and air would be able to easily move through the nanotubes. However, the diameter of the nanotubes is smaller than the diameter of bacteria and viruses. That means they would not be able to pass through the tubes and reach the person wearing the suit.

However, chemicals that might be used in a chemical attack are small enough to fit through the nanotubes. To block them, researchers are adding a layer of polymer threads that extend up from the top of the nanotubes, like stalks of grass coming up from the ground.

The threads are designed to recognize the presence of chemical agents. When that happens, they swell and collapse on top of the nanotubes, blocking anything from entering them.

A second option that the Lawrence Livermore scientists are working on involves similar carbon nanotubes but with catalytic components in a polymer mesh that sits on top of the nanotubes. The components would destroy any chemical agents they come in contact with. After the chemicals are destroyed, they are shed off, enabling the suit to handle multiple attacks.

An October 6, 2012 (NR-12-10-06) Lawrence Livermore National Laboratory (LLNL) news release details the -project and the proponents,

Lawrence Livermore National Laboratory scientists and collaborators are developing a new military uniform material that repels chemical and biological agents using a novel carbon nanotube fabric.

The material will be designed to undergo a rapid transition from a breathable state to a protective state. The highly breathable membranes would have pores made of a few-nanometer-wide vertically aligned carbon nanotubes that are surface modified with a chemical warfare agent-responsive functional layer. Response to the threat would be triggered by direct chemical warfare agent attack to the membrane surface, at which time the fabric would switch to a protective state by closing the CNT pore entrance or by shedding the contaminated surface layer.

High breathability is a critical requirement for protective clothing to prevent heat-stress and exhaustion when military personnel are engaged in missions in contaminated environments. Current protective military uniforms are based on heavyweight full-barrier protection or permeable adsorptive protective overgarments that cannot meet the critical demand of simultaneous high comfort and protection, and provide a passive rather than active response to an environmental threat.

To provide high breathability, the new composite material will take advantage of the unique transport properties of carbon nanotube pores, which have two orders of magnitude faster gas transport rates when compared with any other pore of similar size.

“We have demonstrated that our small-size prototype carbon nanotube membranes can provide outstanding breathability in spite of the very small pore sizes and porosity,” said Sangil Kim, another LLNL scientist in the Biosciences and Biotechnology Division. “With our collaborators, we will develop large area functionalized CNT membranes.”

Biological agents, such as bacteria or viruses, are close to 10 nanometers in size. Because the membrane pores on the uniform are only a few nanometers wide, these membranes will easily block biological agents.

However, chemical agents are much smaller in size and require the membrane pores to be able to react to block the threat. To create a multifunctional membrane, the team will surface modify the original prototype carbon nanotube membranes with chemical threat responsive functional groups. The functional groups on the membrane will sense and block the threat like gatekeepers on entrance. A second response scheme also will be developed: Similar to how a living skin peels off when challenged with dangerous external factors, the fabric will exfoliate upon reaction with the chemical agent. In this way, the fabric will be able to block chemical agents such as sulfur mustard (blister agent), GD and VX nerve agents, toxins such as staphylococcal enterotoxin and biological spores such as anthrax.

The project is funded for $13 million over five years with LLNL as the lead institution. The Livermore team is made up of Fornasiero [Francesco Fornasiero], Kim and Kuang Jen Wu. Other collaborators and institutions involved in the project include Timothy Swager at Massachusetts Institute of Technology, Jerry Shan at Rutgers University, Ken Carter, James Watkins, and Jeffrey Morse at the University of Massachusetts-Amherst, Heidi Schreuder-Gibson at Natick Soldier Research Development and Engineering Center, and Robert Praino at Chasm Technologies Inc.

“Development of chemical threat responsive carbon nanotube membranes is a great example of novel material’s potential to provide innovative solutions for the Department of Defense CB needs,” said Tracee Harris, the DTRA science and technology manager for the Dynamic Multifunctional Material for a Second Skin Program. “This futuristic uniform would allow our military forces to operate safely for extended time periods and successfully complete their missions in environments contaminated with chemical and biological warfare agents.”

The Laboratory has a history in developing carbon nanotubes for a wide range of applications including desalination. “We have an advanced carbon nanotube platform to build and expand to make advancements in the protective fabric material for this new project,” Wu said.

The new uniforms could be deployed in the field in less than 10 years. [emphasis mine]

Since Gaudin’s 2014 article quotes one of the LLNL’s scientists, Francesco Fornasiero, with an estimate for the suit’s deployment into the field as 10 – 20 years as opposed to the “less than 10 years” estimated in the news release, I’m guessing the problem has proved more complex than was first anticipated.

For anyone who’s interested in more details about  US soldiers and nanotechnology,

  • May 1, 2013 article by Max Cacas for Signal Online provides more details about the overall Smart Skin programme and its goals.
  • Nov. 15, 2013 article by Kris Walker for Azonano.com describes the Smart Skin project along with others including the intriguingly titled: ‘Warrior Web’.
  • website for MIT’s (Massachusetts Institute of Technology) Institute for Soldier Nanotechnologies Note: The MIT researcher mentioned in the LLNL news release is a faculty member of the Institute for Soldier Nanotechnologies.
  • website for the Defense Threat Reduction Agency

Nano workshop with the International Federation of Societies of Cosmetic Chemists and ‘in-cosmetics’ on March 1, 2014

The International Federation of Societies of Cosmetic Chemists (IFSCC) is presenting a March 31, 2014 nanotechnology workshop prior to the ‘in-cosmetics exhibition’ due to be held April 1-2, 2014 in Hamburg in partnership with the in-cosmetics organizers.  From a Feb. 17, 2014 IFSCC news release,

The IFSCC has organised a Recent Perspectives in Nanotechnology workshop in association with in-cosmetics which will be held immediately before the show (1-3 April) on 31 March 2014 in Hamburg.

Moderated by IFSCC Vice President and President of the French Society Claudie Willemin, the workshop will provide an update on nanotechnology in Cosmetics. It will focus on the requirements of the EU regulation 1223/2009/WE, enacted by the European Commission to provide tools and methodologies to measure the particle size to fulfil the nanomaterial definition, the safety studies and evaluation methods.

Topics and speakers include:

Nanotechnology in Cosmetics – Current status in EU and Other Countries

Dr Florian Schellauf, Technical Regulatory Affairs – Cosmetics Europe

Characterisation Methods for Nanomaterials for Regulatory Purposes

Dr Hubert Rauscher, European Commission – Joint Research Centre – Nanobiosciences Unit

Nanomaterials’ Safety:  A Summary of the Latest Studies

Prof. Jürgen Lademann, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, University of Medecin – La Charité – Berlin

Nanomaterial’s Evaluation Tests

Dr Robert Landsiedel, Product Safety – Experimental Toxicology and Ecology – BASF

Click here for full programme details and to register.

The focus is primarily on the European Union’s efforts according to the workshop programme webpage,

This IFSCC Workshop will provide an update on nanotechnology in Cosmetics. It will focus on the requirements of the EU regulation 1223/2009/WE, enacted by the European Commission to provide tools and methodologies to measure the particle size to fulfil the nanomaterial definition, the safety studies and evaluation methods.

Organised by the IFSCC, a federation dedicated to international cooperation in cosmetic science and technology, this workshop demonstrates its aims.

Moderator: Claudie Willemin

  • 14:00-14:30: Welcome and Introduction
    IFSCC – What does this Acronym mean?
    > Claudie Willemin, Vice President of  the International Federation of the Societies of Cosmetic Chemists and President of La Société Française de Cosmétologie – SFC
  • 14:30-15:15: Nanotechnology in Cosmetics – Current status in EU and Other Countries
    > Dr. Florian Schellauf, Technical Regulatory Affairs- Cosmetics EuropeThe legislator introduced two requirements into the EU Regulation 1223/2009 related to nanomaterials in cosmetic products.The first requirement is the obligation to inform the consumer when nanomaterials are used in cosmetic products (“nano labelling”). The second requirement requires notification to the European Commission of cosmetic products containing certain nanomaterials. These requirements are based on the definition of a nanomaterial provided in the Regulation.

    The requirements come into application from 2013 and discussions have moved from legislation to practical implementation.

    This presentation will provide an overview over the use of nanomaterials in cosmetics, issues related to the implementation of the legal requirements and the interpretation of the cosmetic nanodefinition in relation to the Commission Recommendation of 18 October 2011.

    Also in the international arena, there have been harmonization attempts specifically for the cosmetic sector through the ICCR process (International Cooperation on Cosmetics Regulation). ICCR defined a set of criteria for determining whether or not a material should be considered as a nanomaterial for regulatory purposes. The presentation will also provide an insight into discussions occurring around nanomaterials in cosmetics in selected countries outside of the EU.

  • 15:15-15:50: Characterisation Methods for Nanomaterials for Regulatory Purposes
    > Dr. Hubert Rauscher, European Commission -Joint Research Centre – Nanobiosciences UnitNanomaterials are addressed in the European Regulation on Cosmetic Products (EC)1223/2009 as well as in several other sectors of national and international legislation and in various guidelines. This requires clear terminology, such as a definition of the term “nanomaterial” and implementation provisions. Such a definition for regulatory purposes and its individual elements needs to be legally clear and unambiguous, and enforceable through agreed measurement techniques and procedures. The presentation highlights the technical and scientific requirements for the characterisation of nanomaterials that need to be met for this purpose and reviews currently available techniques. The contribution also offers considerations on the way forward towards the development of new measurement techniques, the combination of experimental methods and the need for validation studies for the characterisation of nanomaterials for regulatory purposes.
  • 15:50-16:15: Coffee Break
  • 16:15-16:50: Nanomaterials’ Safety:  A Summary of the Latest Studies
    > Prof. Jürgen Lademann, Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, University of Medecin – La Charité – BerlinFor more than 20 years both academic institutions and industrial enterprises have been researching into the development of strategies for drug delivery through the human skin by means of nanoparticles. However, a commercial product based on that concept is still lacking as, obviously, nanoparticles of ≥30 nm do not penetrate the human skin barrier. Whether this applies also to smaller particles is currently a topic of intense research.First indications that nanoparticles might not penetrate the skin barrier resulted from investigations of sunscreens that contained TiO2 particles of approximately 100 nm in diameter. At the end of a 14 day test period, volunteers who had applied the sunscreen three times each day were measured for TiO2 penetration using the tape stripping method. In addition, biopsies were taken and histological sections were analyzed. The results clearly showed that the TiO2 nanoparticles were located upon the skin surface and in some of the hair follicles. The penetration profile also revealed low TiO2 concentrations near the boundary to the living epidermis.  However, in follow-up investigations these TiO2 concentrations turned out to be located in the hair follicles.

    Interestingly, only some of the hair follicles contained TiO2 particles. In a subsequent study it could be shown that the nanoparticles penetrated into the hair follicles only if the latter display sebum production or hair growth. This means that hair follicles are usually closed by a cover that must be opened from inside out by mass flow to permit the topically applied nanoparticles penetrating into the hair follicles.  Particles of 500-800 nm in diameter were found to penetrate into the hair follicles most efficiently; either in vivo or – in the case of porcine ear model skin – if the hairs are moved by a massage. Investigating the hair surface structure, it was found that the thickness of the cuticula on the hair amounts to 600-800 nm. Due to resonance effects and if the hairs are moving, nanoparticles within this diameter range obviously penetrate into the hair follicles where they can be stored for a period exceeding 10 days. Thereafter, they escape with the sebum onto the skin surface again. A penetration of particles through the intact skin barrier could not be detected.

    The problem of particulate structures, particularly of those exceeding 100 nm, is that they do not penetrate the intact skin barrier on the intercellular pathway. They remain on the skin surface and are removed by washing, textile contact and desquamation, so that scarcely any nanoparticles are detectable after 24 h. However, once the particles have been transported into the hair follicles part of them are stored there for more than 10 days and are then re-transferred to the skin surface with the sebum. In various papers nanoparticles were reported to pass the skin barrier. This is always correct if the skin barrier is disturbed. Such disturbance could have been caused by disease or mechanical manipulation, e.g., taking of biopsies, tape stripping or cyanoacrylate stripping. In such cases, nanoparticles could also be detected in the living skin. So far, no evidence has been provided to suggest that nanoparticles are capable of penetrating the intact skin. Therefore, a collaborative project was recently launched by the German Research Association (DFG) in which the excellent penetration properties of particles >100 mm shall be used to transport drugs, which would normally not penetrate into the hair follicles, efficiently to the target structures in the hair follicles where they can be released by an external trigger system.

  • 16:50-17:30: Nanomaterial’s Evaluation Tests
    > Dr. Robert Landsiedel, Product Safety – Experimental Toxicology and Ecology – BASFWarranting the safety of nanotechnological products is seen as a crucial element in ensuring that the benefits of the new technology can be fully exploited. One prominent trait of NM is the fact that, during the life-time of a given NM, humans can be exposed to different forms of the material, e.g. due to agglomeration or aggregation, corona formation or interaction with surrounding organic material, or dissolution. In order to remove the need to test each form of nanomaterial in all its uses with a pre-defined, fixed list of methods, a concern-driven approach is proposed. Such approaches should start out by determining concerns, i.e. specific information needs for a given NM based on realistic exposure scenarios. Recognized concerns can be addressed in a set of tiers using standardized protocols for NM preparation and testing. Tier 1 includes determining physico-chemical properties, non-testing (e.g. structure activity relationships) and evaluating existing data. In tier 2, a limited set of in vitro and in vivo tests are performed that can either indicate that the risk of the specific concern is sufficiently known or indicate the need for further testing, including details for such testing. By effectively exploiting all available information, IATA allow accelerating the risk assessment process and reducing testing costs and animal use (in line with the 3Rs principle implemented in EU Directive 2010/63/EU). Combining material properties, exposure, biokinetics and hazard data, information gained with IATA can be used to recognize groups of NM based upon similar modes-of-action. Grouping of substances in return should form an integral part of the IATA themselves.
  • 17:30-18:00: Q&A and Conclusion

You can go here to register for this workshop. If you are attending the exhibition only, you can register for free until March 31, 2014 but if you want to attend the nano workshop and others, an Early Bird rate starting at €280 +VAT is available until Feb. 28, 2014.

For anyone who doesn’t fully grasp what the ‘in-cosmetics’ exhibition is all about, here’s a video,

Surprising facts about silver nanoparticles from the University of Michigan

Dr. Andrew Maynard, Director of the University of Michigan’s Risk Science Center, has featured seven surprising facts about silver nanoparticles in his latest video in the Risk Bites series. Before getting to the video,here’s an introduction to the topic of silver nanoparticles from a Feb. 18, 2014 posting by Ishani Hewage on the University of Michigan’s Risk Sense blog (Note: A link has been removed),

Silver – known for its germ-killing capabilities – has been used for thousands of years. In recent times though, concerns have been raised over the potential health and environmental risks associated with one particular form of silver that has been used increasingly in a range of products: engineered silver nanoparticle. In this week’s Risk Bites, Andrew Maynard, director of the Risk Science Center, rounds-up seven aspects of silver nanoparticles that might help you weigh up their risks and benefits.

“Silver has long been used for its medicinal properties,” says Andrew. “People used to intentionally dose themselves with silver nanoparticles in the form a silver laced tonic as a cure-all.”

Nowadays, the use of silver nanoparticles is not just limited to the medical field. The military, athletes and manufactures are increasingly using them to develop smart new technologies that inhibit bacterial growth and enhance overall performance.  These microscopically small particles make it easier to get silver into products without compromising them …

Without more ado, here’s the video, ‘7 surprising facts about silver nanoparticles and health’:

Both the blog posting and this link will lead you to more information about silver nanoparticles.

Water desalination to be researched at Oman’s newly opened Nanotechnology Laboratory at Sultan Qaboos University

Before getting to the news, here’s some information (for those who may not be familiar with the country) about the Sultanate of Oman and why this water desalination project is very important. From the Oman Wikipedia essay (Note: Links have been removed),

Oman (Listeni/oʊˈmɑːn/ oh-MAAN; Arabic: عمان‎ ʻUmān), officially called the Sultanate of Oman (Arabic: سلطنة عُمان‎ Salṭanat ʻUmān), is an Arab state in southwest Asia on the southeast coast of the Arabian Peninsula. It has a strategically important position at the mouth of the Persian Gulf. It is bordered by the United Arab Emirates to the northwest, Saudi Arabia to the west, and Yemen to the southwest and also shares a marine border with Iran. The coast is formed by the Arabian Sea on the southeast and the Gulf of Oman on the northeast. The Madha and Musandam exclaves are surrounded by the UAE on their land borders, with the Strait of Hormuz and Gulf of Oman forming Musandam’s coastal boundaries.

From the 17th century, Oman had its own empire, and vied with Portugal and Britain for influence in the Persian Gulf and Indian Ocean. At its peak in the 19th century, Omani influence or control extended across the Strait of Hormuz to Iran, and modern-day Pakistan, and as far south as Zanzibar.[7] As its power declined in the 20th century, the sultanate came under heavy influence from the United Kingdom, though Oman was never formally part of the British Empire, or a British protectorate.

Oman has a hot climate and very little rainfall. Annual rainfall in Muscat averages 100 mm (3.9 in), falling mostly in January. The Dhofar Mountains area receives seasonal rainfall (from late June to late September) as a result of the monsoon winds from the Indian Ocean saturated with cool moisture and heavy fog.[39] The mountain areas receive more plentiful rainfall, and annual rainfall on the higher parts of the Jabal Akhdar probably exceeds 400 mm (15.7 in).[40] Some parts of the coast, particularly near the island of Masirah, sometimes receive no rain at all within the course of a year. The climate generally is very hot, with temperatures reaching around 50 °C (122.0 °F) (peak) in the hot season, from May to September.

The Sultanate of Oman’s Ministry of Information’s Omanet.om website offers this about water (from the Water webpage),

Oman is in the world’s arid belt and depends on groundwater and its limited rainfall . The demand for water continues to rise.   A national water resources conservation plan has been drawn up to further rationalise and improve water consumption practices and explore for new groundwater reserves. The Sultanate now has a complete, up-to-date and properly documented database covering all the country’s available and potential water resources, together with details of their status and conditions. Studies on new ways of rationalising water consumption are ongoing.

 Water Resources Management

The approach here is the emphasis on making judicious use of available water resources and reducing waste.

The management plan includes:

Reduction of water loss to the sea or desert

Providing potable water in communities

Developing and improving aflaj systems

Intensification of studies

Changing land use in some regions

Increasing recovery rates of water loss

Implementation of awareness programs

The fact that there is a Middle East Desalination Research Center (MEDRC)suggests an important problem especially in this region. (If you know of any collaborative water projects for other regions, please do let me know about them in the Comments.) From the MEDRC homepage,

MEDRC is a Center of Excellence in Desalination and Water  Reuse Technology established in Muscat, Sultanate of Oman, December 1996.

MEDRC Mission Statement

The mission of MEDRC is to contribute to the achievement of peace and stability in the Middle East and North Africa by promoting and supporting the use of desalination to satisfy the needs of the people of this region for available, affordable, clean fresh water for human use and economic development. This is done through the advancement of desalination technology, education in the technology and training in its use, technology transfer, technical assistance, and building cooperation between nations to form the joint projects and international relationships necessary to meet the needs for fresh water.

The Peace Process to resolve the issues of Israel and the Palestinian National Authority that have troubled the Middle East for almost a century included the establishment of MEDRC to assist in meeting the fresh water needs of the parties involved. This is still the first priority of MEDRC. However, MEDRC’s activities extend to and benefit the entire region and beyond. MEDRC is advancing the use of desalination and waste water reuse thru regional and international cooperation to overcome current and future world water supply deficiencies.

The MEDRC also has a 6 pp. PDF titled: Overview on Desalinated Water in the Sultanate of Oman. So this news about a nanotechnology lab opening in Oman which is focused on water desalination is big news, from the Feb. 19, 2014 news item on Nanowerk,

The Nanotechnology laboratory at Sultan Qaboos University in Muscat, Oman, as a part of The Research Council (TRC ) Chair in Nanotechnology for Water Desalination, was officially opened yesterday under the patronage of Dr Hilal bin Ali al Hinai, Secretary-General of TRC. The state-of-the-art laboratory of the TRC Chair, contains wet-chemistry facilities and analytical equipment rooms, and has been built in a single workspace on the College of Engineering premises. Talking about the activities of the Chair in terms of research and related activities, Prof Joydeep Dutta, the Chair Professor, said that research and development focused on the application of nanoparticles, nanomaterials and desalination processes.

A Feb. 18, 2014 news item in the Oman Observer provides additional detail,

“The Chair aims at innovative research suited to the region, education and training of highly qualified personnel and in increasing public and industrial awareness of nanotechnology, amongst others. The current research group is involved in developing applications that address the needs of those who are without — clean drinking water, cheap energy, unspoiled food and the other necessities required to provide for a decent living. The Chair is focusing on dedicated research and development issues addressing water desalination-both of seawater as well as brackish water”, he said. At present, a few broad themes for research were identified in consultation with the technical committee and work is continuing along these themes. The research themes are “Designer metal-oxide nanostructures”, “Capacitive desalination with functionalised nanostructures”, “Condensation induced renewable desalting”, and “Functionalised micro or nano membranes”.

The unifying concept in the laboratory is to make use of inexpensive wet-chemical methods to fabricate innovative materials and futuristic device components with an eye on its application in water desalination and water treatment. …

Although dated Feb. 19, 2014, a news release on the Sultan Qaboos University (SQU) website appears to have originated the news item on the Nanowerk website and on the Osman Observer website.

I have previously written about water in the Middle East within the context of a June 25, 2013 post regarding a research collaboration between the University of Chicago and Ben Gurion University in Israel. I managed to include a bit about Palestine and its very serious water problem (the Gaza’s sole aquifer may be unusable by 2016) in that post, about 3/4 of the way down.

Control the chirality, control your carbon nanotube

A Feb. 18, 2014 news item on ScienceDaily features a story not about a breakthrough but about a discovery that* could lead to one,

A single-walled carbon nanotube grows from the round cap down, so it’s logical to think the cap’s formation determines what follows. But according to researchers at Rice University, that’s not entirely so.

Theoretical physicist Boris Yakobson and his Rice colleagues found through exhaustive analysis that those who wish to control the chirality of nanotubes — the characteristic that determines their electrical properties — would be wise to look at other aspects of their growth.

The scientists have provided this image to illustrate chirality (‘twisting’) in carbon nanotubes,

Carbon nanotube caps are forced into shape by six pentagons among the array of hexagons in the single-atom-thick tube. Rice University researchers took a census of thousands of possible caps and found the energies dedicated to their formation have no bearing on the tube's ultimate chirality. Credit: Evgeni Penev/Rice University

Carbon nanotube caps are forced into shape by six pentagons among the array of hexagons in the single-atom-thick tube. Rice University researchers took a census of thousands of possible caps and found the energies dedicated to their formation have no bearing on the tube’s ultimate chirality.
Credit: Evgeni Penev/Rice University

The Feb. 17, 2014 Rice University news release (also on EurekAlert), which originated the news item, describe the process the scientists used to research chirality in carbon nanotubes,

To get a clear picture of how caps are related to nanotube chirality, the Rice group embarked upon a detailed, two-year census of the 4,500 possible cap formations for nanotubes of just two diameters, 0.8 and 1 nanometer, across 21 chiralities.

The cap of every nanotube has six pentagons – none of which may touch each other — among an array of hexagons, Penev said. They pull the cap and force it to curve, but their positions are not always the same from cap to cap.

But because a given chirality can have hundreds of possible caps, the determining factor for chirality must lie elsewhere, the researchers found. “The contribution of the cap is the elastic curvature energy, and then you just forget it,” Penev said.

“There are different factors that may be in play,” Yakobson said. “One is the energy portion dictated by the catalyst; another one may be the energy of the caps per se. So to get the big picture, we address the energy of the caps and basically rule it out as a factor in determining chirality.”

A nanotube is an atom-thick sheet of carbon atoms arranged in hexagons and rolled into a tube. Chirality refers to the hexagons’ orientation, and that angle controls how well the nanotube will conduct electricity.

A perfect conducting metallic nanotube would have the atoms arranged in “armchairs,” so-called because cutting the nanotube in half would make the top look like a series of wells with atoms for armrests. Turn the hexagons 30 degrees, though, will make a semiconducting “zigzag” nanotube.  Nanotubes can be one or the other, or the chiral angle can be anything in between, with a shifting range of electrical properties.

Getting control of these properties has been a struggle. Ideally, scientists could grow the specific kinds of nanotubes they need for an application, but in reality, they grow as a random assortment that must then be separated with a centrifuge or by other means.

Yakobson suspects the answer lies in tuning the interaction between the catalyst and the nanotube edge. “This study showed the energy involved in configuring the cap is reasonably flat,” he said. “That’s important to know because it allows us to continue to work on other factors.

Here’s a  link to and a citation for the paper,

Extensive Energy Landscape Sampling of Nanotube End-Caps Reveals No Chiral-Angle Bias for Their Nucleation by Evgeni S. Penev, Vasilii I. Artyukhov, and Boris I. Yakobson. ACS Nano, Article ASAP DOI: 10.1021/nn406462e Publication Date (Web): January 23, 2014
Copyright © 2014 American Chemical Society

This article is behind a paywall.

One final comment, it took these scientists two years of painstaking work to establish that caps are not the determining factor for chirality. It’s this type of story I find as fascinating, if not more so, as the big breakthroughs because it illustrates the  extraordinary drive it takes to extract even the smallest piece of information. I wish more attention was given to these incremental efforts.

* March 7, 2014 changed ‘while’ to ‘that’.

Apply for six month internship at Nature (journal) sponsored by Canada’s International Development Research Centre (IDRC)

The deadline is Feb. 26, 2014, Canadians and people resident in Canada are eligible, and this does involve some travel. Here are the details (from a Feb. 12, 2014 posting on the Nature blogs),

Canada’s International Development Research Centre (IDRC) is offering a six-month, full-time science journalism award worth up to CAD$60,000 to an English-speaking Canadian citizen or permanent resident of Canada. The successful applicant will receive training and work as an intern in the London news room of the leading international science journal Nature before spending up to four months reporting science stories from developing countries. He or she will be at an early stage of his or her career, but with at least three years’ experience as a journalist.

Candidates must have a keen interest in science and technology, particularly relating to development, as well as outstanding reporting and writing skills, and strong ideas for news and features suitable for publication in Nature. The internship is expected to begin in April or May 2014.

To apply, please e-mail the following to david.reay@nature.com:

  • A covering letter explaining your suitability for the award
  • A resume
  • Three recent story clips, ideally a mix of news and feature pieces
  • Three brief pitches for stories you think would appeal to Nature’s audience.

Deadline: Wednesday 26 February 2014

About the IDRC

The IDRC is a Canadian Crown corporation that works closely with researchers from the developing world in their search to build healthier, more equitable and more prosperous societies (see www.idrc.ca).

About Nature

Nature is a weekly international journal publishing the finest peer-reviewed research in all fields of science and technology, and is the world’s most highly cited interdisciplinary science journal. It also has an international news team covering the latest science, policy and funding news in both online and print formats (see www.nature.com/nature).

About the award

Nature will manage the selection process and the IDRC will award up to CAD$60,000 to the successful applicant. This will cover travel costs, living expenses, research expenses, visa or other related costs, in London and in other countries visited during the six-month period. The award will also cover the cost of participating in a conference relevant to the award winner’s professional development as a journalist. For more information click here.

Good luck!

An entire chemistry lab (nanofactory) in a droplet

I love the blue in this image, which illustrates the thousand-droplets test, research suggesting the possibility of a nanofactory or laboratory within a droplet ,

Droplets with a diameter of only a few micrometers act as the reaction vessels for a complex oscillating reaction - Photo: Maximilian Weitz / TUM

Droplets with a diameter of only a few micrometers act as the reaction vessels for a complex oscillating reaction – Photo: Maximilian Weitz / TUM

A Feb. 19, 2014 news item on Azonano reveals more,

An almost infinite number of complex and interlinked reactions take place in a biological cell. In order to be able to better investigate these networks, scientists led by Professor Friedrich Simmel, Chair of Systems Biophysics and Nano Biophysics at the Technische Universitaet Muenchen (TUM) try to replicate them with the necessary components in a kind of artificial cell.

This is also motivated by the thought of one day using such single-cell systems for example as “nanofactories” for the production of complex organic substances or biomaterials.

All such experiments have so far predominantly worked with very simple reactions, however. NIM Professor Friedrich Simmel and his team have now for the first time managed to let a more complex biochemical reaction take place in tiny droplets of only a few micrometers in size. Together with co-authors from the University of California Riverside and the California Institute of Technology in Pasadena, USA, the scientists are presenting their findings in the current edition of Nature Chemistry.

The Feb. 18, 2014 TUM press release, which originated the news item, details the experiements,

Shaking once – investigating thousands of times

The experiment is conducted by putting an aqueous reaction solution into oil and shaking the mixture vigorously. The result is an emulsion consisting of thousands of droplets. Employing only a tiny amount of material, the scientists have thus found a cost-efficient and quick way of setting up an extremely large number of experiments simultaneously.

As a test system, the researchers chose a so-called biochemical oscillator. This involves several reactions with DNA and RNA, which take place repetitively one after the other. Their rhythm becomes visible because in one step two DNA strands bind to each other in such a way that a fluorescent dye shines. This regular blinking is then recorded with special cameras.

Small droplets – huge differences

In the first instance, Friedrich Simmel and his colleagues intended to investigate the principal behavior of a complex reaction system if scaled down to the size of a cell. In addition, they specifically wondered if all droplet systems displayed an identical behavior and what factors would cause possible differences.

Their experiments showed that the oscillations in the individual droplets differed strongly, that is to say, much stronger than might have been expected from a simple statistical model. It was above all evident that small drops display stronger variations than large ones. “It is indeed surprising that we could witness a similar variability and individuality in a comparatively simple chemical system as is known from biological cells”, explains Friedrich Simmel the results.

Thus, it is currently not possible to realize systems which are absolutely identical. This de facto means that researchers have to either search for ways to correct these variations or factor them in from the start. On the other hand, the numerous slightly differing systems could also be used specifically to pick out the one desired, optimally running set-up from thousands of systems.

Investigating complex biosynthetic systems in artificial cells opens up many other questions, as well. In a next step, Friedrich Simmel plans to address the underlying theoretical models: “The highly parallel recording of the emulsion droplets enabled us to acquire plenty of interesting data. Our goal is to use these data to review and improve the theoretical models of biochemical reaction networks at small molecule numbers.”

Here’s link to and a citation for the paper,

Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator by Maximilian Weitz, Jongmin Kim, Korbinian Kapsner, Erik Winfree, Elisa Franco, & Friedrich C. Simmel. Nature Chemistry (2014) doi:10.1038/nchem.1869 Published online 16 February 2014

This paper is behind a paywall.

Food and nanotechnology (as per Popular Mechanics) and zinc oxide nanoparticles in soil (as per North Dakota State University)

I wouldn’t expect to find an article about food in a magazine titled Popular Mechanics but there it is, a Feb. 19,2014 article by Christina Ortiz (Note: A link has been removed),

For a little more than a decade, the food industry has been using nanotechnology to change the way we grow and maintain our food. The grocery chain Albertsons currently has a list of nanotech-touched foods in its home brand, ranging from cookies to cheese blends.

Nanotechnology use in food has real advantages: The technology gives producers the power to control how food looks, tastes, and even how long it lasts.

Looks Good and Good for You?

The most commonly used nanoparticle in foods is titanium dioxide. It’s used to make foods such as yogurt and coconut flakes look as white as possible, provide opacity to other food colorings, and prevent ingredients from caking up. Nanotech isn’t just about aesthetics, however. The biggest potential use for this method involves improving the nutritional value of foods.

Nano additives can enhance or prevent the absorption of certain nutrients. In an email interview with Popular Mechanics, Jonathan Brown, a research fellow at the University of Minnesota, says this method could be used to make mayonnaise less fattening by replacing fat molecules with water droplets.

I did check out US grocer, Albertson’s list of ‘nanofoods’, which they provide and discovered that it’s an undated listing on the Project of Emerging Nanotechnologies’ Consumer Products Inventory (CPI). The inventory has been revived recently after lying moribund for a few years (my Oct. 28, 2013 posting describes the fall and rise) and I believe that this 2013 CPI incarnation includes some oversight and analysis of the claims made, which the earlier version did not include. Given that the Albertson’s list is undated it’s difficult to assess the accuracy of the claims regarding the foodstuffs.

If you haven’t read about nanotechnology and food before, the Ortiz article provides a relatively even-handed primer although it does end on a cautionary note. In any event, it was interesting to get a bit of information about the process of ‘nanofood’ regulation in the US and other jurisdictions (from the Ortiz article),

Aside from requiring manufacturers to provide proof that nanotechnology foods are safe, the FDA has yet to implement specific testing of its own. But many countries are researching ways to balance innovation and regulation in this market. In 2012 the European Food Safety Authority (EFSA) released an annual risk assessment report outlining how the European Union is addressing the issue of nanotech in food. In Canada the Food Directorate “is taking a case-by-case approach to the safety assessment of food products containing or using nanomaterials.”

I featured the FDA’s efforts regarding regulation and ‘nanofood’ in an April 23, 2012 posting,

It looks to me like this [FDA’s draft guidance for ‘nanofoods’] is an attempt to develop a relationship where the industry players in the food industry to police their nanotechnology initiatives with the onus being on industry to communicate with the regulators in a continuous process, if not at the research stage certainly at the production stage.

At least one of the primary issues with any emerging technology revolves around the question of risk. Do we stop all manufacturing and development of nanotechnology-enabled food products until we’ve done the research? That question assumes that taking any risks is not worth the currently perceived benefits. The corresponding question, do we move forward and hope for the best? does get expressed perhaps not quite so baldly; I have seen material which suggests that research into risks needlessly hampers progress.

After reading on this topic for five or so years, my sense is that most people are prepared to combine the two approaches, i.e., move forward while researching possible risks. The actual conflicts seem to centre around these questions, how quickly do we move forward; how much research do we need; and what is an acceptable level of risk?

On the topic of researching the impact that nanoparticles might have on plants (food or otherwise), a January 24, 2013 North Dakota State University (NDSU) news release highlights a student researcher’s work on soil, plants, and zinc oxide nanoparticles,

NDSU senior Hannah Passolt is working on a project that is venturing into a very young field of research. The study about how crops’ roots absorb a microscopic nutrient might be described as being ahead of the cutting-edge.

In a laboratory of NDSU’s Wet Ecosystem Research Group, in collaboration with plant sciences, Passolt is exploring how two varieties of wheat take up extremely tiny pieces of zinc, called nanoparticles, from the soil.

As a point of reference, the particles Passolt is examining are measured at below 30 nanometers. A nanometer is 1 billionth of a meter.

“It’s the mystery of nanoparticles that is fascinating to me,” explained the zoology major from Fargo. “The behavior of nanoparticles in the environment is largely unknown as it is a very new, exciting science. This type of project has never been done before.”

In Passolt’s research project, plants supplied by NDSU wheat breeders are grown in a hydroponic solution, with different amounts of zinc oxide nanoparticles introduced into the solution.

Compared to naturally occurring zinc, engineered zinc nanoparticles can have very different properties. They can be highly reactive, meaning they can injure cells and tissues, and may cause genetic damage. The plants are carefully observed for any changes in growth rate and appearance. When the plants are harvested, researchers will analyze them for actual zinc content.

“Zinc is essential for a plant’s development. However, in excess, it can be harmful,” Passolt said. “In one of my experiments, we are using low and high levels of zinc, and the high concentrations are showing detrimental effects. However, we will have to analyze the plants for zinc concentrations to see if there have been any effects from the zinc nanoparticles.”

Passolt has conducted undergraduate research with the Wet Ecosystem Research Group for the past two years. She said working side-by-side with Donna Jacob, research assistant professor of biological sciences; Marinus Otte; professor of biological sciences; and Mohamed Mergoum, professor of plant sciences, has proven to be challenging, invigorating and rewarding.

“I’ve gained an incredible skill set – my research experience has built upon itself. I’ve gotten to the point where I have a pretty big role in an important study. To me, that is invaluable,” Passolt said. “To put effort into something that goes for the greater good of science is a very important lesson to learn.”

According to Jacob, Passolt volunteered two years ago, and she has since become an important member of the group. She has assisted graduate students and worked on her own small project, the results of which she presented at regional and international scientific conferences. “We offered her this large, complex experiment, and she’s really taken charge,” Jacob said, noting Passolt assisted with the project’s design, handled care of the plants and applied the treatments. When the project is completed, Passolt will publish a peer-reviewed scientific article.

“There is nothing like working on your own experiment to fully understand science,” Jacob said. “Since coming to NDSU in 2006, the Wet Ecosystem Research Group has worked with more than 50 undergraduates, possible only because of significant support from the North Dakota IDeA Networks of Biomedical Research Excellence program, known as INBRE, of the NIH National Center for Research Resources.”

Jacob said seven undergraduate students from the lab have worked on their own research projects and presented their work at conferences. Two articles, so far, have been published by undergraduate co-authors. “I believe the students gain valuable experience and an understanding of what scientists really do during fieldwork and in the laboratory,” Jacob said. “They see it is vastly different from book learning, and that scientists use creativity and ingenuity daily. I hope they come away from their experience with some excitement about research, in addition to a better resume.”

Passolt anticipates the results of her work could be used in a broader view of our ecosystem. She notes zinc nanoparticles are an often-used ingredient in such products as lotions, sunscreens and certain drug delivery systems. “Zinc nanoparticles are being introduced into the environment,” she said. “It gets to plants at some point, so we want to see if zinc nanoparticles have a positive or negative effect, or no effect at all.”

Researching nanoparticles the effects they might have on the environment and on health is a complex process as there are many types of nanoparticles some of which have been engineered and some of which occur naturally, silver nanoparticles being a prime example of both engineered and naturally occurring nanoparticles. (As well, the risks may lie more with interactions between nanomaterials.) For an example of research, which seems similar to the NDSU effort, there’s this open access research article,

Low Concentrations of Silver Nanoparticles in Biosolids Cause Adverse Ecosystem Responses under Realistic Field Scenario by Benjamin P. Colman, Christina L. Arnaout, Sarah Anciaux, Claudia K. Gunsch, Michael F. Hochella Jr, Bojeong Kim, Gregory V. Lowry,  Bonnie M. McGill, Brian C. Reinsch, Curtis J. Richardson, Jason M. Unrine, Justin P. Wright, Liyan Yin, and Emily S. Bernhardt. PLoS ONE 2013; 8 (2): e57189 DOI: 10.1371/journal.pone.0057189

One last comment, the Wet Ecosystem Research Group (WERG) mentioned in the news release about Passolt has an interesting history (from the homepage; Note: Links have been removed),

Marinus Otte and Donna Jacob brought WERG to the Department of Biological Sciences in the Fall of 2006.  Prior to that, the research group had been going strong at University College Dublin, Ireland, since 1992.

The aims for the research group are to train graduate and undergraduate students in scientific research, particularly wetlands, plants, biogeochemistry, watershed ecology and metals in the environment.  WERG research  covers a wide range of scales, from microscopic (e.g. biogeochemical processes in the rhizosphere of plants) to landscape (e.g. chemical and ecological connectivity between prairie potholes across North Dakota).  Regardless of the scale, the central theme is biogeochemistry and the interactions between multiple elements in wet environments.

The group works to collaborate with a variety of researchers, including soil scientists, geologists, environmental engineers, microbiologists, as well as with groups underpinning management of natural resources, such the Minnesota Department of Natural Resources, the Department of Natural Resources of Red Lake Indian Reservation, and the North Dakota Department of Health, Division of Water Quality.

Currently, WERG has several projects, mostly in North Dakota and Minnesota.  Otte and Jacob are also Co-directors of the North Dakota INBRE Metal Analysis Core, providing laboratory facilities and mentoring for researchers in undergraduate colleges throughout the state. Otte and Jacob are also members of the Upper Midwest Aerospace Consortium.

Making nanoelectronic devices last longer in the body could lead to ‘cyborg’ tissue

An American Chemical Society (ACS) Feb. 19, 2014 news release (also on EurekAlert), describes some research devoted to extending a nanoelectronic device’s ‘life’ when implanted in the body,

The debut of cyborgs who are part human and part machine may be a long way off, but researchers say they now may be getting closer. In a study published in ACS’ journal Nano Letters, they report development of a coating that makes nanoelectronics much more stable in conditions mimicking those in the human body. [emphases mine] The advance could also aid in the development of very small implanted medical devices for monitoring health and disease.

Charles Lieber and colleagues note that nanoelectronic devices with nanowire components have unique abilities to probe and interface with living cells. They are much smaller than most implanted medical devices used today. For example, a pacemaker that regulates the heart is the size of a U.S. 50-cent coin, but nanoelectronics are so small that several hundred such devices would fit in the period at the end of this sentence. Laboratory versions made of silicon nanowires can detect disease biomarkers and even single virus cells, or record heart cells as they beat. Lieber’s team also has integrated nanoelectronics into living tissues in three dimensions — creating a “cyborg tissue.” One obstacle to the practical, long-term use of these devices is that they typically fall apart within weeks or days when implanted. In the current study, the researchers set out to make them much more stable.

They found that coating silicon nanowires with a metal oxide shell allowed nanowire devices to last for several months. This was in conditions that mimicked the temperature and composition of the inside of the human body. In preliminary studies, one shell material appears to extend the lifespan of nanoelectronics to about two years.

Depending on how you define the term cyborg, it could be said there are already cyborgs amongst us as I noted in an April 20, 2012 posting titled: My mother is a cyborg. Personally I’m fascinated by the news release’s mention of ‘cyborg tissue’ although there’s no further explanation of what the term might mean.

For the curious, here’s a link to and a citation for the paper,

Long Term Stability of Nanowire Nanoelectronics in Physiological Environments by Wei Zhou, Xiaochuan Dai, Tian-Ming Fu, Chong Xie, Jia Liu, and Charles M. Lieber. Nano Lett., Article ASAP DOI: 10.1021/nl500070h Publication Date (Web): January 30, 2014
Copyright © 2014 American Chemical Society

This paper is behind a paywall.