Monthly Archives: March 2018

Graphite ‘gold’ rush?

Someone in Germany (I think) is very excited about graphite, more specifically, there’s excitement around graphite flakes located in the province of Québec, Canada. Although, the person who wrote this news release might have wanted to run a search for ‘graphite’ and ‘gold rush’. The last graphite gold rush seems to have taken place in 2013.

Here’s the March 1, 2018 news release on PR Newswire (Cision), Note: Some links have been removed),

PALM BEACH, Florida, March 1, 2018 /PRNewswire/ —

MarketNewsUpdates.com News Commentary

Much like the gold rush in North America in the 1800s, people are going out in droves searching for a different kind of precious metal, graphite. The thing your third grade pencils were made of is now one of the hottest commodities on the market. This graphite is not being mined by your run-of-the-mill old-timey soot covered prospectors anymore. Big mining companies are all looking for this important resource integral to the production of lithium ion batteries due to the rise in popularity of electric cars. These players include Graphite Energy Corp. (OTC: GRXXF) (CSE: GRE), Teck Resources Limited (NYSE: TECK), Nemaska Lithium (TSX: NMX), Lithium Americas Corp. (TSX: LAC), and Cruz Cobalt Corp. (TSX-V: CUZ) (OTC: BKTPF).

These companies looking to manufacturer their graphite-based products, have seen steady positive growth over the past year. Their development of cutting-edge new products seems to be paying off. But in order to continue innovating, these companies need the graphite to do it. One junior miner looking to capitalize on the growing demand for this commodity is Graphite Energy Corp.

Graphite Energy is a mining company, that is focused on developing graphite resources. Graphite Energy’s state-of-the-art mining technology is friendly to the environment and has indicate graphite carbon (Cg) in the range of 2.20% to 22.30% with average 10.50% Cg from their Lac Aux Bouleaux Graphite Property in Southern Quebec [Canada].

Not Just Any Graphite Will Do

Graphite is one of the most in demand technology metals that is required for a green and sustainable world. Demand is only set to increase as the need for lithium ion batteries grows, fueled by the popularity of electric vehicles. However, not all graphite is created equal. The price of natural graphite has more than doubled since 2013 as companies look to maintain environmental standards which the use of synthetic graphite cannot provide due to its pollutant manufacturing process. Synthetic graphite is also very expensive to produce, deriving from petroleum and costing up to ten times as much as natural graphite. Therefore manufacturers are interested in increasing the proportion of natural graphite in their products in order to lower their costs.

High-grade large flake graphite is the solution to the environmental issues these companies are facing. But there is only so much supply to go around. Recent news by Graphite Energy Corp. on February 26th [2018] showed promising exploratory results. The announcement of the commencement of drilling is a positive step forward to meeting this increased demand.

Everything from batteries to solar panels need to be made with this natural high-grade flake graphite because what is the point of powering your home with the sun or charging your car if the products themselves do more harm than good to the environment when produced. However, supply consistency remains an issue since mines have different raw material impurities which vary from mine to mine. Certain types of battery technology already require graphite to be almost 100% pure. It is very possible that the purity requirements will increase in the future.

Natural graphite is also the basis of graphene, the uses of which seem limited only by scientists’ imaginations, given the host of new applications announced daily. In a recent study by ResearchSEA, a team from the Ocean University of China and Yunnan Normal University developed a highly efficient dye-sensitized solar cell using a graphene layer. This thin layer of graphene will allow solar panels to generate electricity when it rains.

Graphite Energy Is Keeping It Green

Whether it’s the graphite for the solar panels that will power the homes of tomorrow, or the lithium ion batteries that will fuel the latest cars, these advancements need to made in an environmentally conscious way. Mining companies like Graphite Energy Corp. specialize in the production of environmentally friendly graphite. The company will be producing its supply of natural graphite with the lowest environmental footprint possible.

From Saltwater To Clean Water Using Graphite

The world’s freshwater supply is at risk of running out. In order to mitigate this global disaster, worldwide spending on desalination technology was an estimated $16.6 billion in 2016. Due to the recent intense droughts in California, the state has accelerated the construction of desalination plants. However, the operating costs and the impact on the environment due to energy requirements for the process, is hindering any real progress in the space, until now.

Jeffrey Grossman, a professor at MIT’s [Massachusetts Institute of Technology, United States] Department of Materials Science and Engineering (DMSE), has been looking into whether graphite/graphene might reduce the cost of desalination.

“A billion people around the world lack regular access to clean water, and that’s expected to more than double in the next 25 years,” Grossman says. “Desalinated water costs five to 10 times more than regular municipal water, yet we’re not investing nearly enough money into research. If we don’t have clean energy we’re in serious trouble, but if we don’t have water we die.”

Grossman’s lab has demonstrated strong results showing that new filters made from graphene could greatly improve the energy efficiency of desalination plants while potentially reducing other costs as well.

Graphite/Graphene producers like Graphite Energy Corp. (OTC: GRXXF) (CSE: GRE) are moving quickly to provide the materials necessary to develop this new generation of desalination plants.

Potential Comparables

Cruz Cobalt Corp. (TSX-V: CUZ) (OTC: BKTPF) Cruz Cobalt Corp. is cobalt mining company involved in the identification, acquisition and exploration of mineral properties. The company’s geographical segments include the United States and Canada. They are focused on acquiring and developing high-grade Cobalt projects in politically stable, environmentally responsible and ethical mining jurisdictions, essential for the rapidly growing rechargeable battery and renewable energy.

Nemaska Lithium (TSE: NMX.TO)

Nemaska Lithium is lithium mining company. The company is a supplier of lithium hydroxide and lithium carbonate to the emerging lithium battery market that is largely driven by electric vehicles. Nemaska mining operations are located in the mining friendly jurisdiction of Quebec, Canada. Nemaska Lithium has received a notice of allowance of a main patent application on its proprietary process to produce lithium hydroxide and lithium carbonate.

Lithium Americas Corp. (TSX: LAC.TO)

Lithium Americas is developing one of North America’s largest lithium deposits in northern Nevada. It operates nearly two lithium projects namely Cauchari-Olaroz project which is located in Argentina, and the Lithium Nevada project located in Nevada. The company manufactures specialty organoclay products, derived from clays, for sale to the oil and gas and other sectors.

Teck Resources Limited (NYSE: TECK)

Teck Resources Limited is a Canadian metals and mining company.Teck’s principal products include coal, copper, zinc, with secondary products including lead, silver, gold, molybdenum, germanium, indium and cadmium. Teck’s diverse resources focuses on providing products that are essential to building a better quality of life for people around the globe.

Graphite Mining Today For A Better Tomorrow

Graphite mining will forever be intertwined with the latest advancements in science and technology. Graphite deserves attention for its various use cases in automotive, energy, aerospace and robotics industries. In order for these and other industries to become sustainable and environmentally friendly, a reliance on graphite is necessary. Therefore, this rapidly growing sector has the potential to fuel investor interest in the mining space throughout 2018. The near limitless uses of graphite has the potential to impact every facet of our lives. Companies like Graphite Energy Corp. (OTC: GRXXF); (CSE: GRE) is at the forefront in this technological revolution.

For more information on Graphite Energy Corp. (OTC: GRXXF) (CSE: GRE), please visit streetsignals.com for a free research report.

Streetsignals.com (SS) is the source of the Article and content set forth above. References to any issuer other than the profiled issuer are intended solely to identify industry participants and do not constitute an endorsement of any issuer and do not constitute a comparison to the profiled issuer. FN Media Group (FNM) is a third-party publisher and news dissemination service provider, which disseminates electronic information through multiple online media channels. FNM is NOT affiliated with SS or any company mentioned herein. The commentary, views and opinions expressed in this release by SS are solely those of SS and are not shared by and do not reflect in any manner the views or opinions of FNM. Readers of this Article and content agree that they cannot and will not seek to hold liable SS and FNM for any investment decisions by their readers or subscribers. SS and FNM and their respective affiliated companies are a news dissemination and financial marketing solutions provider and are NOT registered broker-dealers/analysts/investment advisers, hold no investment licenses and may NOT sell, offer to sell or offer to buy any security.

The Article and content related to the profiled company represent the personal and subjective views of the Author (SS), and are subject to change at any time without notice. The information provided in the Article and the content has been obtained from sources which the Author believes to be reliable. However, the Author (SS) has not independently verified or otherwise investigated all such information. None of the Author, SS, FNM, or any of their respective affiliates, guarantee the accuracy or completeness of any such information. This Article and content are not, and should not be regarded as investment advice or as a recommendation regarding any particular security or course of action; readers are strongly urged to speak with their own investment advisor and review all of the profiled issuer’s filings made with the Securities and Exchange Commission before making any investment decisions and should understand the risks associated with an investment in the profiled issuer’s securities, including, but not limited to, the complete loss of your investment. FNM was not compensated by any public company mentioned herein to disseminate this press release but was compensated seventy six hundred dollars by SS, a non-affiliated third party to distribute this release on behalf of Graphite Energy Corp.

FNM HOLDS NO SHARES OF ANY COMPANY NAMED IN THIS RELEASE.

This release contains “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E the Securities Exchange Act of 1934, as amended and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. “Forward-looking statements” describe future expectations, plans, results, or strategies and are generally preceded by words such as “may”, “future”, “plan” or “planned”, “will” or “should”, “expected,” “anticipates”, “draft”, “eventually” or “projected”. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events, or results to differ materially from those projected in the forward-looking statements, including the risks that actual results may differ materially from those projected in the forward-looking statements as a result of various factors, and other risks identified in a company’s annual report on Form 10-K or 10-KSB and other filings made by such company with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and SS and FNM undertake no obligation to update such statements.

Media Contact:

FN Media Group, LLC
info@marketnewsupdates.com
+1(561)325-8757

SOURCE MarketNewsUpdates.com

Hopefully my insertions of ‘Canada’ and the ‘United States’ help to clarify matters. North America and the United States are not synonyms although they are sometimes used synonymously.

There is another copy of this news release on Wall Street Online (Deutschland), both in English and German.By the way, that was my first clue that there might be some German interest. The second clue was the Graphite Energy Corp. homepage. Unusually for a company with ‘headquarters’ in the Canadian province of British Columbia, there’s an option to read the text in German.

Graphite Energy Corp. seems to be a relatively new player in the ‘rush’ to mine graphite flakes for use in graphene-based applications. One of my first posts about mining for graphite flakes was a July 26, 2011 posting concerning Northern Graphite and their mining operation (Bissett Creek) in Ontario. I don’t write about them often but they are still active if their news releases are to be believed. The latest was issued February 28, 2018 and offers “financial metrics for the Preliminary Economic Assessment (the “PEA”) on the Company’s 100% owned Bissett Creek graphite project.”

The other graphite mining company mentioned here is Lomiko Metals. The latest posting here about Lomiko is a December 23, 2015 piece regarding an analysis and stock price recommendation by a company known as SeeThruEquity. Like Graphite Energy Corp., Lomiko’s mines are located in Québec and their business headquarters in British Columbia. Lomiko has a March 16, 2018 news release announcing its reinstatement for trading on the TSX (Toronto Stock Exchange),

(Vancouver, B.C.) Lomiko Metals Inc. (“Lomiko”) (“Lomiko”) (TSX-V: LMR, OTC: LMRMF, FSE: DH8C) announces it has been successful in its reinstatement application with the TSX Venture Exchange and trading will begin at the opening on Tuesday, March 20, 2018.

Getting back to the flakes, here’s more about Graphite Energy Corp.’s mine (from the About Lac Aux Bouleaux webpage),

Lac Aux Bouleaux

The Lac Aux Bouleaux Property is comprised of 14 mineral claims in one contiguous block totaling 738.12 hectares land on NTS 31J05, near the town of Mont-Laurier in southern Québec. Lac Aux Bouleaux “LAB” is a world class graphite property that borders the only producing graphite in North America [Note: There are three countries in North America, Canada, the United States, and Mexico. Québec is in Canada.]. On the property we have a full production facility already built which includes an open pit mine, processing facility, tailings pond, power and easy access to roads.

High Purity Levels

An important asset of LAB is its metallurgy. The property contains a high proportion of large and jumbo flakes from which a high purity concentrate was proven to be produced across all flakes by a simple flotation process. The concentrate can then be further purified using the province’s green and affordable hydro-electricity to be used in lithium-ion batteries.

The geological work performed in order to verify the existing data consisted of visiting approachable graphite outcrops, historical exploration and development work on the property. Large flake graphite showings located on the property were confirmed with flake size in the range of 0.5 to 2 millimeters, typically present in shear zones at the contact of gneisses and marbles where the graphite content usually ranges from 2% to 20%. The results of the property are outstanding showing to have jumbo flake natural graphite.

An onsite mill structure, a tailing dam facility, and a historical open mining pit is already present and constructed on the property. The property is ready to be put into production based on the existing infrastructure already built. The company would hope to be able to ship by rail its mined graphite directly to Teslas Gigafactory being built in Nevada [United States] which will produce 35GWh of batteries annually by 2020.

Adjacent Properties

The property is located in a very active graphite exploration and production area, adjacent to the south of TIMCAL’s Lac des Iles graphite mine in Quebec which is a world class deposit producing 25,000 tonnes of graphite annually. There are several graphite showings and past producing mines in its vicinity, including a historic deposit located on the property.

The open pit mine in operation since 1989 with an onsite plant ranked 5th in the world production of graphite. The mine is operated by TIMCAL Graphite & Carbon which is a subsidiary of Imerys S.A., a French multinational company. The mine has an average grade of 7.5% Cg (graphite carbon) and has been producing 50 different graphite products for various graphite end users around the globe.

Canadians! We have great flakes!

smARTcities SALON in Vaughan, Ontario, Canada on March 22, 2018

Thank goodness for the March 15, 2018 notice from the Art/Sci Salon in Toronto (received via email) announcing an event on smart cities being held in the nearby city of Vaughan (it borders Toronto to the north). It’s led me on quite the chase as I’ve delved into a reference to Smart City projects taking place across the country and the results follow after this bit about the event.

smARTcities SALON

From the announcement,

SMARTCITIES SALON

Smart City projects are currently underway across the country, including
Google SideWalk at Toronto Harbourfront. Canada’s first Smart Hospital
is currently under construction in the City of Vaughan. It’s an example
of the city working towards building a reputation as one of the world’s
leading Smart Cities, by adopting new technologies consistent with
priorities defined by citizen collaboration.

Hon. Maurizio Bevilacqua, P.C., Mayor chairs the Smart City Advisory
Task Force leading historic transformation in Vaughan. Working to become
a Smart City is a chance to encourage civic engagement, accelerate
economic growth, and generate efficiencies. His opening address will
outline some of the priorities and opportunities that our panel will
discuss.

PANELISTS

Lilian Radovac, PhD., Assistant Professor, Institute of Communication,
Culture, Information & Technology, University of Toronto. Lilian is a
historian of urban sounds and cultures and has a critical interest in
SmartCity initiatives in two of the cities she has called home: New York
City and Toronto..

Oren Berkovich is the CEO of Singularity University in Canada, an
educational institution and a global network of experts and
entrepreneurs that work together on solving the world’s biggest
challenges. As a catalyst for long-term growth Oren spends his time
connecting people with ideas to facilitate strategic conversations about
the future.

Frank Di Palma, the Chief Information Officer for the City of Vaughan,
is a graduate of York University with more than 20 years experience in
IT operations and services. Frank leads the many SmartCity initiatives
already underway at Vaughan City Hall.

Ron Wild, artist and Digital Art/Science Collaborator, will moderate the
discussion.

Audience Participation opportunities will enable attendees to forward
questions for consideration by the panel.

You can register for the smARTcities SALON here on Eventbrite,

Art Exhibition Reception

Following the panel discussion, the audience is invited to view the art exhibition ‘smARTcities; exploring the digital frontier.’ Works commissioned by Vaughan specifically for the exhibition, including the SmartCity Map and SmartHospital Map will be shown as well as other Art/Science-themed works. Many of these ‘maps’ were made by Ron in collaboration with mathematicians, scientists, and medical researchers, some of who will be in attendance. Further examples of Ron’s art can be found HERE

Please click through to buy a FREE ticket so we know how many guests to expect. Thank you.

This event can be reached by taking the subway up the #1 west line to the new Vaughan Metropolitan Centre terminal station. Take the #20 bus to the Vaughan Mills transfer loop; transfer there to the #4/A which will take you to the stop right at City Hall. Free parking is available for those coming by car. Car-pooling and ride-sharing is encouraged. The facility is fully accessible.

Here’s one of Wild’s pieces,

144×96″ triptych, Vaughan, 2018 Artist: mrowade (Ron Wild?)

I’m pretty sure that mrowade is Ron Wild.

Smart Cities, the rest of the country, and Vancouver

Much to my surprise, I covered the ‘Smart Cities’ story in its early (but not earliest) days (and before it was Smart Cities) in two posts: January 30, 2015 and January 27,2016 about the National Research Council of Canada (NRC) and its cities and technology public engagement exercises.

David Vogt in a July 12, 2016 posting on the Urban Opus website provides some catch up information,

Canada’s National Research Council (NRC) has identified Cities of the Future as a game-changing technology and economic opportunity.  Following a national dialogue, an Executive Summit was held in Toronto on March 31, 2016, resulting in an important summary report that will become the seed for Canadian R&D strategy in this sector.

The conclusion so far is that the opportunity for Canada is to muster leadership in the following three areas (in order):

  1. Better Infrastructure and Infrastructure Management
  2. Efficient Transportation; and
  3. Renewable Energy

The National Research Council (NRC) offers a more balanced view of the situation on its “NRC capabilities in smart infrastructure and cities of the future” webpage,

Key opportunities for Canada

North America is one of the most urbanised regions in the world (82 % living in urban areas in 2014).
With growing urbanisation, sustainable development challenges will be increasingly concentrated in cities, requiring technology solutions.
Smart cities are data-driven, relying on broadband and telecommunications, sensors, social media, data collection and integration, automation, analytics and visualization to provide real-time situational analysis.
Most infrastructure will be “smart” by 2030 and transportation systems will be intelligent, adaptive and connected.
Renewable energy, energy storage, power quality and load measurement will contribute to smart grid solutions that are integrated with transportation.
“Green”, sustainable and high-performing construction and infrastructure materials are in demand.

Canadian challenges

High energy use: Transportation accounts for roughly 23% of Canada’s total greenhouse gas emissions, followed closely by the energy consumption of buildings, which accounts for 12% of Canada’s greenhouse gas emissions (Canada’s United Nations Framework Convention on Climate Change report).
Traffic congestion in Canadian cities is increasing, contributing to loss of productivity, increased stress for citizens as well as air and noise pollution.
Canadian cities are susceptible to extreme weather and events related to climate change (e.g., floods, storms).
Changing demographics: aging population (need for accessible transportation options, housing, medical and recreational services) and diverse (immigrant) populations.
Financial and jurisdictional issues: the inability of municipalities (who have primary responsibility) to finance R&D or large-scale solutions without other government assistance.

Opportunities being examined
Living lab

Test bed for smart city technology in order to quantify and demonstrate the benefits of smart cities.
Multiple partnering opportunities (e.g. municipalities, other government organizations, industry associations, universities, social sciences, urban planning).

The integrated city

Efficient transportation: integration of personal mobility and freight movement as key city and inter-city infrastructure.
Efficient and integrated transportation systems linked to city infrastructure.
Planning urban environments for mobility while repurposing redundant infrastructures (converting parking to the food-water-energy nexus) as population shifts away from personal transportation.

FOOD-WATER-ENERGY NEXUS

Sustainable urban bio-cycling.
‎System approach to the development of the technology platforms required to address the nexus.

Key enabling platform technologies
Artificial intelligence

Computer vision and image understanding
Adaptive robots; future robotic platforms for part manufacturing
Understanding human emotions from language
Next generation information extraction using deep learning
Speech recognition
Artificial intelligence to optimize talent management for human resources

Nanomaterials

Nanoelectronics
Nanosensing
Smart materials
Nanocomposites
Self-assembled nanostructures
Nanoimprint
Nanoplasmonic
Nanoclay
Nanocoating

Big data analytics

Predictive equipment maintenance
Energy management
Artificial intelligence for optimizing energy storage and distribution
Understanding and tracking of hazardous chemical elements
Process and design optimization

Printed electronics for Internet of Things

Inks and materials
Printing technologies
Large area, flexible, stretchable, printed electronics components
Applications: sensors for Internet of Things, wearables, antenna, radio-frequency identification tags, smart surfaces, packaging, security, signage

If you’re curious about the government’s plan with regard to implementation, this NRC webpage provides some fascinating insight into their hopes if not the reality. (I have mentioned artificial intelligence and the federal government before in a March 16, 2018 posting about the federal budget and science; scroll down approximately 50% of the way to the subsection titled, Budget 2018: Who’s watching over us? and scan for Michael Karlin’s name.)

As for the current situation, there’s a Smart Cities Challenge taking place. Both Toronto and Vancouver have webpages dedicated to their response to the challenge. (You may want to check your own city’s website to find if it’s participating.)I have a preference for the Toronto page as they immediately state that they’re participating in this challenge and they provide an explanation for what they want from you. Vancouver’s page is by comparison a bit confusing with two videos being immediately presented to the reader and from there too many graphics competing for your attention. They do, however, offer something valuable, links to explanations for smart cities and for the challenge.

Here’s a description of the Smart Cities Challenge (from its webpage),

The Smart Cities Challenge

The Smart Cities Challenge is a pan-Canadian competition open to communities of all sizes, including municipalities, regional governments and Indigenous communities (First Nations, Métis and Inuit). The Challenge encourages communities to adopt a smart cities approach to improve the lives of their residents through innovation, data and connected technology.

  • One prize of up to $50 million open to all communities, regardless of population;
  • Two prizes of up to $10 million open to all communities with populations under 500,000 people; and
  • One prize of up to $5 million open to all communities with populations under 30,000 people.

Infrastructure Canada is engaging Indigenous leaders, communities and organizations to finalize the design of a competition specific to Indigenous communities that will reflect their unique realities and issues. Indigenous communities are also eligible to compete for all the prizes in the current competition.

The Challenge will be an open and transparent process. Communities that submit proposals will also post them online, so that residents and stakeholders can see them. An independent Jury will be appointed to select finalists and winners.

Applications are due by April 24, 2018. Communities interested in participating should visit the
Impact Canada Challenge Platform for the applicant guide and more information.

Finalists will be announced in the Summer of 2018 and winners in Spring 2019 according to the information on the Impact Canada Challenge Platform.

It’s not clear to me if she’s leading Vancouver’s effort to win the Smart Cities Challenge but Jessie Adcock’s (City of Vancouver Chief Digital Officer) Twitter feed certainly features information on the topic and, I suspect, if you’re looking for the most up-to-date information on Vancovuer’s participation, you’re more likely to find it on her feed than on the City of Vancouver’s Smart Cities Challenge webpage.

Tracking artificial intelligence

Researchers at Stanford University have developed an index for measuring (tracking) the progress made by artificial intelligence (AI) according to a January 9, 2018 news item on phys.org (Note: Links have been removed),

Since the term “artificial intelligence” (AI) was first used in print in 1956, the one-time science fiction fantasy has progressed to the very real prospect of driverless cars, smartphones that recognize complex spoken commands and computers that see.

In an effort to track the progress of this emerging field, a Stanford-led group of leading AI thinkers called the AI100 has launched an index that will provide a comprehensive baseline on the state of artificial intelligence and measure technological progress in the same way the gross domestic product and the S&P 500 index track the U.S. economy and the broader stock market.

For anyone curious about the AI100 initiative, I have a description of it in my Sept. 27, 2016 post highlighting the group’s first report or you can keep on reading.

Getting back to the matter at hand, a December 21, 2017 Stanford University press release by Andrew Myers, which originated the news item, provides more detail about the AI index,

“The AI100 effort realized that in order to supplement its regular review of AI, a more continuous set of collected metrics would be incredibly useful,” said Russ Altman, a professor of bioengineering and the faculty director of AI100. “We were very happy to seed the AI Index, which will inform the AI100 as we move forward.”

The AI100 was set in motion three years ago when Eric Horvitz, a Stanford alumnus and former president of the Association for the Advancement of Artificial Intelligence, worked with his wife, Mary Horvitz, to define and endow the long-term study. Its first report, released in the fall of 2016, sought to anticipate the likely effects of AI in an urban environment in the year 2030.

Among the key findings in the new index are a dramatic increase in AI startups and investment as well as significant improvements in the technology’s ability to mimic human performance.

Baseline metrics

The AI Index tracks and measures at least 18 independent vectors in academia, industry, open-source software and public interest, plus technical assessments of progress toward what the authors call “human-level performance” in areas such as speech recognition, question-answering and computer vision – algorithms that can identify objects and activities in 2D images. Specific metrics in the index include evaluations of academic papers published, course enrollment, AI-related startups, job openings, search-term frequency and media mentions, among others.

“In many ways, we are flying blind in our discussions about artificial intelligence and lack the data we need to credibly evaluate activity,” said Yoav Shoham, professor emeritus of computer science.

“The goal of the AI Index is to provide a fact-based measuring stick against which we can chart progress and fuel a deeper conversation about the future of the field,” Shoham said.

Shoham conceived of the index and assembled a steering committee including Ray Perrault from SRI International, Erik Brynjolfsson of the Massachusetts Institute of Technology and Jack Clark from OpenAI. The committee subsequently hired Calvin LeGassick as project manager.

“The AI Index will succeed only if it becomes a community effort,” Shoham said.

Although the authors say the AI Index is the first index to track either scientific or technological progress, there are many other non-financial indexes that provide valuable insight into equally hard-to-quantify fields. Examples include the Social Progress Index, the Middle East peace index and the Bangladesh empowerment index, which measure factors as wide-ranging as nutrition, sanitation, workload, leisure time, public sentiment and even public speaking opportunities.

Intriguing findings

Among the findings of this inaugural index is that the number of active AI startups has increased 14-fold since 2000. Venture capital investment has increased six times in the same period. In academia, publishing in AI has increased a similarly impressive nine times in the last 20 years while course enrollment has soared. Enrollment in the introductory AI-related machine learning course at Stanford, for instance, has grown 45-fold in the last 30 years.

In technical metrics, image and speech recognition are both approaching, if not surpassing, human-level performance. The authors noted that AI systems have excelled in such real-world applications as object detection, the ability to understand and answer questions and classification of photographic images of skin cancer cells

Shoham noted that the report is still very U.S.-centric and will need a greater international presence as well as a greater diversity of voices. He said he also sees opportunities to fold in government and corporate investment in addition to the venture capital funds that are currently included.

In terms of human-level performance, the AI Index suggests that in some ways AI has already arrived. This is true in game-playing applications including chess, the Jeopardy! game show and, most recently, the game of Go. Nonetheless, the authors note that computers continue to lag considerably in the ability to generalize specific information into deeper meaning.

“AI has made truly amazing strides in the past decade,” Shoham said, “but computers still can’t exhibit the common sense or the general intelligence of even a 5-year-old.”

The AI Index was made possible by funding from AI100, Google, Microsoft and Toutiao. Data supporting the various metrics were provided by Elsevier, TrendKite, Indeed.com, Monster.com, the Google Trends Team, the Google Brain Team, Sand Hill Econometrics, VentureSource, Crunchbase, Electronic Frontier Foundation, EuroMatrix, Geoff Sutcliffe, Kevin Leyton-Brown and Holger Hoose.

You can find the AI Index here. They’re featuring their 2017 report but you can also find data (on the menu bar on the upper right side of your screen), along with a few provisos. I was curious as to whether any AI had been used to analyze the data and/or write the report. A very cursory look at the 2017 report did not answer that question. I’m fascinated by the failure to address what I think is an obvious question. It suggests that even very, very bright people can become blind and I suspect that’s why the group seems quite eager to get others involved, from the 2017 AI Index Report,

As the report’s limitations illustrate, the AI Index will always paint a partial picture. For this reason, we include subjective commentary from a cross-section of AI experts. This Expert Forum helps animate the story behind the data in the report and adds interpretation the report lacks.

Finally, where the experts’ dialogue ends, your opportunity to Get Involved begins [emphasis mine]. We will need the feedback and participation of a larger community to address the issues identified in this report, uncover issues we have omitted, and build a productive process for tracking activity and progress in Artificial Intelligence. (p. 8)

Unfortunately, it’s not clear how one becomes involved. Is there a forum or do you get in touch with one of the team leaders?

I wish them good luck with their project and imagine that these minor hiccups will be dealt with in near term.

Science funding, 2018 Canadian federal budget, and a conversation between Prime Minister Justin Trudeau and US science popularizer, Bill Nye (the Science Guy)

It may be too soon to describe it as a fallback position but Canadian Prime Minister, Justin Trudeau, seems to return to science when he wants to generate or bask in positive news coverage.  Coming off a not entirely successful state visit to India (February 17 – 23, 2018), he received some of the worst notices of his international diplomatic efforts to date. (This February 23, 2018 article, ‘India to Justin Trudeau: Stop trying so hard‘, by Vidhi Doshi for The Washington Post was one of the kinder pieces while this February 25, 2018 article, ‘Why Justin Trudeau’s India tour turned out to be a diplomatic disaster‘, by Candice Malcolm and published on economictimes.indiatimes.com was one of the more scathing.

Budget 2018: We’re in the money

The announcement of the federal budget (February 27, 2018) might be viewed as offering welcome relief from torrents of criticism.  From a March 7, 2018 Canadian Science Policy Centre announcement (CSPC; received via email) about the publication of a series of opinion pieces (editorials) concerning the 2018 federal budget,

CSPC’s Official Statement on the Federal Budget 2018
Déclaration officielle du CPSC concernant le budget fédéral 2018

Canadian Science Policy Centre commends the Government of Canada for the strong investment in Science projected in the Budget 2018 for the next five years. The Centre congratulates all Canadians, in particular members of the Fundamental Science Review Panel and the entire community who strongly supported the panel recommendations and the investment in Science.

Le Centre sur les politiques scientifiques canadiennes félicite le Gouvernement du Canada pour son investissement substantiel en sciences prévu dans le budget 2018 pour les cinq prochaines années. Le Centre félicite tous les Canadiens, plus particulièrement les membres du Comité de l’examen du soutien aux sciences ainsi que la communauté dans son ensemble, qui a vivement appuyé les recommandations du Comité et l’investissement en sciences.

You can find the editorials here (17 in total including an interview with Science Minister Kirsty Duncan … surprisingly[!!!!], she’s very proud of the government’s budget for science) along with editorials on other issues. Russ Roberts’ piece (Federal Budget 2018 – Missed Another Opportunity to Maximize ROI on Canadians’ Investments in Innovation) stands out as it is rather ‘grumpy’ but only in comparison to pretty much everyone else who is pleased to one degree or another.

The editorials put me in mind of an old song celebrating money in a Busby Berkeley production. Prepare yourself, over the top was where he liked to live,

Budget 2018: a little more nuance

Brooke Struck over on sciencemetrics.org offers some incisive analysis in two separate blog postings. First, he tackles the money in a February 28, 2018 posting (Note: Links have been removed),

The Naylor report [links to my 3-part series on the report also known as, INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research {Review of fundamental research final report} follow at the end of this posting] contained many recommendations, but the one that got the most press—and surely is the focus of attention right now, given the release of the budget yesterday—is the recommendation that funding for the three granting councils be increased. The amounts were quite high, too, calling for an increase from $3.5 billion to $4.8 billion to remediate slides over the decade of the previous government’s term.

The timing of the report’s release was wise, as a release before that year’s budget might have created the expectation that the money would flow immediately, which simply doesn’t fit with the timelines of federal budget development processes. From April 2017 to now, the research community in Canada has rallied around the report and its recommendations, sustaining a campaign to keep research (and its funding) in the national discussion.

One note that the panel emphasized was that the Social Sciences and Humanities Research Council (SSHRC) had been hit particularly hard. The rule of thumb is apparently that SSHRC is supposed to get 20% of the total granting council budget, while 40% goes to the natural sciences & engineering [Natural Sciences and Engineering Council] (NSERC) and 40% goes to health research [Canadian Institutes of Health Research] (CIHR). SSHRC’s portion had consistently clocked in at around 15%.

Furthermore, the report emphasized that the underlying reasoning behind the 40-40-20 split might not hold water anymore, as the social sciences and humanities really don’t have any other major sources of funding beyond government support, whereas other types of research can draw on support from other players as well. The 40-40-20 split from government is not a 40-40-20 split in practice once additional sources are considered in the equation.

Delivery: as promised?

And that brings us to yesterday’s budget. While the report had called for an injection of $1.3 billion, the finance minister apparently couldn’t scrape together more than a measly $925 million—which, of course, is a huge amount of money. Some will lament the gap and rend their shirts in twain about promises broken, while others will cheer the victory of science retaking its rightful place through another #PromiseKept. That increase translated into a 25% bump in fundamental research spending, so I guess how you feel about it depends on your views about how much a 25% increase really means. For those keeping score at home, that apparently closes the gap to about 90% of real spending power levels before the slides under Harper.

But was it a 25% increase for everyone? No, the $925 million was not split evenly between the councils. Identical portions of $354.7 million will go to NSERC and CIHR (roughly 38% each from the new money) while $215.5 million will go to SSHRC (just over 23% of the new money). Comparing their funding levels this morning to those of yesterday morning, NSERC and CIHR saw increases of about 20%–25%, while SSHRC saw an increase of over 40%.

But did the government really heed the advice of their panel about getting back to the 40-40-20 allocation across the councils (while acknowledging that even that split is perhaps not sufficient anymore)? With its increase, SSHRC will be up from 15% of the tri-council total to about 16.5% of the total. That sounds like progress.

On the flip side, though, the government has just announced a massive injection to research spending, with an ongoing annual increase after that (following the same split as the one-time boost). No further increases are likely to happen again in the near future, and it would take three more increases just like this one for SSHRC to reach its 20%. The social sciences and humanities have made some headway, but they aren’t likely to get any closer than this to their 20%. The big investment has been made, and this will be the status quo for a while—consider that the Naylor panel was the first of its kind in 40 years.

I don’t think this excerpt does justice to Struck’s posting and recommend you read it in its entirety if you have the time and there’s this March 8, 2018 posting where he examines ‘evidence’ in relation to the budget (Note: Links have been removed),

The new budget provides a lot of money for science. It also emphasizes the importance of evidence-based decision-making to government, employing the term “evidence-based” about 20 times in the document. A lot of the new science money is earmarked to increase science for policy as well, separate from the fundamental science funding we discussed last week.

For example, Statistics Canada will get millions of extra dollars, in one-time injections as well as increases to ongoing, regular operating budgets. Why? “Better data will… support [the Government’s] commitment to evidence-based policy-making.” (p. 187). There are also hundreds of millions of dollars for science conducted within the federal government: labs and facilities (p.83) as well as highlighted projects (e.g., ocean and freshwater surveillance, p. 98). Again, all this is on top of the $925 million for fundamental research outside of government, administered by the funding councils. All told, that’s a big boost for research.

What about the uptake of that research in decision-making? There’s a whole section in Chapter 2 entitled “Placing Evidence at the Centre of Program Evaluation and Design.” The result? Statistics Canada gets $1 million annually to “improve performance evaluations for innovation-related programs,” and the Treasury Board gets $2 million annually to build an internal team for innovation performance evaluation, drawing on (among other things) the StatsCan innovation data.

Beyond that, the previous budget outlined $2 million annually for the federal Chief Science Advisor and her secretariat. That outlay doesn’t mention improving evidence-based decision-making, though it’s a key part of the CSA’s mandate. Together, what we see here is that there’s a huge disparity between the new money being spent on research and data, and the new money being spent to develop “a strong culture of evidence-based decision-making” (Budget 2018, p. 276).

Reading between the line items

The funding disparity suggests that the government feels that evidence-based policymaking is hampered primarily by supply-side problems. If we just pushed more science in the front end, we’d get a better flow of evidence through the policymaking pipeline. There’s almost no money to patch up whatever holes there may be in that pipeline between the research money inputs and the better policy outputs.

This quality of analysis is what one would hope for from the Canadian Science Policy Centre (CSPC). Perhaps once their initial euphoria and back-patting has passed, the CSPC commentators will offer more nuanced takes on the budget.

Budget 2018: The good includes a new intellectual property strategy

First, there’s a lot to like in the 2018 budget as the CSPC folks noticed. Advancing gender equality, supporting innovation and business, supporting fundamental research through the tri-council agencies, and more are all to the good.

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

That said, it’s good to see the government adopting a fresh approach to the matter.

Budget 2018: Who’s watching over us?

Russ Roberts (CSPC editorial) makes an excellent point in his piece about getting some sort of return on investment (ROI) made by the Canadian government on behalf of its taxpayers. One note, the issue is not new and unique to this Liberal government. As far as I’m aware, there never has been any mechanism for determining whether taxpayers’ money has been well spent and other than knowing that insulin was a huge boon to the world and could be described as a great ROI. So, I’m not suggesting that everything has to be measured in dollars and cents but just that we occasionally give it some thought.

Another aspect I’d like to see considered is oversight. In my March 5, 2018 posting I posed a question, What is happening with Alberta’s (Canada) Ingenuity Lab? In sum, Dr. Carlo Montemagno came to Alberta to head up the lab which is funded to the tune of $100M over 10 years. He was making over $500,000/year when he left some five years into the project to become Chancellor at Southern Illinois University (SIU). I had some questions about Montemagno’s tenure in Alberta. For example, was hiring his daughter and son-in-law (as he did again at SIU where he has received severe criticism) to work at the Ingenuity Lab a good idea? It may have been but it seems as if the question was never asked. Other questions also present themselves such as, what is happening to an industrial pilot project on carbon transformation that Montemagno touted?

Increasingly, I’m wondering what sort of oversight these heavily funded science projects are receiving, especially in light of the government’s massive foul up over the Phoenix pay system for federal government employees. (I’m aware that I’m conflating science and technology.) We’re entering the third year of a botched (a very polite term) and increasingly expensive payroll technology implementation. Take for example this recommendation from the Canada Treasury Board’s Lessons Learned from the Transformation of Pay Administration Initiative webpage which has me shaking my head,

Fully test the IT Solution before launch
Lesson 14: Launch any required new IT solution only after it has been fully tested with end-to-end real-life simulations using a broad spectrum of real users and when all doubts regarding success have been addressed and verified independently.

The federal government has over 300,000 employees whose payroll was migrated to this system and they didn’t test it (!) or so I infer from this recommendation. (According to a CBC [Canadian Broadcasting Corporation] news online August 24, 2017 news item, a little over 1/2 of Canada’s federal public servants have been affected,

Nearly one in every two federal public servants paid through the problem-plagued Phoenix system has opened a file seeking redress for a pay issue, CBC News has learned.

As of Aug. 8 [2017], there were 156,035 employees who had been waiting at least 30 days to have their pay complaint dealt with, according to data released to Radio-Canada by a government source.

That number represents nearly one-half of the 313,734 public servants paid through Phoenix. It’s also the first instance in which the scope of the Phoenix payroll issues has been laid clear in terms of people affected, rather than in terms of “transactions” or “cases.”

The documents show the government has been tracking the numbers of individuals affected by Phoenix since at least June 26 [2017].

“It’s shocking that we’ve just learned that they were hiding those numbers, because they didn’t want to show how big that catastrophe is for our public servants,” said Alexandre Boulerice, the NDP’s [New Democratic Party] finance critic.

Interestingly,  the government is hoping to introduce more technology into their governance. Michael Karlin’s (@supergovernance) Twitter feed and his latest essay provide some insight into the government’s preparations for the introduction of artificial intelligence (AI), Note: Links have been removed,

Towards Rules for Automation in Government

Caveat: This is a personal view of work underway that I’m leading. What I describe is subject to incredible change as this policy work winds its way through government and consultations. Our approach may change for reasons that I’m simply not privy to, and that’s fine. This is meant to solicit ideas, but also show the complexity about what it takes to make policy. I hope that people find it useful, particularly students of public admin. It also represents my view of the world only, and neither my organization’s or the Government of Canada writ large.

AI is a rapidly evolving space, and trying to create rules in a time of disruption is risky. Too severe and innovation can be hindered; this is unacceptable during a time when the Government of Canada is embracing digital culture. On the other hand, if the rules don’t have meaning and teeth, and Canadians will not be sufficiently protected from the negative outcomes of this technology, like this or this. Trying to strike the right balance between facilitating innovation while being protective of right is a challenge, and one that benefits from ongoing discussions with different sectors across the country. It also means that I might work hard to build a consensus around a set of rules that we try out and have to scrap and redesign after a year in deployment because they don’t work.

Let’s not forget the 2017 Canadian federal budget introduced funding ($125M) for a Pan-Canadian Artificial Intelligence Strategy to be administered by the Canadian Institute for Advanced Research (CIFAR). So, federal funding for science is often intimately linked to technology., hence the conflation.

Sunny ways: a discussion between Justin Trudeau and Bill Nye

Billed as a discussion about the Canadian federal 2018 budget and science, Justin Trudeau sat down with Bill Nye, a US science popularizer and television personality on March 6, 2018 for about an hour. Kate Young, parliamentary secretary to the minister of science (Kirsty Duncan) was moderator.

As to be expected Bill Nye did not know much about the budget and the funding it provided for science, technology, research, and innovation but he was favourably impressed overall. In short, if you were looking for an incisive policy discussion, this was not the venue for it.

The conversation was quite genial throughout. Paul Wells in his March 6, 2018 article for Maclean’s offers a good summary of the main points and answers a few questions I had (for example, why a US television science personality?),

News of this bit of show-business [televised discussion] drew a fair bit of advance comment, most of it on Twitter on Monday night, some of it critical or worried. Some who don’t like Nye’s climate-change activism said he’s not a scientist. This is, by many definitions, true: He’s a mechanical engineer. I’m here to tell you that it’s hard to get a degree in mechanical engineering without learning some science, but for those inclined to draw distinctions, fill your boots. Others wished a Canadian scientist had been Trudeau’s chosen interlocutor, instead of some TV Yankee.

Part of the answer to that came from the U of O students, who were pleased to see the Prime Minister but plainly way more pleased to see Bill Nye the Science Guy. There simply isn’t a Canadian scientist (or science-friendly mechanical engineer) who would have provoked as much excitement. [emphasis mine; sadly true]

My own concern was that Nye, who has been critical of the Trump administration, might attempt to draw distinctions between the blackened anti-science hell-pit of his own country and the bright shiny city on a hill called Canada. Such distinctions would have been misinformed, for reasons I’ll explain in a bit, but in fact Nye mostly managed to avoid making them.

Mostly he and Trudeau just shot the breeze, in ways that were low on detail but not unpleasant.

One comment that Trudeau made raised a lot of interest on Paul Wells’ fTwitfer feed (#inklessPW), ‘all babies are scientists’. Wells’ notes where this idea likely originated (Note: A link has been removed),

The babies-are-scientists bit, I heard from a former New Brunswick education minister named Kelly Lamrock, could come from a book that was in vogue at about the time Trudeau was working as a schoolteacher, The Scientist in the Crib. To anyone who’s watched a toddler who was fascinated about dinosaurs grow into a teenager who couldn’t care less, Trudeau’s reverie makes sense as folk wisdom if not as a precise description of the scientific method.

There are also people who claim all babies are artists or musicians or mathematicians or … . Take your pick.

Wells goes on to highlight two female researchers (Trudeau being famously feminist and whose government just presented a budget boosting women) invited onstage to participate in the conversation (Note: Links have been removed),

… two young women researchers were invited onstage. Plainly their role was to be admired as pathbreaking young women researchers, pulverizing glass ceilings, embodying budget initiatives. To my relief, neither seemed interested in acting the part, or at least not in behaving as if sent straight from Central Casting.

Caitlin Miron from Queen’s University has already received some coverage for discovering a… thing… that could “switch off” cancer cells. This is how Miron was introduced. She could switch off cancer cells. It’s how Nye addressed her. You could switch off cancer cells! Miron answered, reasonably enough, that that’s how it might turn out someday, but that on the other hand it might not, and in the meantime she’s learning interesting new things about cancer cells. She was plainly flattered by the attention, but not interested in boiling her work down to slogans just yet.

Then the PM and the science guy turned to Ayda Elhage, who’s a PhD student in Chemistry at the University of Ottawa. Elhage, who was born in Lebanon, launched into a description of her work, which concentrates on (among other things) the tunable photocatalytic activity of palladium-decorated titanium dioxide [likely titanium dioxide nanoparticles]. I’m sure I don’t have to tell you how important this work is! At least I hope I don’t, because I understood almost none of it! I think it’s about complex new materials whose properties can be triggered by light. Or not. Anyway, the way she resisted any attempt to reduce her work to a gimmick or gadget was heartening to hear.

Wells winds up with this,

…  the truth is that even now, today, in the second of the dark Trump years, the United States is far more of a performer in science research than Canada is. The U.S. National Institutes of Health have about 6 or 7 times the per-capita budget of the Canadian Institutes of Health Research; NASA and the National Science Foundation together spend about twice as much per capita as Canada’s Natural Science and Engineering Research Council.

The new investments in last week’s budget, while welcome, won’t change the orders of magnitude here. The U.S. commitment to science research is cultural and durable. The Trump White House’s call for cuts to granting agencies was met with budget increases to those agencies from Congress. Trudeau’s conversion to the cause comes after almost a year’s steady pressure from the Canadian research community. But I bet those researchers were heartened to hear Trudeau talking like one of them so soon after the budget came down.

Wells also covers their comments on support for fundamental research and a foray into the Kinder Morgan pipeline controversy.

From Wells’ Twitter feed (on the day of),

2 hours ago

Nye asks Trudeau about “this pipeline, Morgan Kinder.” Uh oh.

2 hours ago

Trudeau talks about “tremendous potential” for renewables. “However, we’re not going to get there tomorrow.” The has to be a “transition phase.”

2 hours ago

This answer is longer than the Oscars.

Nye did not correctly identify the pipeline but he did comment on his visit to Fort McMurray. In any event, the Kinder Morgan portion of the discussion seemed scripted (to me), i.e, Trudeau knew the question was coming and was prepared for it. I’m guessing he also knew Nye was going to give him and his government a pass after hearing the reasons for their decision.

One question that I found interesting but not mentioned in Wells’ article was about language and the arts. It was neither Trudeau’s not Nye’s finest moment. They were clearly unable to shift gears, part of their problem being that much of what they discussed in terms of ‘baby scientists’ could also be said about the arts. Yes, all babies make art!

Final thoughts

As noted earlier, here’s a lot to applaud in the new budget, more support for fundamental research, catch up funding for the Social Sciences and Humanities Research Council, and greater support for women in the sciences and technology.

At the same time, I wish this government put more thought into how it’s spending taxpayers’ money.

Extras

For anyone who’s curious, you can find the full 2018 federal budget here and you’ll find the science funding in Chapter 2: Progress.

For the curious, you can watch the entire (!) Trudeau/Nye conversation, 1 hour, 9 minutes and 30 seconds here.

For anyone interested in the Naylor report (or my comments on it), there’s this three-part series:

  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3
  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3
  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

For anyone who hasn’t been following the Canadian political scene, “sunny ways” is a term that Justin Trudeau uses to describe, in part, his political philosophy. Here’s an explanation of the term from the Liberal Party of Canada’s website,

Canadians have often heard Prime Minister Justin Trudeau speak of Sir Wilfrid Laurier’s [Canadian Prime Minister from 1896-1911] sunny ways – a guiding philosophy that both men share. Like Laurier, the Prime Minister knows that politics can be a positive and powerful force for change. …

Wilfrid Laurier’s appeal for the “sunny way” in political discourse has its roots in the Manitoba Schools Question. When Manitoba became a province in 1870, a dual school system was established to reflect the province’s Protestant and largely English-speaking population, and its Catholic and predominantly French-speaking, residents.

“The sun’s warm rays prove more effective than the wind’s bluster.”

By 1890, the Anglophone population widely outnumbered the Francophones. Seeking to appeal to this growing population, the provincial government of Thomas Greenway attempted to abolish the dual school system. With the support of the federal Conservative government, Manitoba’s Catholic community launched a court challenge of the school law. The Judicial Committee of the Privy Council ruled that while the law was valid, the federal government could restore public funding to denominational schools. In 1895, despite it being deeply divisive, Prime Minister Mackenzie Bowell introduced legislation to force Manitoba to restore Catholic schools – a measure that was then postponed due to severe opposition within his own cabinet, ultimately leading to his resignation.

In contrast to Bowell’s heavy-handed approach, Liberal Leader Wilfrid Laurier proposed that a diplomatic “sunny way” would work better, using as an illustration Aesop’s fable in which the sun and the wind hold a contest to see who can remove a traveler’s coat. The sun’s warm rays prove more effective than the wind’s bluster.

While more than 120 years have passed, Prime Minister Trudeau shares Laurier’s belief that the “sunny way” remains essential to solving the complex problems facing our country.

Trudeau seems to have had remarkable luck with his ‘sunny ways’ which sometimes seem more like a form of teflon coating than an approach to diplomacy as per Sir Wilfred Laurier. At other times, Trudeau appears to have a magic touch where diplomacy is concerned. He is famously able to deal with the volatile US President, Donald Trump.

Resizing viral peptides for nanoscale drug delivery system

A January 9, 2018 news item on Nanowerk sheds some light on the research (Note: A link has been removed),

By chipping away at a viral protein, Rice University scientists have discovered a path toward virus-like, nanoscale devices that may be able to deliver drugs to cells.

The protein is one of three that make up the protective shell, called the capsid, of natural adeno-associated viruses (AAV). By making progressively smaller versions of the protein, the researchers made capsids with unique abilities and learned a great deal about AAV’s mechanisms.

The research appears in the American Chemical Society journal ACS Nano (“Reprogramming the Activatable Peptide Display Function of Adeno-Associated Virus Nanoparticles”).
programmable adeno-associated viruses

Rice University bioengineers have developed programmable adeno-associated viruses by modifying one of three proteins that assemble into a tough shell called a capsid. In this illustration, blue subunits in the capsid represent the protein VP3 and green subunits represent a truncated mutant of VP2.

Here’s an image illustrating the work,

Rice University bioengineers have developed programmable adeno-associated viruses by modifying one of three proteins that assemble into a tough shell called a capsid. In this illustration, blue subunits in the capsid represent the protein VP3 and green subunits represent a truncated mutant of VP2. From top to bottom: a VP3-only capsid that does not display any peptides; a mosaic capsid with a majority of VP3 and small amount of the VP2 mutant that shows a low level of activable peptide display; a mosaic capsid with equal amounts of VP3 and VP2 mutant that shows a high level of activable peptide display; and a homomeric VP2 mutant capsid with a high level of constant, brush-like peptide display. For a larger version, click on the image. Illustration by Nicole Thadani Courtesy: Rice University

A January 8, 2018 Rice University news release (also on EurekAlert), which originated the news item, expands on the story,

Rice bioengineer Junghae Suh studies the manipulation of nondisease-causing AAVs to deliver helpful cargoes like chemotherapy drugs. Her research has led to the development of viruses that can be triggered by light or by extracellular proteases associated with certain diseases.

AAVs are small — about 25 nanometers — and contain a single strand of DNA inside tough capsids that consist of a mosaic of proteins known as VP1, VP2 and VP3. AAVs have been used to deliver gene-therapy payloads, but nobody has figured out how AAV capsids physically reconfigure themselves when triggered by external stimuli, Suh said. That was the starting point for her lab.

“This virus has intrinsic peptide (small protein) domains hidden inside the capsid,” she said. “When the virus infects a cell, it senses the low pH and other endosomal factors, and these peptide domains pop out onto the surface of the virus capsid.

“This conformational change, which we termed an ‘activatable peptide display,’ is important for the virus because the externalized domains break down the endosomal membrane and allow the virus to escape into the cytoplasm,” Suh said. “In addition, nuclear localization sequences in those domains allow the virus to transit into the nucleus. We believed we could replace that functionality with something else.”

Suh and lead author and Rice graduate student Nicole Thadani think their mutant AAVs can become “biocomputing nanoparticles” that detect and process environmental inputs and produce controllable outputs. Modifying the capsid is the first step.

Of the three natural capsid proteins, only VP1 and VP2 can be triggered to expose their functional peptides, but neither can make a capsid on its own. Shorter VP3s can form capsids by themselves, but do not display peptides. In natural AAVs, VP3 proteins outnumber each of their compadres 10-to-1.

That limits the number of peptides that can be exposed, so Suh, Thadani and their co-authors set out to change the ratio. That led them to truncate VP2 and synthesize mosaic capsids with VP3, resulting in successful alteration of the number of exposed peptides. Based on previous research, they inserted a common hexahistidine tag that made it easy to monitor the surface display of the peptide region.

“We wanted to boost the protein’s activable property beyond what occurs in the native virus capsid,” Thadani said. “Rather than displaying just five copies of the peptide per capsid, now we may be able to display 20 or 30 and get more of the bioactivity that we want.”

They then made a truncated VP2 able to form a capsid on its own. “The results were quite surprising, and not obvious to us,” Suh said. “We chopped down that VP2 component enough to form what we call a homomeric capsid, where the entire capsid is made up of just that mutant subunit. That gave us viruses that appear to have peptide ‘brushes’ that are always on the surface.

“A viral structure like that has never been seen in nature,” she said. “We got a particle with this peptide brush, with loose ends everywhere. Now we want to know if we can use these loose ends to attach other things or carry out other functions.”

Homomeric AAVs display as many as 60 peptides, while mosaic AAVs could be programmed to respond to stimuli specific to particular cells or tissues and display a smaller desired number of peptides, the researchers said.

“Viruses have evolved to invade cells very effectively,” Suh said. “We want to use our virus as a nanoparticle platform to deliver protein- or peptide-based therapeutics more efficiently into cells. We want to harness what nature has already created, tweak it a little bit and use it for our purposes.”

Here’s a link to and a citation for the paper,

Reprogramming the Activatable Peptide Display Function of Adeno-Associated Virus Nanoparticles by Nicole N. Thadani, Christopher Dempsey, Julia Zhao, Sonya M. Vasquez, and Junghae Suh. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b07804 Publication Date (Web): December 26, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Ecologically friendly air-conditioning that generates drinking water—Yes!

A team at the National University of Singapore (NUS) is looking for industry partners to help take their air-conditioning technology from the laboratory to the marketplace. First, here’s more about the technology from a January 8, 2018 news item on ScienceDaily,

A team of researchers from the National University of Singapore (NUS) has pioneered a new water-based air-conditioning system that cools air to as low as 18 degrees Celsius without the use of energy-intensive compressors and environmentally harmful chemical refrigerants. This game-changing technology could potentially replace the century-old air-cooling principle that is still being used in our modern-day air-conditioners. Suitable for both indoor and outdoor use, the novel system is portable and it can also be customised for all types of weather conditions.

A January 8, 2018 NUS press release offers additional technical detail and includes call for industrial partners,

2018-0108-Air-con.jpg

NUS Engineering researchers developed a novel air cooling technology that could redefine the future of air-conditioning.

Led by Associate Professor Ernest Chua from the Department of Mechanical Engineering at NUS Faculty of Engineering, the team’s novel air-conditioning system is cost-effective to produce, and it is also more eco-friendly and sustainable. The system consumes about 40 per cent less electricity than current compressor-based air-conditioners used in homes and commercial buildings. This translates into more than 40 per cent reduction in carbon emissions. In addition, it adopts a water-based cooling technology instead of using chemical refrigerants such as chlorofluorocarbon and hydrochlorofluorocarbon for cooling, thus making it safer and more environmentally-friendly.

To add another feather to its eco-friendliness cap, the novel system generates potable drinking water while it cools ambient air.

Assoc Prof Chua said, “For buildings located in the tropics, more than 40 per cent of the building’s energy consumption is attributed to air-conditioning. We expect this rate to increase dramatically, adding an extra punch to global warming. First invented by Willis Carrier in 1902, vapour compression air-conditioning is the most widely used air-conditioning technology today. This approach is very energy-intensive and environmentally harmful. In contrast, our novel membrane and water-based cooling technology is very eco-friendly – it can provide cool and dry air without using a compressor and chemical refrigerants. This is a new starting point for the next generation of air-conditioners, and our technology has immense potential to disrupt how air-conditioning has traditionally been provided.

Innovative membrane and water-based cooling technology

Current air-conditioning systems require a large amount of energy to remove moisture and to cool the dehumidified air. By developing two systems to perform these two processes separately, the NUS Engineering team can better control each process and hence achieve greater energy efficiency.

The novel air-conditioning system first uses an innovative membrane technology – a paper-like material – to remove moisture from humid outdoor air. The dehumidified air is then cooled via a dew-point cooling system that uses water as the cooling medium instead of harmful chemical refrigerants. Unlike vapour compression air-conditioners, the novel system does not release hot air to the environment. Instead, a cool air stream that is comparatively less humid than environmental humidity is discharged – negating the effect of micro-climate. About 12 to 15 litres of potable drinking water can also be harvested after operating the air-conditioning system for a day.

“Our cooling technology can be easily tailored for all types of weather conditions, from humid climate in the tropics to arid climate in the deserts. While it can be used for indoor living and commercial spaces, it can also be easily scaled up to provide air-conditioning for clusters of buildings in an energy-efficient manner. This novel technology is also highly suitable for confined spaces such as bomb shelters or bunkers, where removing moisture from the air is critical for human comfort, as well as for sustainable operation of delicate equipment in areas such as field hospitals, armoured personnel carriers, and operation decks of navy ships as well as aircrafts,” explained Assoc Prof Chua.

The research team is currently refining the design of the air-conditioning system to further improve its user-friendliness. The NUS researchers are also working to incorporate smart features such as pre-programmed thermal settings based on human occupancy and real-time tracking of its energy efficiency. The team hopes to work with industry partners to commercialise the technology. [emphasis mine]

This project is supported by the Building and Construction Authority and National Research Foundation Singapore.

I’m sorry they didn’t include a link to a published paper but I gather that at this time there’s more focus on commercializing the technology than on published papers. I wish the researchers good luck as this cooling technology affords some exciting possibilities in a world that is heating and growing more parched as the NUS press release.notes

Taking spectroscopy to a new dimension with silver nanoparticles

This latest move towards better detection at the nanoscale comes from India (from a January 2, 2018 news item on ScienceDaily),

As medicine and pharmacology investigate nanoscale processes, it has become increasingly important to identify and characterize different molecules. Raman spectroscopy, a technique that leverages the scattering of laser light to identify molecules, has a limited capacity to detect molecules in diluted samples because of low signal yield.

A team of researchers from the University of Hyderabad in India has improved molecular detection at low concentration levels by arranging nanoparticles on nanowires to enhance Raman spectroscopy. Surface-enhanced Raman spectroscopy (SERS) uses electromagnetic fields to improve Raman scattering and boost sensitivity in standard dyes such as R6G by more than one billionfold.

Here’s an image illustrating the work,

Caption: Detection of a low concentration analyte molecule using silicon nanowires decorated with silver nanoparticles and surface enhanced Raman scattering measurements. Credit: V.S. Vendamani

A January 2, 2017 American Institute of Physics press release on EurekAlert, which originated the news item, explains further,

The team decorated vertically aligned silicon nanowires with varying densities of silver nanoparticles, utilizing and enhancing the structure’s 3-D shape. Their results, published in the Journal of Applied Physics, from AIP [American Institute of Physics] Publishing, show that their device was able to enhance the Raman signals for cytosine protein and ammonium perchlorate by a factor of 100,000.

“The beauty is that we can improve the density of these nanowires using simple chemistry,” said Soma Venugopal Rao, one of the paper’s authors. “If you have a large density of nanowires, you can put more silver nanoparticles into the substrate and can increase the sensitivity of the substrate.”

Applying the necessary nanostructures to SERS devices remains a challenge for the field. Building these structures in three dimensions with silicon nanowires has garnered attention for their higher surface area and superior performance, but silicon nanowires are still expensive to produce.

Instead, the team was able to find a cheaper way to make silicon nanowires and used a technique called electroless etching to make a wide range of nanowires. They “decorated” these wires with silver nanoparticles with variable and controlled densities, which increased the nanowires’ surface area.

“Optimizing these vertically aligned structures took a lot of time in the beginning,” said Nageswara Rao, another of the paper’s authors. “We increased the surface area and to do this we needed to change the aspect ratio.”

After optimizing their system to detect Rhodamine dye on a nanomolar level, these new substrates the team built enhanced Raman sensitivity by a factor of 10,000 to 100,000. The substrates detected concentrations of cytosine, a nucleotide found in DNA, and ammonium perchlorate, a molecule with potential for detecting explosives, in as dilute concentrations as 50 and 10 micromolar, respectively.

The results have given the team reason to believe that it might soon be possible to detect compounds in concentrations on the scale of nanomolar or even picomolar, Nageswara Rao said. The team’s work has opened several avenues for future research, from experimenting with different nanoparticles such as gold, increasing the sharpness of the nanowires or testing these devices across several types of molecules.

Here’s a link to and a citation for the paper,

Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection featured by V. S. Vendamani, S. V. S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, and A. P. Pathak. Journal of Applied Physics 123, 014301 (2018); Published Online: January 2018 https://doi.org/10.1063/1.5000994

This paper is open access.

Australian peacock spiders, photonic nanostructures, and making money

Researcher Bor-Kai Hsiung’s work has graced this blog before but the topic was tarantulas and their structural colour. This time, it’s all about Australian peacock spiders and their structural colour according to a December 22, 2017 news item on ScienceDaily,

Even if you are arachnophobic, you probably have seen pictures or videos of Australian peacock spiders (Maratus spp.). These tiny spiders are only 1-5 mm long but are famous for their flamboyant courtship displays featuring diverse and intricate body colorations, patterns, and movements.

The spiders extremely large anterior median eyes have excellent color vision and combine with their bright colors to make peacock spiders cute enough to cure most people of their arachnophobia. But these displays aren’t just pretty to look at, they also inspire new ways for humans to produce color in technology.

One species of peacock spider — the rainbow peacock spider (Maratus robinsoni) is particularly neat, because it showcases an intense rainbow iridescent signal in males’ courtship displays to the females. This is the first known instance in nature of males using an entire rainbow of colors to entice females. Dr. Bor-Kai Hsiung led an international team of researchers from the US (UAkron, Cal Tech, UC San Diego, UNL [University of Nebraska-Lincoln]), Belgium (Ghent University), Netherlands (UGroningen), and Australia to discover how rainbow peacock spiders produce this unique multi-color iridescent signal.

A December 22, 2017 Ghent University (Belgium) press release on Alpha Galileo, which originated the news item, provides more technical detail,

Using a diverse array of research techniques, including light and electron microscopy, hyperspectral imaging, imaging scatterometry, nano 3D printing and optical modeling, the team found the origin of this intense rainbow iridescence emerged from specialized abdominal scales of the spiders. These scales have an airfoil-like microscopic 3D contour with nanoscale diffraction grating structures on the surface.

The interaction between the surface nano-diffraction grating and the microscopic curvature of the scales enables separation and isolation of light into its component wavelengths at finer angles and smaller distances than are possible with current manmade engineering technologies.

Inspiration from these super iridescent scales can be used to overcome current limitations in spectral manipulation, and to further reduce the size of optical spectrometers for applications where fine-scale spectral resolution is required in a very small package, notably instruments on space missions, or wearable chemical detection systems. And it could have a wide array of implications to fields ranging from life sciences and biotechnologies to material sciences and engineering.

Here’s a video of an Australian rainbow peacock spider,

Here’s more from the YouTube description published on April 13, 2017 by Peacockspiderman,

Scenes of Maratus robinsoni, a spider Peter Robinson discovered and David Hill and I named it after him in 2012. You can read our description on pages 36-41 in Peckhamia 103.2, which can be downloaded from the Peckhamia website http://peckhamia.com/peckhamia_number…. This is one of the two smallest species of peacock spider (2.5 mm long) and the only spider we know of in which colour changes occur every time it moves, this video was created to document this. Music: ‘Be Still’ by Johannes Bornlöf licensed through my MCN ‘Brave Bison’ from ‘Epidemic Sound’ For licensing inquiries please contact Brave Bison licensing@bravebison.io

The University of California at San Diego also published a December 22, 2017 news release about this work, which covers some of the same ground while providing a few new tidbits of information,

Brightly colored Australian peacock spiders (Maratus spp.) captivate even the most arachnophobic viewers with their flamboyant courtship displays featuring diverse and intricate body colorations, patterns, and movements – all packed into miniature bodies measuring less than five millimeters in size for many species. However, these displays are not just pretty to look at. They also inspire new ways for humans to produce color in technology.

One species of peacock spider – the rainbow peacock spider (Maratus robinsoni) – is particularly impressive, because it showcases an intense rainbow iridescent signal in males’ courtship displays to females. This is the first known instance in nature of males using an entire rainbow of colors to entice females to mate. But how do males make their rainbows? A new study published in Nature Communications looked to answer that question.

Figuring out the answers was inherently interdisciplinary so Bor-Kai Hsiung, a postdoctoral scholar at Scripps Institution of Oceanography at the University of California San Diego, assembled an international team that included biologists, physicists and engineers. Starting while he was a Ph.D. student at The University of Akron under the mentorship of Todd Blackledge and Matthew Shawkey, the team included researchers from UA, Scripps Oceanography, California Institute of Technology, and University of Nebraska-Lincoln, the University of Ghent in Belgium, University of Groningen in Netherlands, and Australia to discover how rainbow peacock spiders produce this unique iridescent signal.

The team investigated the spider’s photonic structures using techniques that included light and electron microscopy, hyperspectral imaging, imaging scatterometry and optical modeling to generate hypotheses about how the spider’s scale generate such intense rainbows. The team then used cutting-edge nano 3D printing to fabricate different prototypes to test and validate their hypotheses. In the end, they found that the intense rainbow iridescence emerged from specialized abdominal scales on the spiders. These scales combine an airfoil-like microscopic 3D contour with nanoscale diffraction grating structures on the surface. It is the interaction between the surface nano-diffraction grating and the microscopic curvature of the scales that enables separation and isolation of light into its component wavelengths at finer angles and smaller distances than are possible with current engineering technologies.

“Who knew that such a small critter would create such an intense iridescence using extremely sophisticated mechanisms that will inspire optical engineers,” said Dimitri Deheyn, Hsuing’s advisor at Scripps Oceanography and a coauthor of the study.

For Hsiung, the finding wasn’t quite so unexpected.

“One of the main questions that I wanted to address in my Ph.D. dissertation was ‘how does nature modulate iridescence?’ From a biomimicry perspective, to fully understand and address a question, one has to take extremes from both ends into consideration. I purposefully chose to study these tiny spiders with intense iridescence after having investigated the non-iridescent blue tarantulas,” said Hsiung.

The mechanism behind these tiny rainbows may inspire new color technology, but would not have been discovered without research combining basic natural history with physics and engineering, the researchers said.

“Nanoscale 3D printing allowed us to experimentally validate our models, which was really exciting,” said Shawkey. “We hope that these techniques will become common in the future.”

“As an engineer, what I found fascinating about these spider structural colors is how these long evolved complex structures can still outperform human engineering,” said Radwanul Hasan Siddique, a postdoctoral scholar at Caltech and study coauthor. “Even with high-end fabrication techniques, we could not replicate the exact structures. I wonder how the spiders assemble these fancy structural patterns in the first place!”

Inspiration from these super iridescent spider scales can be used to overcome current limitations in spectral manipulation, and to reduce the size of optical spectrometers for applications where fine-scale spectral resolution is required in a very small package, notably instruments on space missions, or wearable chemical detection systems.

In the end, peacock spiders don’t just produce nature’s smallest rainbows.They could also have implications for a wide array of fields ranging from life sciences and biotechnologies to material sciences and engineering.

Before citing the paper and providing a link, here’s a story by Robert F. Service for Science magazine about attempts to capitalize on ‘spider technology’, in this case spider silk,

The hype over spider silk has been building since 1710. That was the year François Xavier Bon de Saint Hilaire, president of the Royal Society of Sciences in Montpellier, France, wrote to his colleagues, “You will be surpriz’d to hear, that Spiders make a Silk, as beautiful, strong and glossy, as common Silk.” Modern pitches boast that spider silk is five times stronger than steel yet more flexible than rubber. If it could be made into ropes, a macroscale web would be able to snare a jetliner.

The key word is “if.” Researchers first cloned a spider silk gene in 1990, in hopes of incorporating it into other organisms to produce the silk. (Spiders can’t be farmed like silkworms because they are territorial and cannibalistic.) Today, Escherichia coli bacteria, yeasts, plants, silkworms, and even goats have been genetically engineered to churn out spider silk proteins, though the proteins are often shorter and simpler than the spiders’ own. Companies have managed to spin those proteins into enough high-strength thread to produce a few prototype garments, including a running shoe by Adidas and a lightweight parka by The North Face. But so far, companies have struggled to mass produce these supersilks.

Some executives say that may finally be about to change. One Emeryville, California-based startup, Bolt Threads, says it has perfected growing spider silk proteins in yeast and is poised to turn out tons of spider silk thread per year. In Lansing, Michigan, Kraig Biocraft Laboratories says it needs only to finalize negotiations with silkworm farms in Vietnam to produce mass quantities of a combination spider/silkworm silk, which the U.S. Army is now testing for ballistics protection. …

I encourage you to read Service’s article in its entirety if the commercialization prospects for spider silk interest you as it includes gems such as this,

Spider silk proteins are already making their retail debut—but in cosmetics and medical devices, not high-strength fibers. AMSilk grows spider silk proteins in E. coli and dries the purified protein into powders or mixes it into gels, for use as additives for personal care products, such as moisture-retaining skin lotions. The silk proteins supposedly help the lotions form a very smooth, but breathable, layer over the skin. Römer says the company now sells tons of its purified silk protein ingredients every year.

Finally, here’s a citation for and a link to the paper about Australian peacock spiders and nanophotonics,

Rainbow peacock spiders inspire miniature super-iridescent optics by Bor-Kai Hsiung, Radwanul Hasan Siddique, Doekele G. Stavenga, Jürgen C. Otto, Michael C. Allen, Ying Liu, Yong-Feng Lu, Dimitri D. Deheyn, Matthew D. Shawkey, & Todd A. Blackledge. Nature Communications 8, Article number: 2278 (2017) doi:10.1038/s41467-017-02451-x Published online: 22 December 2017

This paper is open access.

As for Bor-Kai Hsiung’s other mentions here:

How tarantulas get blue (December 7, 2015 posting)

Noniridescent photonics inspired by tarantulas (October 19, 2016 posting)

More on the blue tarantula noniridescent photonics (December 28, 2016 posting)

Quantum computing and more at SXSW (South by Southwest) 2018

It’s that time of year again. The entertainment conference such as South by South West (SXSW) is being held from March 9-18, 2018. The science portion of the conference can be found in the Intelligent Future sessions, from the description,

AI and new technologies embody the realm of possibilities where intelligence empowers and enables technology while sparking legitimate concerns about its uses. Highlighted Intelligent Future sessions include New Mobility and the Future of Our Cities, Mental Work: Moving Beyond Our Carbon Based Minds, Can We Create Consciousness in a Machine?, and more.

Intelligent Future Track sessions are held March 9-15 at the Fairmont.

Last year I focused on the conference sessions on robots, Hiroshi Ishiguro’s work, and artificial intelligence in a  March 27, 2017 posting. This year I’m featuring one of the conference’s quantum computing session, from a March 9, 2018 University of Texas at Austin news release  (also on EurekAlert),

Imagine a new kind of computer that can quickly solve problems that would stump even the world’s most powerful supercomputers. Quantum computers are fundamentally different. They can store information as not only just ones and zeros, but in all the shades of gray in-between. Several companies and government agencies are investing billions of dollars in the field of quantum information. But what will quantum computers be used for?

South by Southwest 2018 hosts a panel on March 10th [2018] called Quantum Computing: Science Fiction to Science Fact. Experts on quantum computing make up the panel, including Jerry Chow of IBM; Bo Ewald of D-Wave Systems; Andrew Fursman of 1QBit; and Antia Lamas-Linares of the Texas Advanced Computing Center at UT Austin.

Antia Lamas-Linares is a Research Associate in the High Performance Computing group at TACC. Her background is as an experimentalist with quantum computing systems, including work done with them at the Centre for Quantum Technologies in Singapore. She joins podcast host Jorge Salazar to talk about her South by Southwest panel and about some of her latest research on quantum information.

Lamas-Linares co-authored a study (doi: 10.1117/12.2290561) in the Proceedings of the SPIE, The International Society for Optical Engineering, that published in February of 2018. The study, “Secure Quantum Clock Synchronization,” proposed a protocol to verify and secure time synchronization of distant atomic clocks, such as those used for GPS signals in cell phone towers and other places. “It’s important work,” explained Lamas-Linares, “because people are worried about malicious parties messing with the channels of GPS. What James Troupe (Applied Research Laboratories, UT Austin) and I looked at was whether we can use techniques from quantum cryptography and quantum information to make something that is inherently unspoofable.”

Antia Lamas-Linares: The most important thing is that quantum technologies is a really exciting field. And it’s exciting in a fundamental sense. We don’t quite know what we’re going to get out of it. We know a few things, and that’s good enough to drive research. But the things we don’t know are much broader than the things we know, and it’s going to be really interesting. Keep your eyes open for this.

Quantum Computing: Science Fiction to Science Fact, March 10, 2018 | 11:00AM – 12:00PM, Fairmont Manchester EFG, SXSW 2018, Austin, TX.

If you look up the session, you will find,

Quantum Computing: Science Fiction to Science Fact

Quantum Computing: Science Fiction to Science Fact

Speakers

Bo Ewald

D-Wave Systems

Antia Lamas-Linares

Texas Advanced Computing Center at University of Texas

Startups and established players have sold 2000 Qubit systems, made freely available cloud access to quantum computer processors, and created large scale open source initiatives, all taking quantum computing from science fiction to science fact. Government labs and others like IBM, Microsoft, Google are developing software for quantum computers. What problems will be solved with this quantum leap in computing power that cannot be solved today with the world’s most powerful supercomputers?

[Programming descriptions are generated by participants and do not necessarily reflect the opinions of SXSW.]

Favorited by (1128)

View all

Primary Entry: Platinum Badge, Interactive Badge

Secondary Entry: Music Badge, Film Badge

Format: Panel

Event Type: Session

Track: Intelligent Future

Level: Intermediate

I wonder what ‘level’ means? I was not able to find an answer (quickly).

It’s was a bit surprising to find someone from D-Wave Systems (a Vancouver-based quantum computing based enterprise) at an entertainment conference. Still, it shouldn’t have been. Two other examples immediately come to mind, the TED (technology, entertainment, and design) conferences have been melding technology, if not science, with creative activities of all kinds for many years (TED 2018: The Age of Amazement, April 10 -14, 2018 in Vancouver [Canada]) and Beakerhead (2018 dates: Sept. 19 – 23) has been melding art, science, and engineering in a festival held in Calgary (Canada) since 2013. One comment about TED, it was held for several years in California (1984, 1990 – 2013) and moved to Vancouver in 2014.

For anyone wanting to browse the 2018 SxSW Intelligent Future sessions online, go here. or wanting to hear Antia Lamas-Linares talk about quantum computing, there’s the interview with Jorge Salazar (mentioned in the news release),

Machine learning, neural networks, and knitting

In a recent (Tuesday, March 6, 2018) live stream ‘conversation’ (‘Science in Canada; Investing in Canadian Innovation’ now published on YouTube) between Canadian Prime Minister, Justin Trudeau, and US science communicator, Bill Nye, at the University of Ottawa, they discussed, amongst many other topics, what AI (artificial intelligence) can and can’t do. They seemed to agree that AI can’t be creative, i.e., write poetry, create works of art, make jokes, etc. A conclusion which is both (in my opinion) true and not true.

There are times when I think the joke may be on us (humans). Take for example this March 6, 2018 story by Alexis Madrigal for The Atlantic magazine (Note: Links have been removed),

SkyKnit: How an AI Took Over an Adult Knitting Community

Ribald knitters teamed up with a neural-network creator to generate new types of tentacled, cozy shapes.

Janelle Shane is a humorist [Note: She describes herself as a “Research Scientist in optics. Plays with neural networks. …” in her Twitter bio.] who creates and mines her material from neural networks, the form of machine learning that has come to dominate the field of artificial intelligence over the last half-decade.

Perhaps you’ve seen the candy-heart slogans she generated for Valentine’s Day: DEAR ME, MY MY, LOVE BOT, CUTE KISS, MY BEAR, and LOVE BUN.

Or her new paint-color names: Parp Green, Shy Bather, Farty Red, and Bull Cream.

Or her neural-net-generated Halloween costumes: Punk Tree, Disco Monster, Spartan Gandalf, Starfleet Shark, and A Masked Box.

Her latest project, still ongoing, pushes the joke into a new, physical realm. Prodded by a knitter on the knitting forum Ravelry, Shane trained a type of neural network on a series of over 500 sets of knitting instructions. Then, she generated new instructions, which members of the Ravelry community have actually attempted to knit.

“The knitting project has been a particularly fun one so far just because it ended up being a dialogue between this computer program and these knitters that went over my head in a lot of ways,” Shane told me. “The computer would spit out a whole bunch of instructions that I couldn’t read and the knitters would say, this is the funniest thing I’ve ever read.”

It appears that the project evolved,

The human-machine collaboration created configurations of yarn that you probably wouldn’t give to your in-laws for Christmas, but they were interesting. The user citikas was the first to post a try at one of the earliest patterns, “reverss shawl.” It was strange, but it did have some charisma.

Shane nicknamed the whole effort “Project Hilarious Disaster.” The community called it SkyKnit.

I’m not sure what’s meant by “community” as mentioned in the previous excerpt. Are we talking about humans only, AI only, or both humans and AI?

Here’s some of what underlies Skyknit (Note: Links have been removed),

The different networks all attempt to model the data they’ve been fed by tuning a vast, funky flowchart. After you’ve created a statistical model that describes your real data, you can also roll the dice and generate new, never-before-seen data of the same kind.

How this works—like, the math behind it—is very hard to visualize because values inside the model can have hundreds of dimensions and we are humble three-dimensional creatures moving through time. But as the neural-network enthusiast Robin Sloan puts it, “So what? It turns out imaginary spaces are useful even if you can’t, in fact, imagine them.”

Out of that ferment, a new kind of art has emerged. Its practitioners use neural networks not to attain practical results, but to see what’s lurking in the these vast, opaque systems. What did the machines learn about the world as they attempted to understand the data they’d been fed? Famously, Google released DeepDream, which produced trippy visualizations that also demonstrated how that type of neural network processed the textures and objects in its source imagery.

Madrigal’s article is well worth reading if you have the time. You can also supplement Madrigal’s piece with an August 9, 2017 article about Janelle Shane’s algorithmic experiments by Jacob Brogan for slate.com.

I found some SkyKnit examples on Ravelry including this one from the Dollybird Workshop,

© Chatelaine

SkyKnit fancy addite rifopshent
by SkyKnit
Published in
Dollybird Workshop
SkyKnit
Craft
Knitting
Category
Stitch pattern
Published
February 2018
Suggested yarn
Yarn weight
Fingering (14 wpi) ?
Gauge
24 stitches and 30 rows = 4 inches
in stockinette stitch
Needle size
US 4 – 3.5 mm

written-pattern

This pattern is available as a free Ravelry download

SkyKnit is a type of machine learning algorithm called an artificial neural network. Its creator, Janelle Shane of AIweirdness.com, gave it 88,000 lines of knitting instructions from Stitch-Maps.com and Ravelry, and it taught itself how to make new patterns. Join the discussion!

SkyKnit seems to have created something that has paralell columns, and is reversible. Perhaps a scarf?

Test-knitting & image courtesy of Chatelaine

Patterns may include notes from testknitters; yarn, needles, and gauge are totally at your discretion.

About the designer
SkyKnit’s favorites include lace, tentacles, and totally not the elimination of the human race.
For more information, see: http://aiweirdness.com/

Shane’s website, aiweirdness.com, is where she posts musings such as this (from a March 2, [?] 2018 posting), Note: A link has been removed,

If you’ve been on the internet today, you’ve probably interacted with a neural network. They’re a type of machine learning algorithm that’s used for everything from language translation to finance modeling. One of their specialties is image recognition. Several companies – including Google, Microsoft, IBM, and Facebook – have their own algorithms for labeling photos. But image recognition algorithms can make really bizarre mistakes.

image

Microsoft Azure’s computer vision API [application programming interface] added the above caption and tags. But there are no sheep in the image of above. None. I zoomed all the way in and inspected every speck.

….

I have become quite interested in Shane’s self descriptions such as this one from the aiweirdness.com website,

Portrait/Logo

About

I train neural networks, a type of machine learning algorithm, to write unintentional humor as they struggle to imitate human datasets. Well, I intend the humor. The neural networks are just doing their best to understand what’s going on. Currently located on the occupied land of the Arapahoe Nation.
https://wandering.shop/@janellecshane

As for the joke being on us, I can’t help remembering the Facebook bots that developed their own language (Facebotlish), and were featured in my June 30, 2017 posting, There’s a certain eerieness to it all, which seems an appropriate response in a year celebrating the 200th anniversary of Mary Shelley’s 1818 book, Frankenstein; or, the Modern Prometheus. I’m closing with a video clip from the 1931 movie,

Happy Weekend!