Monthly Archives: September 2014

OECD’s (Organization for Economic Cooperation and Development) latest report on its regulating manufactured nanomaterials questionnaire

As I have commented on several occasions, most of my information about Canada’s activities with regard to risk and nanomaterials comes from outside the country, notably the OECD (Organization for Economic Cooperation and Development).

Thanks* to Lynn Bergeson and her Sept. 17, 2014 posting on Nanotechnology Now for information about the latest publication from the OECD’s Working Party on Manufactured Nanomaterials (Note: a link has been removed),

On September 16, 2014, the Organization for Economic Cooperation and Development (OECD) published a document entitled Report of the Questionnaire on Regulatory Regimes for Manufactured Nanomaterials 2010-2011. … The Report summarizes responses to the Working Party on Manufactured Nanomaterials (WPMN) Questionnaire on Regulated Nanomaterials: 2010-2011, which was issued July 12, 2012. The Questionnaire contained four sections related to the oversight of nanomaterials in various OECD jurisdictions: regulatory updates; definitions and/or legal approaches for nanomaterials by jurisdiction; regulatory challenges; and opportunities for collaboration.

You can find all of the reports from the OECD’s WPMN here, including this latest report, which is no. 42, Report of the questionnaire on regulatory regimes for manufactured nanomaterials 2010-201, ENV/JM/MONO(2014)28. This is the third time there’s been a questionnaire and subsequent report.

I have quickly skimmed through the report and found a few interesting items about Canada’s current activities and collaborations vis à vis manufactured nanomaterials and risk. From the REPORT OF THE QUESTIONNAIRE ON REGULATORY REGIMES FOR MANUFACTURED NANOMATERIALS 2010-2011 which appears to have been published Sept. 4, 2014. I have had an unusually difficult time including excerpts from the report along with page numbers, etc. On the first try, after almost an hour of cutting and pasting, I was unable to get an intelligible version into a preview. To all intents and purposes the text was in place but the preview attempt resulted in a bizarre column of text overwriting the sidebar to the right of the posts.

I tried again and found that extensive reformatting was necessary and that the original table format has been lost. Nonetheless. you will find there are two pieces of legislation being reported on, CEPA (1999), which I believe has something to do with Environment Canada, and F&DA, which seems to be associated with Health Canada. One or both pieces of legislation may be referenced as per the OECD report. Page numbers from the document are included after the excerpted table entries.

Table 12: Hazard identification …

CEPA (1999)

Extrapolation between nanomaterials (i.e., choosing the appropriate surrogate)

Validity of testing methods and analytical tools to detect, characterize and measure nanomaterials

Participating in international forums such as the WPMN [OECD Working Party on Manufactured Nanomaterials], Expert Meetings, and ISO [International Standards Organization] TC/229 to support the generation and synthesis of appropriate science.

Support domestic research to help minimize challenges in hazard identification.

F&DA

Nanomaterial-based products under the F&DA (i.e. nanomedicines) can be associated with a broad spectrum of toxicities that are dependent on the nanoparticle properties (e.g. size, surface charge and solubility). However, there is currently no specific guidance document available for nanomedicines. Nanoparticle properties can significantly impact the PK profile/biodistribution of nanomedicines resulting in safety concerns. The components of the nanomedicines can also interact with the immune system and may trigger unique immunogenicity/immunotoxicity profile. Animals are generally not predictive of immunological responses for biologics (however, it may not be the case if the nanomedicine is a chemical drug), it is likely that immunological studies for nanomedicines should be carried out in human clinical trials. Long term studies may be required for a nanomaterial that persist and accumulated in particular tissues for an extended period of time.  p. 45

Table 13: Health and safety …

F&DA Veterinary Drugs

Due to the lack of a comprehensive understanding of the effects of nanomaterials on human, animal and environmental health, the Veterinary Drugs Directorate has not yet established a comprehensive occupational health and safety policy. Moreover, occupational health and safety is a shared responsibility between the federal and provincial governments in Canada.

At this time, there is no conclusive evidence linking exposure of nanomaterials from veterinary drugs or food sources to negative impact on human health. Additional research is necessary before a definitive policy approach can be taken.

F&DA Veterinary Drugs
Veterinary drugs including those that contain nanomaterials are regulated by the Food and Drugs Act and the Food and Drug Regulations. These provide the Veterinary Drugs Directorate with the authority to regulate the human health and safety aspects of veterinary drug products. The Regulations cover the aspects of the manufacturing, human and animal safety and efficacy assessment, and post-market surveillance of veterinary drug products including those containing nanomaterials. The latter products are subject to the same rigorous assessments as non-nanomaterial-containing veterinary drug products. p. 47

Table 14: Risk Assessment Methodologies

CEPA (1999)

Our understanding of risk assessments of nanomaterials is still evolving. Nanomaterials regulated under the industrial chemicals program employ a precautionary approach (i.e., exposure is typically mitigated), and nano-relevant information is requested whenever appropriate to conduct more informed risk assessments.

Canada also continues to work in international projects, such as the international life sciences institute NanoRelease project aimed at developing methods to quantify releases of nanomaterials from solid matrices.

Canada is also part of the Regulatory Cooperation Council (RCC) Nanotechnology Initiative with the United States. Under this project, Canada and the US are developing a classification scheme for nanomaterials to inform on the utilization of analogue/read- across, developing frameworks and common assumptions to better
inform risk assessments, and mining public and confidential use information to increase marketplace knowledge of nanomaterials. p. 49

Table 15: Risk Management and Nanomaterials in Commerce …

CEPA (1999)

Knowledge of use profiles of industrial nanomaterials; lack of specificity in risk
management measures given the overall lack of information and nomenclature systems for nanomaterials

Under the RCC, Canada and the US are gathering information on the uses of industrial nanomaterials in the two countries.  p. 52

Table 16: Research … (to support regulatory decisions)

CEPA (1999)

– foster domestic and international capacity to generate research on risk assessment priorities and needs
– applying research findings to nanomaterial risk assessments
– using research on nanomaterials to extrapolate to other nanomaterials

– Canada is actively supporting domestic and international research projects to help inform risk assessments.

F&DA

Filling knowledge gaps

HC [Health Canada] is conducting laboratory research to study the effects of lipid nanoparticles on the thermal stability of various recombinant proteins with the aim of identifying determinants of susceptibility to unintended deleterious interactions.  p. 55

Table 17: Impact of Regulatory Actions and Innovations and Economic Growth

CEPA (1999)

How to obtain the necessary information on nanomaterials, and how to regulate them in a manner that does not prevent them from offering their many benefits to society.

Consult with industry on proposed approaches. Focus information requests and requirements.  pp. 56/7

Table 18: Labelling Communication of Nanomaterials …

CEPA (1999)

Labelling of nanomaterials has not been considered under CEPA 1999 to date. p. 58

Table 19: Collaboration with other countries …

CEPA (1999) & F&DA

New Substances Program is involved in various international activities, including:
1) International Organization for Standardization (ISO) Technical Committee (TC) 229 on Nanotechnologies
2) Organisation for Economic Co-operation and Development (OECD) Working Party on
Manufactured Nanomaterials (WPMN) and Working Party on Nanotechnology (WPN)
3) Canada-US Regulatory Cooperation Council (RCC)
4) International Cooperation on Cosmetic Regulation (ICCR) – 2 Reports have been published
a) Criteria and Methods of Detection for Nanomaterials in Cosmetics:
http://www.fda.gov/downloads/InternationalPrograms/HarmonizationInitiatives/UCM235485.pdf
b) Methods for Characterization of Nanomaterials in Cosmetics
http://ec.europa.eu/consumers/sectors/cosmetics/files/pdf/iccr5_char_nano_en.pdf
5) International Regulators Nanotechnology Working Group
6) International Life Sciences Institutes (ILSI) – NanoRelease Food Additive Project
7) NanoLyse

In addition, for veterinary drugs, Health Canada collaborates with other regulatory agencies in USA, Europe, Australia, etc in the regulation of non-nanomaterial products and substances and would do the same for substances that are, or products containing nanomaterials pp. 59/60

Table 19: Expert Workshop Sponsorship [table number repetition noted]

CEPA (1999)

The Workshop on the Human and Environmental Risk Assessment of Nanomaterials convened by Health Canada and Environment Canada (March 24-26, 2010) provided an open forum for detailed dialogue on nanomaterials among science evaluators, research scientists and regulators. The Workshop was attended by 25 experts from Australia, Canada, Europe, Korea and the United States of America. In addition, seven observers attended the Workshop.

Regulatory Cooperation Council with the United States

F&DA Foods

Health Canada will be hosting a Joint NanoLyse/NanoRelease Workshop to discuss methods and safety of nanomaterials and share information from the respective projects. NanoLyse is an EU research consortium to develop methods of analysis for engineered nano-materials in foods and NanoRelease is an International Life Sciences Institute lead initiative to develop of analytical methods, alimentary canal models for uptake of engineered nano-materials and review of regulatory issues. p. 61

In any event, good luck with the reading and you can find out more about NanoLyse here and more about Canadian participation in the NanoRelease Food Additive Steering Committee project here.

* ‘Thank’s’ changed to ‘Thanks’ on April 7, 2015

Asthma on a chip

Harvard University’s Wyss Institute for Biologically Inspired Engineering has found a way to mimic the lung’s muscle action when an asthma attack is being experienced according to a Sept. 23, 2014 news item on Nanowerk,

The majority of drugs used to treat asthma today are the same ones that were used 50 years ago. New drugs are urgently needed to treat this chronic respiratory disease, which causes nearly 25 million people in the United States alone to wheeze, cough, and find it difficult at best to take a deep breath.

But finding new treatments is tough: asthma is a patient-specific disease, so what works for one person doesn’t necessarily work for another, and the animal models traditionally used to test new drug candidates often fail to mimic human responses–costing tremendous money and time.

Hope for healthier airways may be on the horizon thanks to a Harvard University team that has developed a human airway muscle-on-a-chip that could be used to test new drugs because it accurately mimics the way smooth muscle contracts in the human airway, under normal circumstances and when exposed to asthma triggers. [emphasis mine]

A Sept. 23, 2014 Wyss Institute news release (also on EurekAlert*), which originated the news item, provides more details about the technology and its advantages,

The chip, a soft polymer well that is mounted on a glass substrate, contains a planar array of microscale, engineered human airway muscles, designed to mimic the laminar structure of the muscular layers of the human airway.

To mimic a typical allergic asthma response, the team first introduced interleukin-13 (IL-13) to the chip. IL-13 is a natural protein often found in the airway of asthmatic patients that mediates the response of smooth muscle to an allergen.

Then they introduced acetylcholine, a neurotransmitter that causes smooth muscle to contract. Sure enough, the airway muscle on the chip hypercontracted – and the soft chip curled up – in response to higher doses of the neurotransmitter.

They achieved the reverse effect as well and triggered the muscle to relax using drugs called β-agonists, which are used in inhalers.

Significantly, they were able to measure the contractile stress of the muscle tissue as it responded to varying doses of the drugs, said lead author Alexander Peyton Nesmith, a Ph.D./M.D. student at Harvard SEAS and the University of Alabama at Birmingham. “Our chip offers a simple, reliable and direct way to measure human responses to an asthma trigger,” he said.

The team then investigated what happened on a cellular level in response to the IL-13 and confirmed, for example, that the smooth muscle cells grew larger in the presence of IL-13 over time – a structural hallmark of the airways in asthma patients as well. They also documented an increased alignment of actin fibers within smooth muscle cells, which is consistent with the muscle in the airway of asthma patients. Actin fibers are super-thin cellular components involved in muscle contraction.

Next they observed how IL-13 changes the expression of contractile proteins called RhoA proteins, which have been implicated in the asthmatic response, although the details of their activation and signaling have remained elusive. To do this they introduced a drug called HA1077, which is not currently used to treat asthmatic patients – but targets the RhoA pathway. It turns out that the drug made the asthmatic tissue on the chip less sensitive to the asthma trigger – and preliminary tests indicated that using a combined therapy of HA1077 plus a currently approved asthma drug worked better than the single drug alone.

“Asthma is one of the top reasons for trips to the emergency room – particularly for children, and a large segment of the asthmatic population doesn’t respond to currently available treatments,” said Wyss Institute Founding Director Don Ingber, M.D., Ph.D. “The airway muscle-on-a-chip provides an important and exciting new tool for discovering new therapeutic agents.”

The scientists have provided an illustration of healthy and asthmatic airways,

Schematic comparing a healthy airway (few immune cells, normal airway diameter) to an asthmatic airway (many immune cells, constricted airway). Credit: Harvard's Wyss Institute and Harvard SEAS [School of Engineering and Applied Sciences]

Schematic comparing a healthy airway (few immune cells, normal airway diameter) to an asthmatic airway (many immune cells, constricted airway). Credit: Harvard’s Wyss Institute and Harvard SEAS [School of Engineering and Applied Sciences]

Here’s link to and a citation for the paper,

Human airway musculature on a chip: an in vitro model of allergic asthmatic bronchoconstriction and bronchodilation by Alexander Peyton Nesmith, Ashutosh Agarwal, Megan Laura McCain and Kevin Kit Parker.Lab Chip, 2014,14, 3925-3936 DOI: 10.1039/C4LC00688G First published online 05 Aug 2014

This paper is open access provided you have registered yourself for free at the site.

* EurekAlert link added Sept. 24, 2014.

Treatment for patients infected with the ebola virus (a response to crisis in West African countries)

I’ve not actively kept up with the situation in the West African countries suffering an outbreak of the ebola virus other than to note that it is ongoing. My Aug. 15, 2014 post provides a snapshot of the situation and various new treatments, including one based on tobacco, which could be helpful but appeared not to have been tested and/or deployed. There was a lot of secrecy (especially from Medicago, a Canadian company) regarding the whole matter of treatments and vaccines.

There seem to have been some new developments on the treatment side, involving yet another Canadian company, Tekmira, according to a Sept. 23, 2013 news item on Azonano,

Tekmira Pharmaceuticals Corporation, a leading developer of RNA interference (RNAi) therapeutics, today announced that the FDA [US Food and Drug Administration] has authorized Tekmira to provide TKM-Ebola for treatment under expanded access protocols to subjects with confirmed or suspected Ebola virus infections.

A Sept. 22, 2014 Tekmira news release, which originated the news item, expands on the topic of regulatory issues associated with bringing this treatment to the areas suffering the outbreak,

“Tekmira is reporting that an appropriate regulatory and clinical framework is now in place to allow the use of TKM-Ebola in patients. We have worked with the FDA and Health Canada to establish this framework and a treatment protocol allowing us to do what we can to help these patients,” said Dr. Mark J. Murray Tekmira’s President and CEO.

“We have insisted on acting responsibly in the interest of patients and our stakeholders,” added Dr. Murray. “Today we are reporting that, working closely with regulators in the United States and Canada, we have established a framework for TKM-Ebola use in multiple patients. In the US, the FDA has granted expanded access use of TKM-Ebola under our Investigational New Drug application (IND) and Health Canada has established a similar framework, both of which allow the use of our investigational therapeutic in more patients.”

“We have already responded to requests for the use of our investigational agent in several patients under emergency protocols, in an effort to help these patients, a goal we share with the FDA and Health Canada. TKM-Ebola has been administered to a number of patients and the repeat infusions have been well tolerated. However, it must be kept in mind that any uses of the product under expanded access, does not constitute controlled clinical trials. These patients may be infected with a strain of Ebola virus which has emerged subsequent to the strain that our product is directed against, and physicians treating these patients may use more than one therapeutic intervention in an effort to achieve the best outcome,” said Dr. Murray. “Our TKM-Ebola drug supplies are limited, but we will continue to help where we can, as we continue to focus on the other important objectives we have to advance therapies to meet the unmet needs of patients.”

TKM-Ebola is an investigational therapeutic, being developed under an FDA approved IND, which is currently the subject of a partial clinical hold under which the FDA has allowed the potential use of TKM-Ebola in individuals with a confirmed or suspected Ebola virus infection.

About FDA Expanded Access Program

Expanded access is the use of an investigational drug outside of a clinical trial to treat a patient, with a serious or immediately life-threatening disease or condition, who has no comparable or satisfactory alternative treatment options. FDA regulations allow access to investigational drugs for treatment purposes on a case-by-case basis for an individual patient, or for intermediate-size groups of patients with similar treatment needs who otherwise do not qualify to participate in a clinical trial. (Source: www.fda.com)

About TKM-Ebola, an Anti-Ebola Virus RNAi Therapeutic

TKM-Ebola, an anti-Ebola virus RNAi therapeutic, is being developed under a $140 million contract with the U.S. Department of Defense’s Medical Countermeasure Systems BioDefense Therapeutics (MCS-BDTX) Joint Product Management Office. Earlier preclinical studies were published in the medical journal The Lancet and demonstrated that when siRNA targeting the Ebola virus and delivered by Tekmira’s LNP [Lipid Nanoparticle] technology were used to treat previously infected non-human primates, the result was 100 percent protection from an otherwise lethal dose of Zaire Ebola virus (Geisbert et al., The Lancet, Vol. 375, May 29, 2010). In March 2014, Tekmira was granted a Fast Track designation from the U.S. Food and Drug Administration for the development of TKM-Ebola.

About Joint Project Manager Medical Countermeasure Systems (JPM-MCS)

This work is being conducted under contract with the U.S. Department of Defense Joint Project Manager Medical Countermeasure Systems (JPM-MCS). JPM-MCS, a component of the Joint Program Executive Office for Chemical and Biological Defense, aims to provide U.S. military forces and the nation with safe, effective, and innovative medical solutions to counter chemical, biological, radiological, and nuclear threats. JPM-MCS facilitates the advanced development and acquisition of medical countermeasures and systems to enhance biodefense response capability. For more information, visit www.jpeocbd.osd.mil.

About Tekmira

Tekmira Pharmaceuticals Corporation is a biopharmaceutical company focused on advancing novel RNAi therapeutics and providing its leading lipid nanoparticle (LNP) delivery technology to pharmaceutical partners. Tekmira has been working in the field of nucleic acid delivery for over a decade and has broad intellectual property covering LNPs. Further information about Tekmira can be found at www.tekmira.com. Tekmira is based in Vancouver, B.C. Canada.

Forward-Looking Statements and Information

This news release contains “forward-looking statements” or “forward-looking information” within the meaning of applicable securities laws (collectively, “forward-looking statements”). Forward-looking statements in this news release include statements about Tekmira’s strategy, future operations, clinical trials, prospects and the plans of management; an appropriate regulatory and clinical  framework for emergency use of TKM-Ebola in subjects with confirmed or suspected Ebola infections; FDA grant of expanded access use of TKM-Ebola under Tekmira’s IND; Health Canada’s establishment of a similar framework for TKM-Ebola; Tekmira’s response to requests for the use of TKM-Ebola in several patients under emergency protocols and the results thereon; the current supply of TKM-Ebola drug; the partial clinical hold on the TKM-Ebola IND by the FDA (enabling the potential use of TKM-Ebola in individuals with a confirmed or suspected Ebola virus infection); the quantum value of the contract with the JPM-MCS; and Fast Track designation from the FDA for the development of TKM-Ebola.

With respect to the forward-looking statements contained in this news release, Tekmira has made numerous assumptions regarding, among other things, the clinical framework for emergency use of TKM-Ebola. While Tekmira considers these assumptions to be reasonable, these assumptions are inherently subject to significant business, economic, competitive, market and social uncertainties and contingencies.

Additionally, there are known and unknown risk factors which could cause Tekmira’s actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements contained herein. Known risk factors include, among others: TKM-Ebola may not prove to be effective in the treatment of Ebola infection under the emergency use framework, or at all; any uses of TKM-Ebola under emergency INDs are not controlled trails, and TKM-Ebola may be used on Ebola strains that have diverged from the strain to which TKM-Ebola is directed, and physicians treating patients may use more than one therapeutic intervention in addition to TKM-Ebola; the current supply of TKM-Ebola is limited, and Tekmira may not be able to respond to future requests for help in the current Ebola outbreak; the FDA may not remove the partial clinical hold on the TKM-Ebola IND; the FDA may refuse to approve Tekmira’s products, or place restrictions on Tekmira’s ability to commercialize its products; anticipated pre-clinical and clinical trials may be more costly or take longer to complete than anticipated, and may never be initiated or completed, or may not generate results that warrant future development of the tested drug candidate; and Tekmira may not receive the necessary regulatory approvals for the clinical development of Tekmira’s products.

A more complete discussion of the risks and uncertainties facing Tekmira appears in Tekmira’s Annual Report on Form 10-K and Tekmira’s continuous disclosure filings, which are available at www.sedar.com or www.sec.gov. All forward-looking statements herein are qualified in their entirety by this cautionary statement, and Tekmira disclaims any obligation to revise or update any such forward-looking statements or to publicly announce the result of any revisions to any of the forward-looking statements contained herein to reflect future results, events or developments, except as required by law.

In the midst of all those ‘cover your rear end’ statements to investors, it’s easy to miss the fact that people are actually being treated and the results are promising, if not guaranteed,

Tekmira has distributed a Sept. 23, 2014 news release touting its membership in a new consortium, which suggests that in parallel with offering treatment, human clinical trials will  also be conducted,

Tekmira Pharmaceuticals Corporation (Nasdaq:TKMR) (TSX:TKM), a leading developer of RNA interference (RNAi) therapeutics, today reported that it is collaborating with an international consortium to provide an RNAi based investigational therapeutic for expedited clinical studies in West Africa.

Led by Dr. Peter Horby of the Centre for Tropical Medicine and Global Health at the University of Oxford and the International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC), the consortium includes representatives from the World Health Organization (WHO), US Centers for Disease Control, Médecins Sans Frontières – Doctors without Borders (MSF), ISARIC, and Fondation Mérieux, among others.

The Wellcome Trust has announced it has awarded £3.2 million to the consortium to fund this initiative. The award will include funds for the manufacture of investigational therapeutics as well as the establishment of an operational clinical trials platform in two or more Ebola Virus Disease (EVD) treatment centers in West Africa. RNAi has been prioritized as an investigational therapeutic and may be selected for clinical trials at these centers.

The objective of the clinical trials is to assess the efficacy and safety of promising therapeutics and vaccines, reliably and safely, in patients with EVD by adopting strict protocols that comply with international standards.  It is hoped this initiative will permit the adoption of safe and effective interventions rapidly.

The genetic sequence of the Ebola virus variant responsible for the ongoing outbreak in West Africa is now available. Under this program, Tekmira will produce an RNAi based product specifically targeting the viral variant responsible for this outbreak.  The ability to rapidly and accurately match the evolving genetic sequences of emerging infectious agents is one of the powerful features of RNAi therapeutics.

“We commend the Wellcome Trust for their leadership in providing the necessary funds to launch and expedite this ground breaking initiative. We are gratified that RNAi has been prioritized as a potential investigational therapeutic to assist in the ongoing public health and humanitarian crisis in Africa,” said Dr. Murray, Tekmira’s President and CEO.

“We are an active collaborator in this consortium and through our ongoing dialogue with the WHO, NGOs and governments in various countries; we have been discussing the creation of appropriate clinical and regulatory frameworks for the potential use of investigational therapeutics in Africa. This initiative goes a long way towards achieving this aim.  Many complex decisions remain to fully implement this unique clinical trial platform.  At this time, there can be no assurances that our product will be selected by the consortium for clinical trials in Africa,” said Dr. Murray.

About Wellcome Trust

The Wellcome Trust is the largest charity in the UK. It funds innovative biomedical research, in the UK and internationally, spending over £600 million each year to support the brightest scientists with the best ideas. The Wellcome Trust supports public debate about biomedical research and its impact on health and wellbeing. For more information, visit www.wellcome.ac.uk

I’m glad they’re being careful while giving people treatment, i. e., trying to do something rather than waiting to conduct human clinical trials as has sometimes been the case in the past. This business of running the trials almost parallel to offering treatment suggests an agility not often associated with the international health care community.

ETA Sept. 23 2014 1200 hours PDT: For more information about the status of the Ebola outbreak read Tara Smith’s Sept. 22, 2014 article Slate titled, Here’s Where We Stand With Ebola; Even experienced international disaster responders are shocked at how bad it’s gotten (Note: Links have been removed).

Now, terms like “exponential spread” are being thrown around as the epidemic continues to expand more and more rapidly. Just last week, an increase of 700 new cases was reported, and the case count is now doubling in size approximately every three weeks.

A Doctors Without Borders worker in Monrovia, Liberia, named Jackson Naimah describes the situation in his home country, noting that patients are literally dying at the front door of his treatment center because it lacks patient beds and assistance; the sufferers are left to die a “horrible, undignified death” and potentially infect others as they do so: …

… Health care workers who are treating the sick are dying because they also lack basic protective equipment, or because they have been so overwhelmed by taking care of the ill and dying that they begin to make potentially fatal errors. They have gone on strike in Liberia because they are not being adequately protected or even paid for their risky service.

Fear and misinformation are as deadly as the virus itself. Eight Ebola workers were recently murdered in Guinea, in the area where the virus first came to the world’s attention in March. Liberia’s largest newspaper featured a story describing Ebola as a man-made virus being purposely unleashed upon Africans by Western pharmaceutical companies. Reports abound of doctors and other workers being chased away, sometimes violently, by fearful families. …

It’s not a pleasant read but, I think, a necessary one. For anyone who may think the panic and fear are unique to this situation, I once worked with a nurse who described being lifted by her neck after someone came through the door of a clinic demanding a vaccine and had been refused. He was in such a panic and so fearful he wasn’t going to take a ‘no’. The incident took place in Vancouver (Canada) in a ‘nice’ part of town.

ETA Sept. 24, 2014: Kelly Grant has written a Sept. 22, 2014 article for the Globe and Mail which provides more information about Tekmira, some of which contradicts the details I have here about TKM-Ebola and clinical trials in Africa although the key points remain the same. She also provides more information about the ZMapp therapy (mentioned in my Aug. 15, 2014 post) noting yet a third Canadian connection.* Canada’s National Microbiology Laboratory was somehow involved in developing ZMApp, unfortunately, Grant does not or is not able to provide more details about that involvement.

ETA Oct. 16, 2014: David Bruggeman recommends a digital journalism site Ebola Deeply for some in depth reporting in his Oct. 16, 2014 posting.

* This sentence “She also provides more information about the ZMapp therapy mentioned in my Aug. 15, 2014 post mentioning yet a third Canadian connection.” was altered for grammatical purposes on Dec. 4, 2014.

Simon Fraser University – Bioelectronics course: Week 3

We’re halfway through the course as of last night (Sept. 22, 2014) when I presented Week 3 of Bioelectronics, Medical Imaging and Our Bodies (at Simon Fraser University in Vancouver, Canada),

Week 3: X-Rays and CT Scans: Useful but Carcinogenic? + Monitoring Devices

Higher levels of X-ray exposure can increase the risk of mutation and cancer. Public demand for these tests is generally based on the belief that more testing is better without thought to any risks posed by the testing itself. What are the risks, costs and benefits?

Here’s the week 3 slide deck (Note 1: all the of the source materials are given although not necessarily where you might expect to see them; Note 2: I promised students I would check the date for a report cited for airport scanners and have confirmed it was published in 2013 as noted on the slide),

Week 3_CTs_Xrays

Also, here are my ‘notes’ for week 3 which consist largely of brief heads designed to remind me of the content to be found by clicking the link directly after the head.

Week 3 CTs Xrays and more

Happy reading!

Coffee-powered athletic gear, courtesy ASICS

Describing the upcoming collection (2015) of athletic gear from ASICS as coffee-powered is a bit of an exaggeration but at least some of the new gear is derived from coffee beans according to a Sept. 22, 2014 news item on Yahoo Philippines news,

A workout fueled by caffeine, but not in the way you’d guess: Highlights of Asics’ newly announced collection include the patented new textile technology Ecoline, made of repurposed coffee beans which makes for a moisture wicking, breathable polyester.

The entire Sept. 18, 2014 ASICS America press release, available on a Reuters website, which originated the news item, provides more details,

… Exciting standout introductions this season include “ECOLINE®,” a new technology from ASICS utilizing recycled polyester fabric from repurposed coffee beans with sweat-wicking and climate-control benefits, and the new GEL-FujiRunnegade™ running footwear with an anti-gravel tongue to prevent debris from getting into the footwear during off-road runs. No matter the level of competitor or athlete, consumers will find the Spring 2015 collection an unmatched companion in their training, practice, and competition.

The press release doesn’t offer any more details about the repurposed coffee bean-based athletic wear but there is a reference to socks designed with NanoGLIDE® technology which have sweat-wicking and climate control benefits,

… Favorites of ASICS elite tennis athletes like Sam Stosur and Gael Monfils also appear in the collection, including the GEL-Solution® Speed 2, voted “Best Game Day Shoe” by Tennis Magazine, the ASICS Team Performance apparel line and the Resolution™ sock designed for court play with NanoGLIDE®1 technology.

The NanoGLIDE company produces textiles for athletic garments. Here is a bit more information about the socks and the technology from the company’s FAQs (frequently asked questions) page,

Is this technology permanent or a finish?

NanoGLIDE® technology is permanent because it is incorporated into the yarn or fiber from the very beginning of the polyester or nylon fiber manufacturing process. The benefits of the technology will be retained or improved over the life of the garment or sock. Unlike topical finishes, or nano chemistry which are added in the dye bath during fabric finishing or in the wash cycle when socks are laundered before shipping; NanoGLIDE® will not wash off or wear out.

What are the benefits of NanoGLIDE® technology when used in apparel and socks?

There is a large demand for performance fabrics and socks that provide multiple benefits in one product. To date, these performance features have largely been obtained through finishing fabrics or washing socks with various chemical additives.

In some cases, there are multiple finishing stages which end up costing additional dollars and sacrificing hand /aesthetics/performance and time. NanoGLIDE® fiber/fabrics were developed to provide multiple attributes (Hand-Loft-Softness-Evaporative Cooling/Moister Management-UV Protection-Friction-Abrasion-Heat Management) that are permanently in the fiber and will not wash out.

Getting back to ASICS and its Ecoline technology, there was an Aug. 2, 2013 press release on Global Newswire.com featuring Ecoline and a coconut-based technology,

Designed for the adventurous trail explorer who demands durable and sustainable clothing to match the elements, a revolutionary addition to the spring 2014 collection is the new Ecoline® fabric with Cocona®1 Technology, which uses natural active particles derived from coconuts and minerals to enhance the performance of the fabrics by increasing breathability, odor management and UV protection.

Whether or not those are nanoparticles being derived from the coconut and minerals is not revealed.

New ‘Star of David’-shaped molecule from University of Manchester

It sounds like the scientists took their inspiration from Maurits Cornelius Escher (M. C. Escher) when they created their ‘Star of David’ molecule. From a Sept. 22, 2014 news item on Nanowerk,

Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created.

Here’s a representation of the molecule,

Atoms in the Star of David molecule. Image credit: University of Manchester

Atoms in the Star of David molecule. Image credit: University of Manchester

Here’s a ‘star’ sculpture based on Escher’s work,

Sculpture of the small stellated dodecahedron that appears in Escher's Gravitation. It can be found in front of the "Mesa+" building on the Campus of the University of Twente.

Sculpture of the small stellated dodecahedron that appears in Escher’s Gravitation. It can be found in front of the “Mesa+” building on the Campus of the University of Twente (Netherlands)

If you get a chance to see the Escher ‘star’, you’ll be able to see more plainly how the planes of the ‘star’ interlock. (I had the opportunity when visiting the University of Twente in Oct. 2012.)

Getting back to Manchester, a Sept. 22, 2014 University of Manchester press release (also on EurekAlert but dated Sept. 21, 2014), which originated the news item, describes the decades-long effort to create this molecule and provides a few technical details,

Known as a ‘Star of David’ molecule, scientists have been trying to create one for over a quarter of a century and the team’s findings are published at 1800 London time / 1300 US Eastern Time on 21 September 2014 in the journal Nature Chemistry.

Consisting of two molecular triangles, entwined about each other three times into a hexagram, the structure’s interlocked molecules are tiny – each triangle is 114 atoms in length around the perimeter. The molecular triangles are threaded around each other at the same time that the triangles are formed, by a process called ‘self-assembly’, similar to how the DNA double helix is formed in biology.

The molecule was created at The University of Manchester by PhD student Alex Stephens.

Professor David Leigh, in Manchester’s School of Chemistry, said: “It was a great day when Alex finally got it in the lab.  In nature, biology already uses molecular chainmail to make the tough, light shells of certain viruses and now we are on the path towards being able to reproduce its remarkable properties.

“It’s the next step on the road to man-made molecular chainmail, which could lead to the development of new materials which are light, flexible and very strong.  Just as chainmail was a breakthrough over heavy suits of armour in medieval times, this could be a big step towards materials created using nanotechnology. I hope this will lead to many exciting developments in the future.”

The team’s next step will be to make larger, more elaborate, interlocked structures.

Here’s a link to and a citation for the paper,

A Star of David catenane by David A. Leigh, Robin G. Pritchard, & Alexander J. Stephens. Nature Chemistry (2014) doi:10.1038/nchem.2056
Published online 21 September 2014

This paper is behind a paywall.

Bone implants and restorative dentistry at the University of Malaya

The research into biomedical implants at the University of Malaya is part of an international effort and is in response to a demographic reality, hugely increased populations of the aged. From a Sept. 18, 2014 news item on ScienceDaily,

A major success in developing new biomedical implants with the ability to accelerate bone healing has been reported by a group of scientists from the Department of Restorative Dentistry, University of Malaya. This stems from a project partly funded by HIR [High Impact Research] and also involves Mr. Alireza Yaghoubi, HIR Young Scientist.

According to WHO (World Health Organization), between 2000 and 2050, the world’s population over 60 years is expected to increase from 605 million to more than 2 billion. This trend is particularly more prominent in Asia and Europe where in some countries by 2050, the majority of people will be older than 50. That is why in recent years, regenerative medicine has been among the most active and well-funded research areas in many developing nations.

As part of this global effort to realize better treatments for age-related conditions, a group of scientists from the department of restorative dentistry, University of Malaya and four other universities in the US have recently reported a major success in developing new biomedical implants with the ability to accelerate bone healing.

Two studies were published according to the Sept.15, 2014 University of Malaya news release, which originated the news item,

The two studies funded by the National Science Fund (NSF) in the US and the High Impact Research (HIR) program in Malaysia tackled the issue of bone-implant integration from different angles. In the first study appearing on the front cover of the July issue of Applied Surface Science, researchers demonstrated a mechanically superior bioactive coating based on magnesium silicates rather than the commercially available calcium phosphate which develops microcracks during preparation and delaminates under pressure. The new material owing to its lower thermal mismatch with titanium can prolong the durability of load-bearing orthopedic implants and reduce chances of post-surgery complications.

The other study published in the American Chemical Society’s Applied Materials & Interfaces reported a method for fabricating titanium implants with special surface topographies which double the chance of cell viability in early stages. The new technique is also much simpler as compared to the existing ones and therefore enables the preparation of personalized implants at the fraction of time and cost while offering a higher mechanical reliability.

Alireza Yaghoubi, the corresponding author of both studies believes that we are moving toward a future of personalized products. “It is very much like your taste in music and TV shows. People are different and the new trend in biotechnology is to make personalized medicine that matches the patient’s needs” Yaghoubi said. He continued “With regard to implants, we have the problem of variations in bone density in patients with osteoporosis and in some cases, even healthy individuals. Finding ways to integrate the implants with bone tissues can be challenging. There are also problems with the long-term performance of implants, such as release of debris from bioactive films which can potentially lead to osteolysis and chronic inflammation”.

The new technique employed by the scientists to create titanium implants with desirable surface properties uses microwave heating to create a porosity gradient on top of a dense core. The principles are very similar to a kitchen microwave and how it can make cooking easier, however apparently the fast heating capability is not only useful in cooking but it has numerous industrial applications. Prof. Bhaduri, the Director of Multi-functional materials laboratory at University of Toledo says that they have been using microwave for years to simplify fabrication of complex metallic components. “We needed a way to streamline the process and microwave sintering was a natural fit. With our new method, making the implant from titanium powder in custom sizes and with specific surface topographies is achieved through one easy step.” Bhaduri elaborated.

Researchers are hoping to carry out the clinical trial for this new generation of implants in order to make them available to the market soon. Dr. Kutty, one of the lead authors suggests that there is still room for improvement. Kutty concluded that “Roughened surfaces and bioceramics have desirable effects on osseointegration, but we are not stopping there. We are now developing new ways to use peptides for enhancing the performance of implants even further.”

This image provides an illustration of the proposed new material for implants,

The artwork appeared on the front cover of Applied Surface Science summarizes the benefits of a new bioceramic coating versus the commercially available Calcium Phosphate which develops microcracks during processing and may later cause osteolysis in load-bearing orthopedic implants. Courtesy: University of Malaya

The artwork appeared on the front cover of Applied Surface Science summarizes the benefits of a new bioceramic coating versus the commercially available Calcium Phosphate which develops microcracks during processing and may later cause osteolysis in load-bearing orthopedic implants. Courtesy: University of Malaya

Here are links to and citations for the papers,

Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces by M. Afshar-Mohajer, A. Yaghoubi, S. Ramesh, A.R. Bushroa, K.M.C. Chin, C.C. Tin, and W.S. Chiu.  Applied Surface Science (2014) , Volume 307, 15 July 2014, Pages 1–6, DOI: 10.1016/j.apsusc.2014.04.033

Microwave-assisted Fabrication of Titanium Implants with Controlled Surface Topography for Rapid Bone Healing by Muralithran G. Kutty, Alok De, Sarit B. Bhaduri, and Alireza Yaghoubi. ACS Appl. Mater. Interfaces, 2014, 6 (16), pp 13587–13593 DOI: 10.1021/am502967n Publication Date (Web): August 6, 2014

Copyright © 2014 American Chemical Society

Both of these papers are behind paywalls.

Manufacturing innovation in the US and the Institutes for Manufacturing Innovation (IMI)

The announcement from US President Barack Obama about creating a National Network for Manufacturing Innovation (NNMI) resulting in 45 Institutes for Manufacturing Innovation (IMI) seems to have been made a while back as one of the technical focus areas mentioned in the current round of RFIs (request for information) has closed. Regardless, here’s more from a Sept. 18, 2014 news item on Azonano,

The President of the United States has launched a major, new initiative focused on strengthening the innovation, performance, competitiveness, and job-creating power of U.S. manufacturing called the National Network for Manufacturing Innovation (NNMI).

The NNMI is comprised of Institutes for Manufacturing Innovation (IMIs) and the President has proposed establishing up to 45 IMIs around the country.

A Sept. ??, 2014 National Nanotechnology Initiative (NNI) news release, which originated the news item, describes the program and the RFIs in more detail,

The IMIs will be regionally centered public private partnerships enabling the scale-up of advanced manufacturing technologies and processes, with the goal of successful transition of existing science and technology into the marketplace for both defense and commercial applications. The purpose of the RFI is for DOD to consider input from industry and academia as part of an effort to select and scope the technology focus areas for future IMIs. The RFI originally sought information about the following technical focus areas:

  • Flexible Hybrid Electronics
  • Photonics (now closed)
  • Engineered Nanomaterials
  • Fiber and Textiles
  • Electronic Packaging and Reliability
  • Aerospace Composites

Submissions received to date relevant to the Photonics topic have been deemed sufficient and this topic area is now closed; all other areas remain open. The RFI contains detailed descriptions of the focus areas along with potential applications, market opportunities, and discussion of current and future Technology Readiness Levels (TRLs).

The National Nanotechnology Coordination Office encourages interested members of the nanotechnology community to view and respond to the RFI as appropriate. [emphasis mine] The IMI institutes have the potential to provide game-changing resources and foster exciting new partnerships for the nanotechnology community.

The current closing date is 10 October 2014. Additional details can be found in the RFI and its amendments.

(I’m highlighting the nanotechnology connection for discussion later in this posting.)

You can find the official RFI for the Institutes for Manufacturing Innovation here along with this information,

The Department of Defense (DoD) wishes to consider input from Industry and Academia as part of an effort to select and scope the technology focus areas for future Institutes for Manufacturing Innovation (IMIs). These IMIs will be regionally centered Public Private Partnerships enabling the scale-up of advanced manufacturing technologies and processes with the goal of successful transition of existing science and technology into the marketplace for both Defense and commercial applications. Each Institute will be led by a not-for-profit organization and focus on one technology area. The Department is requesting responses which will assist in the selection of a technology focus area from those currently under consideration, based upon evidence of national security requirement, economic benefit, technical opportunity, relevance to industry, business case for sustainability, and workforce challenge.

There is also some information about this opportunity on the US government’s Advanced Manufacturing Portal here.

This National Network for Manufacturing Innovation is a particularly interesting development in light of my Feb. 10, 2014 posting about a US Government Accountability Office (GAO) report titled: “Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health.”

Later in 2014, the NNI budget request was shrunk by $200M (mentioned in my March 31, 2014 posting) and shortly thereafter members of the nanotech community went to Washington as per my May 23, 2014 posting. Prior to hearing testimony, the representatives on the subcommittee hearing testimony were given a a 22 pp. précis (PDF; titled: NANOMANUFACTURING AND U.S. COMPETITIVENESS; Challenges and Opportunities) of the GAO report published in Feb. 2014.

I’ve already highlighted mention of the National Nanotechnology Coordination Office in a news release generated by the National Nanotechnology Initiative (NNI) which features a plea to the nanotechnology community to respond to the RFIs.

Clearly, the US NNI is responding to the notion that research generated by the NNI needs to be commercialized.

Finally, the involvement of the US Department of Defense can’t be a huge surprise to anyone given that military research has contributed greatly to consumer technology. As well, it seems the Dept. of Defense might wish to further capitalize on its own research efforts.

Sharklet’s sharkskin-like material

It’s one of my favourite technologies but there hasn’t been much talk about Sharklet for the last few years. My Feb. 10, 2011 posting about it had this,

They used sharkskin as an example for making a ‘smarter’ material. Scientists have observed that nanoscale structures on a shark’s skin have antibacterial properties. This is especially important when we have a growing problem with bacteria that are antibiotic resistant. David Pogue’s (the program host) interviewed scientists at Sharklet and highlighted their work producing a plastic with nanostructures similar to those found on sharkskin for use in hospitals, restaurants, etc.  I found this on the Sharklet website (from a rotating graphic on the home page),

The World Health Organization calls antibiotic resistance a leading threat to human health.

Sharkjet provides a non-toxic approach to bacterial control and doesn’t create resistance.

The reason that the material does not create resistance is that it doesn’t kill the bacteria (antibiotics kill most bacteria but cannot kill all of them with the consequence that only the resistant survive and reproduce). Excerpted from Sharklet’s technology page,

While the Sharklet pattern holds great promise to improve the way humans co-exist with microorganisms, the pattern was developed far outside of a laboratory. In fact, Sharklet was discovered via a seemingly unrelated problem: how to keep algae from coating the hulls of submarines and ships. In 2002, Dr. Anthony Brennan, a materials science and engineering professor at the University of Florida, was visiting the U.S. naval base at Pearl Harbor in Oahu as part of Navy-sponsored research. The U.S. Office of Naval Research solicited Dr. Brennan to find new antifouling strategies to reduce use of toxic antifouling paints and trim costs associated with dry dock and drag.

The most recent news from Sharklet comes in a Sept. 16, 2014 news release on EurekAlert which refines the definition for Sharklet and provides research about the latest research on this material,

Transmission of bacterial infections, including MRSA and MSSA could be curbed by coating hospital surfaces with microscopic bumps that mimic the scaly surface of shark skin, according to research published in the open access journal Antimicrobial Resistance and Infection Control.

The study modelled how well different materials prevented the spread of human disease bacteria through touching, sneezes or spillages. The micropattern, named Sharklet™, is an arrangement of ridges formulated to resemble shark skin. The study showed that Sharklet harboured 94% less MRSA bacteria than a smooth surface, and fared better than copper, a leading antimicrobial material. The bacteria were less able to attach to Sharklet’s imperceptibly textured surface, suggesting it could reduce the spread of superbugs in hospital settings.

The surfaces in hospitals and healthcare settings are often rife with bacteria and patients are vulnerable to bacterial infection. Scientists are investigating the ability of different materials to prevent the spread of bacteria. Copper alloys are a popular option, as they are toxic to bacterial cells, interfering with their cellular processes and killing them. The Sharklet micropattern works differently – the size and composition of its microscopic features prevent bacteria from attaching to it. It mimics the unique qualities of shark skin, which, unlike other underwater surfaces, inhibits bacteria, because it is covered with a natural micropattern of tooth-like structures, called denticles.

Dr Ethan Mann, a research scientist at Sharklet Technologies, the manufacturer of the micropattern, says: “The Sharklet texture is designed to be manufactured directly into the surfaces of plastic products that surround patients in hospital, including environmental surfaces as well as medical devices. Sharklet does not introduce new materials or coatings – it simply alters the shape and texture of existing materials to create surface properties that are unfavorable for bacterial contamination.”

The researchers from Sharklet Technologies compared how well two types of infection-causing bacteria, methicillin-resistant or susceptible Staphylococcus aureus (MRSA and MSSA), fared at contaminating three surfaces – the Sharklet micropattern, a copper alloy, and a smooth control surface. They created experimental procedures to mimic common ways bacteria infect surfaces. Sneezing was mimicked by using a paint sprayer to spread the bacterial solution on 10 samples of each surface. To mimic infected patients touching the surfaces, velveteen cloth was put in contact with bacteria for 10s, and then placed on another set of each test surface for 10s. A third set of each surface was immersed in bacterial solution for an hour, then rinsed and dried, to mimic spills.

Surfaces were sampled for remaining contaminations either immediately following exposure to MSSA and MRSA or 90 minutes after being exposed. The Sharklet micropattern reduced transmission of MSSA by 97% compared to the smooth control, while copper was no better than the control. The micropattern also harboured 94% less MRSA bacteria than the control surface, while the copper had 80% less.

Dr Mann says: “Shark skin itself is not an antimicrobial surface, rather it seems highly adapted to resist attachment of living organisms such as algae and barnacles. Shark skin has a specific roughness and certain properties that deter marine organisms from attaching to the skin surface. We have learned much from nature in building this material texture for the future.”

Here’s an illustration the researchers have provided,

Caption: This is an image of the Sharklet micropattern, which mimics the denticles of shark skin. Credit: Mann et al.

Caption: This is an image of the Sharklet micropattern, which mimics the denticles of shark skin.
Credit: Mann et al.

Here’s a link to and a citation for the paper,

Surface micropattern limits bacterial contamination by Ethan E Mann, Dipankar Manna, Michael R Mettetal, Rhea M May, Elisa M Dannemiller, Kenneth K Chung, Anthony B Brennan, and Shravanthi T Reddy. Antimicrobial Resistance and Infection Control 2014, 3:28  doi:10.1186/2047-2994-3-28

This is an open access paper.

The Danish ‘Mini-mouth and wine

Denmark is not the first country that pops to mind when there’s mention of a nanosensor that mimics what happens in your mouth when you drink wine but that’s where the device was developed. From a Sept. 17, 2014 news item on ScienceDaily,

When wine growers turn their grapes into wine, they need to control a number of processes to bring out the desired flavour in the product that ends up in the wine bottle. An important part of the taste is known in wine terminology as astringency, and it is characteristic of the dry sensation you get in your mouth when you drink red wine in particular. It is the tannins in the wine that bring out the sensation that — otherwise beyond compare — can be likened to biting into an unripe banana. It is mixed with lots of tastes in the wine and feels both soft and dry.

Researchers at the Interdisciplinary Nanoscience Centre (iNANO ), Aarhus University, have now developed a nanosensor that is capable of measuring the effect of astringency in your mouth when you drink wine.

A Sept. 17, 2014 Aarhus University (Denmark) press release (also on EurekAlert), which originated the news item, provides a general description of the sensor,

… To put it simply, the sensor is a kind of mini-mouth that uses salivary proteins to measure the sensation that occurs in your mouth when you drink wine. The researchers are looking at how the proteins change in the interaction with the wine, and they can use this to describe the effect of the wine.

There is great potential in this – both for the wine producers and for research into the medicine of the future. Indeed, it is the first time that a sensor has been produced that not only measures the amount of proteins and molecules in your mouth when you drink wine, but also measures the effect of wine – or other substances – entering your mouth.

The wine producers’ perspective is introduced (from the news release),

The sensor makes it possible for wine producers to control the development of astringency during wine production because they can measure the level of astringency in the wine right from the beginning of the process. This can currently only be achieved when the wine is ready and only by using a professional tasting panel – with the associated risk of human inaccuracy. Using the sensor, producers can work towards the desired sensation of dryness before the wine is ready.

“We don’t want to replace the wine taster. We just want a tool that is useful in wine production. When you produce wine, you know that the finished product should have a distinct taste with a certain level of astringency. If it doesn’t work, people won’t drink the wine,” says PhD student Joana Guerreiro, first author of the scientific article in ACS NANO, which presents the sensor and its prospects.

Better Understanding of Astringency

There are many different elements in wine that create astringency, and this makes it difficult to measure because there are so many parameters. The sensor turns this upside down by measuring the molecules in your mouth instead.

“The sensor expands our understanding of the concept of astringency. The sensation arises because of the interaction between small organic molecules in the wine and proteins in your mouth. This interaction gets the proteins to change their structure and clump together. Until now, the focus has been on the clumping together that takes place fairly late in the process. With the sensor, we’ve developed a method that mimics the binding and change in the structure of the proteins, i.e. the early part of the process. It’s a more sensitive method, and it reproduces the effect of the astringency better,” says Joana Guerreiro.

There are also some technical details in the news release,

Quite specifically, the sensor is a small plate coated with nanoscale gold particles. On this plate, the researchers simulate what happens in your mouth by first adding some of the proteins contained in your saliva. After this they add the wine. The gold particles on the plate act as nano-optics and make it possible to focus a beam of light below the diffraction limit so as to precisely measure something that is very small – right down to 20 nanometres. This makes it possible to study and follow the proteins, and to see what effect the wine has. It is thereby possible to see the extent to which the small molecules have to bind together for the clumping effect on the protein to be set off.

The technique in itself is not new. What is new is using it to create a sensor that can measure an effect rather than just a number of molecules. In this case, the effect is the dry sensation you get in your mouth when you drink wine. However, it is also possible to use the sensor to measure other effects.

Here’s a look at the Mini-mouth,

PhD student Joana Guerreiro has taken part in developing a sensor, which - by using nanoscience - can measure how we experience the feeling of dryness in wine. Photo: Lars Kruse, Aarhus University.

PhD student Joana Guerreiro has taken part in developing a sensor, which – by using nanoscience – can measure how we experience the feeling of dryness in wine. Photo: Lars Kruse, Aarhus University.

Here’s a link to and a citation for the paper,

Multifunctional Biosensor Based on Localized Surface Plasmon Resonance for Monitoring Small Molecule–Protein Interaction by Joana Rafaela Lara Guerreiro, Maj Frederiksen, Vladimir E. Bochenkov, Victor De Freitas, Maria Goreti Ferreira Sales, and Duncan Steward Sutherland. ACS Nano, 2014, 8 (8), pp 7958–7967 DOI: 10.1021/nn501962y Publication Date (Web): July 8, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

ETA Sept. 19, 2014: Dexter Johnson provides some insight into the field of ‘artificial mouths’ in his Sept. 18, 2014 posting (Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] about the work in Denmark.