Monthly Archives: March 2015

University of Manchester’s National Graphene Institute opens—officially

A little over two years after the announcement of a National Graphene Institute at the UK’s University of Manchester in my Jan. 14, 2013 post, Azonano provides a March 24, 2015 news item which describes the opening,

The Chancellor of the Exchequer, George Osborne, was invited to open the recently completed £61m National Graphene Institute (NGI) at the University of Manchester on Friday 20th March [2015].

Mr Osbourne was accompanied by Nobel Laureate Professor Sir Kostya Novoselov as he visited the institute’s sophisticated cleanrooms and laboratories.

For anyone unfamiliar with the story, the University of Manchester was the site where two scientists, Kostya (Konstantin) Novoselof and Andre Geim, first isolated graphene. In 2010, both scientists received a Nobel prize for this work. As well, the European Union devoted 1B Euros to be paid out over 10 years for research on graphene and the UK has enthusiastically embraced graphene research. (For more details: my Oct. 7, 2010 post covers graphene and the newly awarded Nobel prizes; my Jan. 28, 2013 post covers the 1B Euros research announcements.)

A March 20, 2015 University of Manchester press release, which originated the news item, gives more detail,

The NGI is the national centre for graphene research and will enable academics and industry to work side-by-side on the graphene applications of the future.

More than 35 companies from across the world have already chosen to partner with The University of Manchester working on graphene-related projects.

The Government provided £38m for the construction of the Institute via the Engineering and Physical Sciences Research Council (EPSRC), with the remaining £23m provided by the European Regional Development Fund (ERDF).

Mr Osborne said: “Backing science and innovation is a key part of building a Northern Powerhouse. The new National Graphene Institute at The University of Manchester will bring together leading academics, scientists and business leaders to help develop the applications of tomorrow, putting the UK in pole position to lead the world in graphene technology.”

One-atom thick graphene was first isolated and explored in 2004 at The University of Manchester. Its potential uses are vast but one of the first areas in which products are likely to be seen is in electronics.

The 7,825 square metre, five-storey building features cutting-edge facilities and equipment throughout to create a world-class research hub. The NGI’s 1,500 square metres of clean room space is the largest academic space of its kind in the world for dedicated graphene research.

Professor Dame Nancy Rothwell, President and Vice-Chancellor of The University of Manchester said: “The National Graphene Institute will be the world’s leading centre of graphene research and commercialisation.

“It will be the home of graphene scientists and engineers from across The University of Manchester working in collaboration with colleagues from many other universities and from some of the world’s leading companies.

“This state-of-the-art institute is an incredible asset, not only to this University and to Manchester but also to the UK. The National Graphene Institute is fundamental to continuing the world-class graphene research which was started in Manchester.”

The NGI is a significant first step in the vision to create a Graphene City® in Manchester. Set to open in 2017 the £60m Graphene Engineering Innovation Centre (GEIC) will complement the NGI and initiate further industry-led development in graphene applications with academic collaboration.

Last year the Chancellor also announced the creation of the £235m Sir Henry Royce Institute for Advanced Materials at The University of Manchester with satellite centres in Sheffield, Leeds, Cambridge, Oxford and London.

Speaking at the opening ceremony, Professor Colin Bailey, Deputy President and Deputy Vice-Chancellor of The University of Manchester said: “The opening of the National Graphene Institute today, complemented by the Graphene Engineering Innovation Centre opening in 2017 and the future Sir Henry Royce Institute for Advanced Materials, will provide the UK with the facilities required to accelerate new materials to market.

“It will allow the UK to lead the way in the area which underpins all manufacturing sectors, resulting in significant inward investment, the stick-ability of innovation, and significant long-term job creation.”

Congratulations to everyone involved in the effort.

As I mentioned earlier today in a post about Kawasaki city (Japan), Manchester will be the European City of Science when it hosts the EuropeanScience Open Forum (ESOF) in 2016.

A city of science in Japan: Kawasaki (Kanagawa)

Happily, I’m getting more nanotechnology (for the most part) information from Japan. Given Japan’s prominence in this field of endeavour I’ve long felt FrogHeart has not adequately represented Japanese contributions. Now that I’m receiving English language translations, I hope to better address the situation.

This morning (March 26, 2015), there were two news releases from Kawasaki INnovation Gateway at SKYFRONT (KING SKYFRONT), Coastal Area International Strategy Office, Kawasaki City, Japan in my mailbox. Before getting on to the news releases, here’s a little about  the city of Kawasaki and about its innovation gateway. From the Kawasaki, Kanagawa entry in Wikipedia (Note: Links have been removed),

Kawasaki (川崎市 Kawasaki-shi?) is a city in Kanagawa Prefecture, Japan, located between Tokyo and Yokohama. It is the 9th most populated city in Japan and one of the main cities forming the Greater Tokyo Area and Keihin Industrial Area.

Kawasaki occupies a belt of land stretching about 30 kilometres (19 mi) along the south bank of the Tama River, which divides it from Tokyo. The eastern end of the belt, centered on JR Kawasaki Station, is flat and largely consists of industrial zones and densely built working-class housing, the Western end mountainous and more suburban. The coastline of Tokyo Bay is occupied by vast heavy industrial complexes built on reclaimed land.

There is a 2014 video about Kawasaki’s innovation gateway, which despite its 14 mins. 39 secs. running time I am embedding here. (Caution: They highlight their animal testing facility at some length.)

Now on to the two news releases. The first concerns research on gold nanoparticles that was published in 2014. From a March 26, 2015 Kawasaki INnovation Gateway news release,

Gold nanoparticles size up to cancer treatment

Incorporating gold nanoparticles helps optimise treatment carrier size and stability to improve delivery of cancer treatment to cells.

Treatments that attack cancer cells through the targeted silencing of cancer genes could be developed using small interfering RNA molecules (siRNA). However delivering the siRNA into the cells intact is a challenge as it is readily degraded by enzymes in the blood and small enough to be eliminated from the blood stream by kidney filtration.  Now Kazunori Kataoka at the University of Tokyo and colleagues at Tokyo Institute of Technology have designed a protective treatment delivery vehicle with optimum stability and size for delivering siRNA to cells.

The researchers formed a polymer complex with a single siRNA molecule. The siRNA-loaded complex was then bonded to a 20 nm gold nanoparticle, which thanks to advances in synthesis techniques can be produced with a reliably low size distribution. The resulting nanoarchitecture had the optimum overall size – small enough to infiltrate cells while large enough to accumulate.

In an assay containing heparin – a biological anti-coagulant with a high negative charge density – the complex was found to release the siRNA due to electrostatic interactions. However when the gold nanoparticle was incorporated the complex remained stable. Instead, release of the siRNA from the complex with the gold nanoparticle could be triggered once inside the cell by the presence of glutathione, which is present in high concentrations in intracellular fluid. The glutathione bonded with the gold nanoparticles and the complex, detaching them from each other and leaving the siRNA prone to release.

The researchers further tested their carrier in a subcutaneous tumour model. The authors concluded that the complex bonded to the gold nanoparticle “enabled the efficient tumor accumulation of siRNA and significant in vivo gene silencing effect in the tumor, demonstrating the potential for siRNA-based cancer therapies.”

The news release provides links to the March 2015 newsletter which highlights this research and to the specific article and video,

March 2015 Issue of Kawasaki SkyFront iNewsletter:


Feature video on Professor Kataoka’s research :

Research highlights:

Here’s a link to and a citation for the paper,

Precise Engineering of siRNA Delivery Vehicles to Tumors Using Polyion Complexes and Gold Nanoparticles by Hyun Jin Kim, Hiroyasu Takemoto, Yu Yi, Meng Zheng, Yoshinori Maeda, Hiroyuki Chaya, Kotaro Hayashi, Peng Mi, Frederico Pittella, R. James Christie, Kazuko Toh, Yu Matsumoto, Nobuhiro Nishiyama, Kanjiro Miyata, and Kazunori Kataoka. ACS Nano, 2014, 8 (9), pp 8979–8991 DOI: 10.1021/nn502125h Publication Date (Web): August 18, 2014
Copyright © 2014 American Chemical Society

This article is behind a paywall.

The second March 26, 2015 Kawasaki INnovation Gateway news release concerns a DNA chip and food-borne pathogens,

Rapid and efficient DNA chip technology for testing 14 major types of food borne pathogens

Conventional methods for testing food-borne pathogens is based on the cultivation of pathogens, a process that is complicated and time consuming. So there is demand for alternative methods to test for food-borne pathogens that are simpler, quick and applicable to a wide range of potential applications.

Now Toshiba Ltd and Kawasaki City Institute for Public Health have collaborated in the development of a rapid and efficient automatic abbreviated DNA detection technology that can test for 14 major types of food borne pathogens. The so called ‘DNA chip card’ employs electrochemical DNA chips and overcomes the complicated procedures associated with genetic testing of conventional methods. The ‘DNA chip card’ is expected to find applications in hygiene management in food manufacture, pharmaceuticals, and cosmetics.


The so-called automatic abbreviated DNA detection technology ‘DNA chip card’ was developed by Toshiba Ltd and in a collaboration with Kawasaki City Institute for Public Health, used to simultaneously detect 14 different types of food-borne pathogens in less than 90 minutes. The detection sensitivity depends on the target pathogen and has a range of 1E+01~05 cfu/mL.

Notably, such tests would usually take 4-5 days using conventional methods based on pathogen cultivation. Furthermore, in contrast to conventional DNA protocols that require high levels of skill and expertise, the ‘DNA chip card’ only requires the operator to inject nucleic acid, thereby making the procedure easier to use and without specialized operating skills.

Examples of pathogens associated with food poisoning that were tested with the “DNA chip card”

Enterohemorrhagic Escherichia coli



Vibrio parahaemolyticus


Staphylococcus aureus

Enterotoxigenic Escherichia coli

Enteroaggregative Escherichia coli

Enteropathogenic Escherichia coli

Clostridium perfringens

Bacillus cereus



Vibrio cholerae

I think 14 is the highest number of tests I’ve seen for one of these chips. This chip is quite an achievement.

One final bit from the news release about the DNA chip provides a brief description of the gateway and something they call King SkyFront,


The Kawasaki INnovation Gateway (KING) SKYFRONT is the flagship science and technology innovation hub of Kawasaki City. KING SKYFRONT is a 40 hectare area located in the Tonomachi area of the Keihin Industrial Region that spans Tokyo and Kanagawa Prefecture and Tokyo International Airport (also often referred to as Haneda Airport).

KING SKYFRONT was launched in 2013 as a base for scholars, industrialists and government administrators to work together to devise real life solutions to global issues in the life sciences and environment.

I find this emphasis on the city interesting. It seems that cities are becoming increasingly important and active where science research and development are concerned. Europe seems to have adopted a biannual event wherein a city is declared a European City of Science in conjunction with the EuroScience Open Forum (ESOF) conferences. The first such city was Dublin in 2012 (I believe the Irish came up with the concept themselves) and was later adopted by Copenhagen for 2014. The latest city to embrace the banner will be Manchester in 2016.

Spinal cords, brains, implants, and remote control

I have two items about implants and brains and an item about being able to exert remote control of the brain, all of which hint at a cyborg future for at least a few of us.

e-Dura, the spinal column, and the brain

The first item concerns some research, at the École Polytechnique de Lausanne (EPFL) which features flexible electronics. From a March 24, 2015 article by Ben Schiller for Fast Company (Note: Links have been removed),

Researchers at the Swiss Federal Institute of Technology, in Lausanne, have developed the e-Dura—a tiny skinlike device that attaches directly to damaged spinal cords. By sending out small electrical pulses, it stimulates the cord as if it were receiving signals from the brain, thus allowing movement.

“The purpose of the neuro-prosthesis is to excite the neurons that are on the spinal cord below the site of the injury and activate them, just like if they were receiving information from the brain,” says Stéphanie Lacour, a professor at the institute.

A January 8, 2015 (?) EPFL press release provides more information about the research,

EPFL scientists have managed to get rats walking on their own again using a combination of electrical and chemical stimulation. But applying this method to humans would require multifunctional implants that could be installed for long periods of time on the spinal cord without causing any tissue damage. This is precisely what the teams of professors Stéphanie Lacour and Grégoire Courtine have developed. Their e-Dura implant is designed specifically for implantation on the surface of the brain or spinal cord. The small device closely imitates the mechanical properties of living tissue, and can simultaneously deliver electric impulses and pharmacological substances. The risks of rejection and/or damage to the spinal cord have been drastically reduced. An article about the implant will appear in early January [2015] in Science Magazine.

So-called “surface implants” have reached a roadblock; they cannot be applied long term to the spinal cord or brain, beneath the nervous system’s protective envelope, otherwise known as the “dura mater,” because when nerve tissues move or stretch, they rub against these rigid devices. After a while, this repeated friction causes inflammation, scar tissue buildup, and rejection.

Here’s what the implant looks like,

Courtesy: EPFL

Courtesy: EPFL

The press release describes how the implant is placed (Note: A link has been removed),

Flexible and stretchy, the implant developed at EPFL is placed beneath the dura mater, directly onto the spinal cord. Its elasticity and its potential for deformation are almost identical to the living tissue surrounding it. This reduces friction and inflammation to a minimum. When implanted into rats, the e-Dura prototype caused neither damage nor rejection, even after two months. More rigid traditional implants would have caused significant nerve tissue damage during this period of time.

The researchers tested the device prototype by applying their rehabilitation protocol — which combines electrical and chemical stimulation – to paralyzed rats. Not only did the implant prove its biocompatibility, but it also did its job perfectly, allowing the rats to regain the ability to walk on their own again after a few weeks of training.

“Our e-Dura implant can remain for a long period of time on the spinal cord or the cortex, precisely because it has the same mechanical properties as the dura mater itself. This opens up new therapeutic possibilities for patients suffering from neurological trauma or disorders, particularly individuals who have become paralyzed following spinal cord injury,” explains Lacour, co-author of the paper, and holder of EPFL’s Bertarelli Chair in Neuroprosthetic Technology.

The press release goes on to describe the engineering achievements,

Developing the e-Dura implant was quite a feat of engineering. As flexible and stretchable as living tissue, it nonetheless includes electronic elements that stimulate the spinal cord at the point of injury. The silicon substrate is covered with cracked gold electric conducting tracks that can be pulled and stretched. The electrodes are made of an innovative composite of silicon and platinum microbeads. They can be deformed in any direction, while still ensuring optimal electrical conductivity. Finally, a fluidic microchannel enables the delivery of pharmacological substances – neurotransmitters in this case – that will reanimate the nerve cells beneath the injured tissue.

The implant can also be used to monitor electrical impulses from the brain in real time. When they did this, the scientists were able to extract with precision the animal’s motor intention before it was translated into movement.

“It’s the first neuronal surface implant designed from the start for long-term application. In order to build it, we had to combine expertise from a considerable number of areas,” explains Courtine, co-author and holder of EPFL’s IRP Chair in Spinal Cord Repair. “These include materials science, electronics, neuroscience, medicine, and algorithm programming. I don’t think there are many places in the world where one finds the level of interdisciplinary cooperation that exists in our Center for Neuroprosthetics.”

For the time being, the e-Dura implant has been primarily tested in cases of spinal cord injury in paralyzed rats. But the potential for applying these surface implants is huge – for example in epilepsy, Parkinson’s disease and pain management. The scientists are planning to move towards clinical trials in humans, and to develop their prototype in preparation for commercialization.

EPFL has provided a video of researcher Stéphanie Lacour describing e-Dura and expressing hopes for its commercialization,

Here’s a link to and a citation for the paper,

Electronic dura mater for long-term multimodal neural interfaces by Ivan R. Minev, Pavel Musienko, Arthur Hirsch, Quentin Barraud, Nikolaus Wenger, Eduardo Martin Moraud, Jérôme Gandar, Marco Capogrosso, Tomislav Milekovic, Léonie Asboth, Rafael Fajardo Torres, Nicolas Vachicouras, Qihan Liu, Natalia Pavlova, Simone Duis, Alexandre Larmagnac, Janos Vörös, Silvestro Micera, Zhigang Suo, Grégoire Courtine, Stéphanie P. Lacour. Science 9 January 2015: Vol. 347 no. 6218 pp. 159-163 DOI: 10.1126/science.1260318

This paper is behind a paywall.

Carbon nanotube fibres could connect to the brain

Researchers at Rice University (Texas, US) are excited about the possibilities that carbon nanotube fibres offer in the field of implantable electronics for the brain. From a March 25, 2015 news item on Nanowerk,

Carbon nanotube fibers invented at Rice University may provide the best way to communicate directly with the brain.

The fibers have proven superior to metal electrodes for deep brain stimulation and to read signals from a neuronal network. Because they provide a two-way connection, they show promise for treating patients with neurological disorders while monitoring the real-time response of neural circuits in areas that control movement, mood and bodily functions.

New experiments at Rice demonstrated the biocompatible fibers are ideal candidates for small, safe electrodes that interact with the brain’s neuronal system, according to the researchers. They could replace much larger electrodes currently used in devices for deep brain stimulation therapies in Parkinson’s disease patients.

They may also advance technologies to restore sensory or motor functions and brain-machine interfaces as well as deep brain stimulation therapies for other neurological disorders, including dystonia and depression, the researchers wrote.

A March 25, 2015 Rice University news release (also on EurekAlert*), which originated the news item, provides more details,

The fibers created by the Rice lab of chemist and chemical engineer Matteo Pasquali consist of bundles of long nanotubes originally intended for aerospace applications where strength, weight and conductivity are paramount.

The individual nanotubes measure only a few nanometers across, but when millions are bundled in a process called wet spinning, they become thread-like fibers about a quarter the width of a human hair.

“We developed these fibers as high-strength, high-conductivity materials,” Pasquali said. “Yet, once we had them in our hand, we realized that they had an unexpected property: They are really soft, much like a thread of silk. Their unique combination of strength, conductivity and softness makes them ideal for interfacing with the electrical function of the human body.”

The simultaneous arrival in 2012 of Caleb Kemere, a Rice assistant professor who brought expertise in animal models of Parkinson’s disease, and lead author Flavia Vitale, a research scientist in Pasquali’s lab with degrees in chemical and biomedical engineering, prompted the investigation.

“The brain is basically the consistency of pudding and doesn’t interact well with stiff metal electrodes,” Kemere said. “The dream is to have electrodes with the same consistency, and that’s why we’re really excited about these flexible carbon nanotube fibers and their long-term biocompatibility.”

Weeks-long tests on cells and then in rats with Parkinson’s symptoms proved the fibers are stable and as efficient as commercial platinum electrodes at only a fraction of the size. The soft fibers caused little inflammation, which helped maintain strong electrical connections to neurons by preventing the body’s defenses from scarring and encapsulating the site of the injury.

The highly conductive carbon nanotube fibers also show much more favorable impedance – the quality of the electrical connection — than state-of-the-art metal electrodes, making for better contact at lower voltages over long periods, Kemere said.

The working end of the fiber is the exposed tip, which is about the width of a neuron. The rest is encased with a three-micron layer of a flexible, biocompatible polymer with excellent insulating properties.

The challenge is in placing the tips. “That’s really just a matter of having a brain atlas, and during the experiment adjusting the electrodes very delicately and putting them into the right place,” said Kemere, whose lab studies ways to connect signal-processing systems and the brain’s memory and cognitive centers.

Doctors who implant deep brain stimulation devices start with a recording probe able to “listen” to neurons that emit characteristic signals depending on their functions, Kemere said. Once a surgeon finds the right spot, the probe is removed and the stimulating electrode gently inserted. Rice carbon nanotube fibers that send and receive signals would simplify implantation, Vitale said.

The fibers could lead to self-regulating therapeutic devices for Parkinson’s and other patients. Current devices include an implant that sends electrical signals to the brain to calm the tremors that afflict Parkinson’s patients.

“But our technology enables the ability to record while stimulating,” Vitale said. “Current electrodes can only stimulate tissue. They’re too big to detect any spiking activity, so basically the clinical devices send continuous pulses regardless of the response of the brain.”

Kemere foresees a closed-loop system that can read neuronal signals and adapt stimulation therapy in real time. He anticipates building a device with many electrodes that can be addressed individually to gain fine control over stimulation and monitoring from a small, implantable device.

“Interestingly, conductivity is not the most important electrical property of the nanotube fibers,” Pasquali said. “These fibers are intrinsically porous and extremely stable, which are both great advantages over metal electrodes for sensing electrochemical signals and maintaining performance over long periods of time.”

Here’s a link to and a citation for the paper,

Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes by Flavia Vitale, Samantha R. Summerson, Behnaam Aazhang, Caleb Kemere, and Matteo Pasquali. ACS Nano, Just Accepted Manuscript DOI: 10.1021/acsnano.5b01060 Publication Date (Web): March 24, 2015

Copyright © 2015 American Chemical Society

The paper is open access provided you register on the website.

Remote control for stimulation of the brain

Mo Costandi, neuroscientist and freelance science writer, has written a March 24, 2015 post for the Guardian science blog network focusing on neuronal remote control,

Two teams of scientists have developed new ways of stimulating neurons with nanoparticles, allowing them to activate brain cells remotely using light or magnetic fields. The new methods are quicker and far less invasive than other hi-tech methods available, so could be more suitable for potential new treatments for human diseases.

Researchers have various methods for manipulating brain cell activity, arguably the most powerful being optogenetics, which enables them to switch specific brain cells on or off with unprecedented precision, and simultaneously record their behaviour, using pulses of light.

This is very useful for probing neural circuits and behaviour, but involves first creating genetically engineered mice with light-sensitive neurons, and then inserting the optical fibres that deliver light into the brain, so there are major technical and ethical barriers to its use in humans.

Nanomedicine could get around this. Francisco Bezanilla of the University of Chicago and his colleagues knew that gold nanoparticles can absorb light and convert it into heat, and several years ago they discovered that infrared light can make neurons fire nervous impulses by heating up their cell membranes.

Polina Anikeeva’s team at the Massachusetts Institute of Technology adopted a slightly different approach, using spherical iron oxide particles that give off heat when exposed to an alternating magnetic field.

Although still in the experimental stages, research like this may eventually allow for wireless and minimally invasive deep brain stimulation of the human brain. Bezanilla’s group aim to apply their method to develop treatments for macular degeneration and other conditions that kill off light-sensitive cells in the retina. This would involve injecting nanoparticles into the eye so that they bind to other retinal cells, allowing natural light to excite them into firing impulses to the optic nerve.

Costandi’s article is intended for an audience that either understands the science or can deal with the uncertainty of not understanding absolutely everything. Provided you fall into either of those categories, the article is well written and it provides links and citations to the papers for both research teams being featured.

Taken together, the research at EPFL, Rice University, University of Chicago, and Massachusetts Institute of Technology provides a clue as to how much money and intellectual power is being directed at the brain.

* EurekAlert link added on March 26, 2015.

Stress makes quantum dots ‘breathe’

A March 19, 2015 news item on ScienceDaily describes some new research on quantum dots,

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory watched nanoscale semiconductor crystals expand and shrink in response to powerful pulses of laser light. This ultrafast “breathing” provides new insight about how such tiny structures change shape as they start to melt — information that can help guide researchers in tailoring their use for a range of applications.

In the experiment using SLAC’s Linac Coherent Light Source (LCLS) X-ray laser, a DOE Office of Science User Facility, researchers first exposed the nanocrystals to a burst of laser light, followed closely by an ultrabright X-ray pulse that recorded the resulting structural changes in atomic-scale detail at the onset of melting.

“This is the first time we could measure the details of how these ultrasmall materials react when strained to their limits,” said Aaron Lindenberg, an assistant professor at SLAC and Stanford who led the experiment. The results were published March 12 [2015] in Nature Communications.

A March 18, 2015 SLAC news release, which originated the news item, provides a general description of quantum dots,

The crystals studied at SLAC are known as “quantum dots” because they display unique traits at the nanoscale that defy the classical physics governing their properties at larger scales. The crystals can be tuned by changing their size and shape to emit specific colors of light, for example.

So scientists have worked to incorporate them in solar panels to make them more efficient and in computer displays to improve resolution while consuming less battery power. These materials have also been studied for potential use in batteries and fuel cells and for targeted drug delivery.

Scientists have also discovered that these and other nanomaterials, which may contain just tens or hundreds of atoms, can be far more damage-resistant than larger bits of the same materials because they exhibit a more perfect crystal structure at the tiniest scales. This property could prove useful in battery components, for example, as smaller particles may be able to withstand more charging cycles than larger ones before degrading.

The news release then goes on to describe the latest research showing the dots ‘breathe’ (Note: A link has been removed),

In the LCLS experiment, researchers studied spheres and nanowires made of cadmium sulfide and cadmium selenide that were just 3 to 5 nanometers, or billionths of a meter, across. The nanowires were up to 25 nanometers long. By comparison, amino acids – the building blocks of proteins – are about 1 nanometer in length, and individual atoms are measured in tenths of nanometers.

By examining the nanocrystals from many different angles with X-ray pulses, researchers reconstructed how they change shape when hit with an optical laser pulse. They were surprised to see the spheres and nanowires expand in width by about 1 percent and then quickly contract within femtoseconds, or quadrillionths of a second. They also found that the nanowires don’t expand in length, and showed that the way the crystals respond to strain was coupled to how their structure melts.

In an earlier, separate study, another team of researchers had used LCLS to explore the response of larger gold particles on longer timescales.

“In the future, we want to extend these experiments to more complex and technologically relevant nanostructures, and also to enable X-ray exploration of nanoscale devices while they are operating,” Lindenberg said. “Knowing how materials change under strain can be used together with simulations to design new materials with novel properties.”

Participating researchers were from SLAC, Stanford and two of their joint institutes, the Stanford Institute for Materials and Energy Sciences (SIMES) and Stanford PULSE Institute; University of California, Berkeley; University of Duisburg-Essen in Germany; and Argonne National Laboratory. The work was supported by the DOE Office of Science and the German Research Council.

Here’s a link to and a citation for the paper,

Visualization of nanocrystal breathing modes at extreme strains by Erzsi Szilagyi, Joshua S. Wittenberg, Timothy A. Miller, Katie Lutker, Florian Quirin, Henrik Lemke, Diling Zhu, Matthieu Chollet, Joseph Robinson, Haidan Wen, Klaus Sokolowski-Tinten, & Aaron M. Lindenberg. Nature Communications 6, Article number: 6577 doi:10.1038/ncomms7577 Published 12 March 2015

This paper is behind a paywall but there is a free preview available through ReadCube Access.

NANoREG halfway through its project (Environment, Health & Safety) term

A March 18, 2015 news item on Nanowerk announces a third NANoReg newsletter marking the halfway point in the project’s term (Note: Links have been removed),

NANoREG is the first FP7 project to deliver the answers needed by regulators and legislators on EHS [Environment, Health & Safety] by linking them to a scientific evaluation of data and test methods.

Time wise, the NANoREG project is now halfway. After setting the basic conditions for its R&D work, the project now focuses on the generation of reliable and comparable experimental data on the EHS aspects of the selected NANoREG nanomaterials. These data will form the basis for the main “end products” of the NANoREG project: the Regulatory Framework and the NANoREG Toolbox. Highlights of this experimental work and results will be shared with you in this 3rd NANoREG Newsletter (pdf).

The editorial for the 3rd issue of the NANoREG newsletter, which seems to have originated the news item, describes upcoming initiatives,

The Regulatory Framework and the NANoREG Toolbox just mentioned will be developed in close cooperation with organisations involved in standardisation and in the regulatory aspects of nanomaterials like ECHA [European Chemicals Agency], OECD [Organization for Economic Cooperation and Development], CEN [European Committee for Standardization] and ISO [International Standards Organization]. The results of other EU FP7 [Framework Programme 7] and H2020 [Horizon 2020] [research funding] projects will also be taken into account when developing these products. One of these projects is the H2020 project NANoREG II that focuses on Safe by design and that will start in the 2nd or 3rd quarter of 2015.

The coordinated and integrated approach in developing the Framework and the NANoREG Toolbox is one of the main elements of the H2020 funded Coordination and Support Action (CSA) “ProSafe” that recently had its Kick-Off meeting in Aix-en-Provence, France. Just like NANoREG this CSA is coordinated by the Dutch Ministry of Infrastructure and the Environment and as such executed by me. Other elements of this CSA are – among others – the expansions of the involvement of EU and non-EU countries in the NANoREG project in order to broaden the platform of support for the NANoREG results world-wide (“NANoREG+”), the exploitation of synergies between the NANoREG project and other “nanosafety” projects and data management.

The outcome of the CSA will be a White Paper that can be used by policy makers, regulators and industry to establish methods for measuring and assessing the EHS aspects of nanomaterials and that will give guidance to industry how to implement “safe by design“. A forerunner of the White Paper will be subject of a three days scientific conference to be held at the end of 2016. It will include the results of the NANoREG project, the results of the evaluation of EHS data available at the OECD and results from other sources. After consulting Risk assessors and policymakers, the White Paper will be published in the first quarter of 2017.

This project has reached out beyond Europe for partners (from the editorial for the 3rd NANoREG newsletter),

It is quite a challenge we face. Given the expertise and scientific authority of our partners, including the Czech-,Brazilian- and South Korean parties that recently joined the NANoREG project, I am confident however that we will succeed in reaching our goal: creating a solid basis for a balanced combination of nanosafety and innovation that will be beneficial to society.

I hope NANoREG is successful with its goal of “creating a solid basis for a balanced combination of nanosafety and innovation that will be beneficial to society.”

I last wrote about NANoREG in a March 21, 2014 posting.

Building architecture inspires new light-bending material

Usually, it’s nature which inspires scientists but not this time. Instead, a building in Canberra, Australia has provided the inspiration according to a March 24, 2015 news item on Nanowerk,

Physicists inspired by the radical shape of a Canberra building have created a new type of material which enables scientists to put a perfect bend in light.

The creation of a so-called topological insulator could transform the telecommunications industry’s drive to build an improved computer chip using light.

Leader of the team, Professor Yuri Kivshar from The Australian National University (ANU) said the revolutionary material might also be useful in microscopes, antenna design, and even quantum computers.

“There has been a hunt for similar materials in photonics based on large complicated structures,” said Professor Kivshar, who is the head of the Nonlinear Physics Centre in ANU Research School of Physics and Engineering.

“Instead we used a simple, small-scale zigzag structure to create a prototype of these novel materials with amazing properties.”

The structure was inspired by the Nishi building near ANU, which consists of rows of offset zigzag walls.

Here’s what the building looks like,

Caption: Alex Slobozhanyuk (L) and Andrey Miroshnichenko with models of their material structures in front of the Nishi building that inspired them. Credit: Stuart Hay, ANU

Caption: Alex Slobozhanyuk (L) and Andrey Miroshnichenko with models of their material structures in front of the Nishi building that inspired them.
Credit: Stuart Hay, ANU

A March 24, 2015 Australian National University press release, which originated the news item, goes on to describe topological insulators and what makes this ‘zigzag’ approach so exciting,

Topological insulators have been initially developed for electronics, and the possibility of building an optical counterpart is attracting a lot of attention.

The original zigzag structure of the material was suggested in the team’s earlier collaboration with Dr Alexander Poddubny, from Ioffe Institute in Russia, said PhD student Alexey Slobozhanyuk.

“The zigzag structure creates a coupling throughout the material that prevents light from travelling through its centre,” Mr Slobozhanyuk said.

“Instead light is channelled to the edges of the material, where it becomes completely localised by means of a kind of quantum entanglement known as topological order.”

Fellow researcher Dr Andrew Miroshnichenko said the building inspired the researchers to think of multiple zigzags.

“We had been searching for a new topology and one day I looked at the building and a bell went off in my brain,” said fellow researcher Dr Andrey Miroshnichenko.

“On the edges of such a material the light should travel completely unhindered, surfing around irregularities that would normally scatter the light.

“These materials will allow light to be bent around corners with no loss of signal,” he said.

The team showed that the exceptional attributes of the material are related to its structure, or topology, and not to the molecules it is made from.

“In our experiment we used an array of ceramic spheres, although the initial theoretical model used metallic subwavelength particles,” said Dr Miroshnichenko.

“Even though they are very different materials they gave the same result.”

In contrast with other international groups attempting to create topological insulators with large scale structures, the team used spheres that were smaller than the wavelength of the microwaves in their successful experiments.

Dr Poddubny devised the theory when he realised there was a direct analogy between quantum Kitaev’s model of Majorana fermions and optically coupled subwavelength scatterers.

Mr Slobozhanyuk said the team could control which parts of the material surface the light is channelled to by changing the polarisation of the light.

“This opens possibilities ranging from nanoscale light sources for enhancing microscopes, highly efficient antennas or even quantum computing,” he said.

“The structure couples the two sides of the material, so they could be used as entangled qubits for quantum computing.”

It would be nice to offer a link to a published paper but I cannot find one.

Looking for nano silicon at 10 nm (nanometres)

I received this request from Greg Packer on March 17, 2015,

Dear Sir we are looking for suppliers of a small qty say 5 kilo of nano silicon 10nm for hydrogen production with water for testing of a new producť designed fòr Ìndia.If you can help please ĺet us know plus the cost we are on the Gold Coast Qld
Thanks Greg Packer. 0403159635

As the request was in a comment to a post from 2010 I’m not sure how many people would see it and so have placed it here. The Gold Coast he is referring to is in Queensland, Australia.

To be clear, I do not know Mr. Packer and am not familiar with the product or his company but if you’re selling, it never hurts to check these things out.

Cells as capacitors and resistors concept is key to smart bandages

Bandages that can detect bedsores as they are forming are a distinct possibility with advances in flexible electronics and miniaturization according to researchers at the University of California at Berkeley and the University of California at San Francisco. From a March 17, 2015 University of California at Berkeley news release by Sarah Yang (also on EurekAlert),

Engineers at the University of California, Berkeley, are developing a new type of bandage that does far more than stanch the bleeding from a paper cut or scraped knee. Thanks to advances in flexible electronics, the researchers, in collaboration with colleagues at UC San Francisco, have created a new “smart bandage” that uses electrical currents to detect early tissue damage from pressure ulcers, or bedsores, before they can be seen by human eyes – and while recovery is still possible.

“We set out to create a type of bandage that could detect bedsores as they are forming, before the damage reaches the surface of the skin,” said Michel Maharbiz, a UC Berkeley associate professor of electrical engineering and computer sciences and head of the smart-bandage project. “We can imagine this being carried by a nurse for spot-checking target areas on a patient, or it could be incorporated into a wound dressing to regularly monitor how it’s healing.”

The researchers exploited the electrical changes that occur when a healthy cell starts dying. They tested the thin, non-invasive bandage on the skin of rats and found that the device was able to detect varying degrees of tissue damage consistently across multiple animals.

Bed sores are a big problem now and I imagine that as the population ages and more people find themselves in ill health, the problem will increase (from the news release),

Tackling a growing health problem

The findings, to be published Tuesday, March 17, in the journal Nature Communications, could provide a major boost to efforts to stem a health problem that affects an estimated 2.5 million U.S. residents at an annual cost of $11 billion.

Pressure ulcers, or bedsores, are injuries that can result after prolonged pressure cuts off adequate blood supply to the skin. Areas that cover bony parts of the body, such as the heels, hips and tailbone, are common sites for bedsores. Patients who are bedridden or otherwise lack mobility are most at risk.

“By the time you see signs of a bedsore on the surface of the skin, it’s usually too late,” said Dr. Michael Harrison, a professor of surgery at UCSF and a co-investigator of the study. “This bandage could provide an easy early-warning system that would allow intervention before the injury is permanent. If you can detect bedsores early on, the solution is easy. Just take the pressure off.”

Bedsores are associated with deadly septic infections, and recent research has shown that odds of a hospital patient dying are 2.8 times higher when they have pressure ulcers. The growing prevalence of diabetes and obesity has increased the risk factors for bedsores.

“The genius of this device is that it’s looking at the electrical properties of the tissue to assess damage. We currently have no other way to do that in clinical practice,” said Harrison. “It’s tackling a big problem that many people have been trying to solve in the last 50 years. As a clinician and someone who has struggled with this clinical problem, this bandage is great.”

The electrical components and their role in detecting bed sores is fascinating (from the news release),

Cells as capacitors and resistors

The researchers printed an array of dozens of electrodes onto a thin, flexible film. They discharged a very small current between the electrodes to create a spatial map of the underlying tissue based upon the flow of electricity at different frequencies, a technique called impedance spectroscopy.

The researchers pointed out that a cell’s membrane is relatively impermeable when functioning properly, thus acting like an insulator to the cell’s conductive contents and drawing the comparison to a capacitor. As a cell starts to die, the integrity of the cell wall starts to break down, allowing electrical signals to leak through, much like a resistor.

“Our device is a comprehensive demonstration that tissue health in a living organism can be locally mapped using impedance spectroscopy,” said study lead author Sarah Swisher, a Ph.D. candidate in electrical engineering and computer sciences at UC Berkeley.

To mimic a pressure wound, the researchers gently squeezed the bare skin of rats between two magnets. They left the magnets in place for one or three hours while the rats resumed normal activity. The resumption of blood flow after the magnets were removed caused inflammation and oxidative damage that accelerated cell death. The smart bandage was used to collect data once a day for at least three days to track the progress of the wounds.

The smart bandage was able to detect changes in electrical resistance consistent with increased membrane permeability, a mark of a dying cell. Not surprisingly, one hour of pressure produced mild, reversible tissue damage while three hours of pressure produced more serious, permanent injury.

Promising future

“One of the things that makes this work novel is that we took a comprehensive approach to understanding how the technique could be used to observe developing wounds in complex tissue,” said Swisher. “In the past, people have used impedance spectroscopy for cell cultures or relatively simple measurements in tissue. What makes this unique is extending that to detect and extract useful information from wounds developing in the body. That’s a big leap.”

Maharbiz said the outlook for this and other smart bandage research is bright.

“As technology gets more and more miniaturized, and as we learn more and more about the responses the body has to disease and injury, we’re able to build bandages that are very intelligent,” he said. “You can imagine a future where the bandage you or a physician puts on could actually report a lot of interesting information that could be used to improve patient care.”

Here’s a link to and a citation for the paper,

Impedance sensing device enables early detection of pressure ulcers in vivo by Sarah L. Swisher, Monica C. Lin, Amy Liao, Elisabeth J. Leeflang, Yasser Khan, Felippe J. Pavinatto, Kaylee Mann, Agne Naujokas, David Young, Shuvo Roy, Michael R. Harrison, Ana Claudia Arias, Vivek Subramanian, & Michel M. Maharbiz. Nature Communications 6, Article number: 6575 doi:10.1038/ncomms7575 Published 17 March 2015

This paper is behind a paywall but there is a free preview available via ReadCube Access.

Finally, one of the researchers describes the work in this 1 min. 31 secs. video,

Green tea to improve MRIs (magnetic resonance images)?

Sadly, this new technique does not require the ingestion of green tea prior to an MRI session. A March 18, 2015 American Chemical Society press release on EurekAlert provides detals,

Green tea’s popularity has grown quickly in recent years. Its fans can drink it, enjoy its flavor in their ice cream and slather it on their skin with lotions infused with it. Now, the tea could have a new, unexpected role — to improve the image quality of MRIs. Scientists report in the journal ACS Applied Materials & Interfaces that they successfully used compounds from green tea to help image cancer tumors in mice.

Sanjay Mathur and colleagues note that recent research has revealed the potential usefulness of nanoparticles — iron oxide in particular — to make biomedical imaging better. But the nanoparticles have their disadvantages. They tend to cluster together easily and need help getting to their destinations in the body. To address these issues, researchers have recently tried attaching natural nutrients to the nanoparticles. Mathur’s team wanted to see if compounds from green tea, which research suggests has anticancer and anti-inflammatory properties, could play this role.

Using a simple, one-step process, the researchers coated iron-oxide nanoparticles with green-tea compounds called catechins and administered them to mice with cancer. MRIs demonstrated that the novel imaging agents gathered in tumor cells and showed a strong contrast from surrounding non-tumor cells. The researchers conclude that the catechin-coated nanoparticles are promising candidates for use in MRIs and related applications.

Here’s a link to and a citation for the paper,

Enhanced In Vitro and In Vivo Cellular Imaging with Green Tea Coated Water-Soluble Iron Oxide Nanocrystals by Lisong Xiao, Marianne Mertens, Laura Wortmann, Silke Kremer, Martin Valldor, Twan Lammers, Fabian Kiessling, and Sanjay Mathur. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/am508404t Publication Date (Web): March 2, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.