Monthly Archives: April 2019

A snout weevil at the end of the rainbow

I’ve never heard of a snout weevil before but it seems to be a marvelous creature,

Caption: Left: A photograph of the ‘rainbow’ weevil, with the rainbow-colored spots on its thorax and elytra (wing casings). Right: A microscope image of the rim of a single rainbow spot, showing the different colors of individual scales. Credit: Dr Bodo D Wilts

From a Sept. 11, 2018 news item on Nanowerk,

Researchers from Yale [University]-NUS College and the University of Fribourg in Switzerland have discovered a novel colour-generation mechanism in nature, which if harnessed, has the potential to create cosmetics and paints with purer and more vivid hues, screen displays that project the same true image when viewed from any angle, and even reduce the signal loss in optical fibres.

Yale-NUS College Assistant Professor of Science (Life Science) Vinodkumar Saranathan led the study with Dr Bodo D Wilts from the Adolphe Merkle Institute at the University of Fribourg. Dr Saranathan examined the rainbow-coloured patterns in the elytra (wing casings) of a snout weevil from the Philippines, Pachyrrhynchus congestus pavonius, using high-energy X-rays, while Dr Wilts performed detailed scanning electron microscopy and optical modelling.

They discovered that to produce the rainbow palette of colours, the weevil utilised a colour-generation mechanism that is so far found only in squid, cuttlefish, and octopuses, which are renowned for their colour-shifting camouflage.

A Sept. 11, 2018 Yale-NUS College news release (also on EurekAlert), which originated the news item, offers more on the weevil and on the research,

P. c. pavonius, or the “Rainbow” Weevil, is distinctive for its rainbow-coloured spots on its thorax and elytra (see attached image). These spots are made up of nearly-circular scales arranged in concentric rings of different hues, ranging from blue in the centre to red at the outside, just like a rainbow. While many insects have the ability to produce one or two colours, it is rare that a single insect can produce such a vast spectrum of colours. Researchers are interested to figure out the mechanism behind the natural formation of these colour-generating structures, as current technology is unable to synthesise structures of this size.

“The ultimate aim of research in this field is to figure out how the weevil self-assembles these structures, because with our current technology we are unable to do so,” Dr Saranathan said. “The ability to produce these structures, which are able to provide a high colour fidelity regardless of the angle you view it from, will have applications in any industry which deals with colour production. We can use these structures in cosmetics and other pigmentations to ensure high-fidelity hues, or in digital displays in your phone or tablet which will allow you to view it from any angle and see the same true image without any colour distortion. We can even use them to make reflective cladding for optical fibres to minimise signal loss during transmission.”

Dr Saranathan and Dr Wilts examined these scales to determine that the scales were composed of a three-dimensional crystalline structure made from chitin (the main ingredient in insect exoskeletons). They discovered that the vibrant rainbow colours on this weevil’s scales are determined by two factors: the size of the crystal structure which makes up each scale, as well as the volume of chitin used to make up the crystal structure. Larger scales have a larger crystalline structure and use a larger volume of chitin to reflect red light; smaller scales have a smaller crystalline structure and use a smaller volume of chitin to reflect blue light. According to Dr Saranathan, who previously examined over 100 species of insects and spiders and catalogued their colour-generation mechanisms, this ability to simultaneously control both size and volume factors to fine-tune the colour produced has never before been shown in insects, and given its complexity, is quite remarkable. “It is different from the usual strategy employed by nature to produce various different hues on the same animal, where the chitin structures are of fixed size and volume, and different colours are generated by orienting the structure at different angles, which reflects different wavelengths of light,” Dr Saranathan explained.

The research was partly supported though the National Centre of Competence in Research “Bio-Inspired Materials” and the Ambizione program of the Swiss National Science Foundation (SNSF) to Dr Wilts, and partly through a UK Royal Society Newton Fellowship, a Linacre College EPA Cephalosporin Junior Research Fellowship, and Yale-NUS College funds to Dr Saranathan. Dr Saranathan is currently part of a research team led by Yale-NUS College Associate Professor of Science Antonia Monteiro, which has recently been awarded a separate Competitive Research Programme (CRP) grant by Singapore’s National Research Foundation (NRF) to examine the genetic basis of the colour-generation mechanism in butterflies. Dr Saranathan and Dr Monteiro are both also from the Department of Biological Sciences at the National University of Singapore (NUS) Faculty of Science. In addition, Dr Saranathan is affiliated with the NUS Nanoscience and Nanotechnology Initiative.

Here’s a link to and a citation for the paper,

Literal Elytral Rainbow: Tunable Structural Colors Using Single Diamond Biophotonic Crystals in Pachyrrhynchus congestus Weevils by Bodo D. Wilts, Vinodkumar Saranathan. Samll https://doi.org/10.1002/smll.201802328 First published: 15 August 2018

This paper is behind a paywall.

Graphene-gilded artifacts (or artefacts)

Caption: L: An artist rendering of graphene gilding on Tutankhamun’s middle coffin (original photograph copyright: Griffith Institute, University of Oxford). R: Microscope image of a graphene crystal is shown on the palladium leaf. Although graphene is only a single atom thick, it can be observed in the scanning electron microscope. Here, a small crystal of graphene is shown to observe its edges. The team produces leaves where the graphene fully cover the metal surface. Credit: Original photograph copyright: Griffith Institute, University of Oxford

As icons go, Tutankhamun’s middle coffin ranks highly and it’s a great image to use as an example of what might be accomplished with graphene gilding. From a Sept. 10, 2018 news item on Nanowerk,

Gilding is the process of coating intricate artifacts with precious metals. Ancient Egyptians and Chinese coated their sculptures with thin metal films using gilding—and these golden sculptures have resisted corrosion, wear, and environmental degradation for thousands of years. The middle and outer coffins of Tutankhamun, for instance, are gold leaf gilded, as are many other ancient treasures.

In a new study, Illinois’ Sameh Tawfick, from the Department of Mechanical Science & Engineering (MechSE) and the Beckman Institute, inspired by this ancient process, has added a single layer of carbon atoms, known as graphene, on top of metal leaves—doubling the protective quality of gilding against wear and tear.

A Sept. 10, 2018 University of Illinois news release (also on EurekAlert), which originated the news item, offers more details,

Metal leaves, or foils, offer many advantages as a scalable coating material, including their commercial availability in large rolls and their comparatively low price. By bonding a single layer of graphene to the leaves, Tawfick and his team demonstrated unexpected benefits, including enhanced mechanical resistance. Their work presents exciting opportunities for protective coating applications on large structures like buildings or ship hulls, metal surfaces of consumer electronics, and small precious artifacts or jewelry.

“Adding one more layer of graphene atoms onto the palladium made it twice as resistant to indents than the bare leaves alone,” said Tawfick. “It’s also very attractive from a cost perspective. The amount of graphene needed to cover the gilded structures of the Carbide & Carbon Building in Chicago, for example, would be the size of the head of a pin.”

Additionally, the team developed a new technology to grow high-quality graphene directly on the surface of 150 nanometer-thin palladium leaves—in just 30 seconds. Using a process called chemical vapor deposition, in which the metal leaf is processed in a 1,100°C furnace, the bare palladium leaf acts as a catalyst, allowing the gases to react quickly.

“Chemical vapor deposition of graphene requires a very high temperature, which could melt the leaves or cause them to bead up by a process called solid state dewetting,” said Kaihao Zhang, PhD candidate in MechSE and lead author of the study. “The process we developed deposits the graphene quickly enough to avoid high-temperature degradation, it’s scalable, and it produces graphene of very high quality.”

Here’s a link to and a citation for the paper,

Gilding with Graphene: Rapid Chemical Vapor Deposition Synthesis of Graphene on Thin Metal Leaves by Kaihao Zhang, Charalampos Androulidakis, Mingze Chen, Sameh Tawfick. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.201804068 First published: 06 September 2018

This paper is behind  a paywall.

Iridescent giant clams could point the way to safety, climatologically speaking

Giant clams in Palau (Cynthia Barnett)

These don’t look like any clams I’ve ever seen but that is the point of Cynthia Barnett’s absorbing Sept. 10, 2018 article for The Atlantic (Note: A link has been removed),

Snorkeling amid the tree-tangled rock islands of Ngermid Bay in the western Pacific nation of Palau, Alison Sweeney lingers at a plunging coral ledge, photographing every giant clam she sees along a 50-meter transect. In Palau, as in few other places in the world, this means she is going to be underwater for a skin-wrinkling long time.

At least the clams are making it easy for Sweeney, a biophysicist at the University of Pennsylvania. The animals plump from their shells like painted lips, shimmering in blues, purples, greens, golds, and even electric browns. The largest are a foot across and radiate from the sea floor, but most are the smallest of the giant clams, five-inch Tridacna crocea, living higher up on the reef. Their fleshy Technicolor smiles beam in all directions from the corals and rocks of Ngermid Bay.

… Some of the corals are bleached from the conditions in Ngermid Bay, where naturally high temperatures and acidity mirror the expected effects of climate change on the global oceans. (Ngermid Bay is more commonly known as “Nikko Bay,” but traditional leaders and government officials are working to revive the indigenous name of Ngermid.)

Even those clams living on bleached corals are pulsing color, like wildflowers in a white-hot desert. Sweeney’s ponytail flows out behind her as she nears them with her camera. They startle back into their fluted shells. Like bashful fairytale creatures cursed with irresistible beauty, they cannot help but draw attention with their sparkly glow.

Barnett makes them seem magical and perhaps they are (Note: A link has been removed),

It’s the glow that drew Sweeney’s attention to giant clams, and to Palau, a tiny republic of more than 300 islands between the Philippines and Guam. Its sun-laden waters are home to seven of the world’s dozen giant-clam species, from the storied Tridacna gigas—which can weigh an estimated 550 pounds and measure over four feet across—to the elegantly fluted Tridacna squamosa. Sweeney first came to the archipelago in 2009, while working on animal iridescence as a post-doctoral fellow at the University of California at Santa Barbara. Whether shimmering from a blue morpho butterfly’s wings or a squid’s skin, iridescence is almost always associated with a visual signal—one used to attract mates or confuse predators. Giant clams’ luminosity is not such a signal. So, what is it?

In the years since, Sweeney and her colleagues have discovered that the clams’ iridescence is essentially the outer glow of a solar transformer—optimized over millions of years to run on sunlight and algal biofuel. Giant clams reach their cartoonish proportions thanks to an exceptional ability to grow their own photosynthetic algae in vertical farms spread throughout their flesh. Sweeney and other scientists think this evolved expertise may shed light on alternative fuel technologies and other industrial solutions for a warming world.

Barnett goes on to describe Palau’s relationship to the clams and the clams’ environment,

Palau’s islands have been inhabited for at least 3,400 years, and from the start, giant clams were a staple of diet, daily life, and even deity. Many of the islands’ oldest-surviving tools are crafted of thick giant-clam shell: arched-blade adzes, fishhooks, gougers, heavy taro-root pounders. Giant-clam shell makes up more than three-fourths of some of the oldest shell middens in Palau, a percentage that decreases through the centuries. Archaeologists suggest that the earliest islanders depleted the giant clams that crowded the crystalline shallows, then may have self-corrected. Ancient Palauan conservation law, known as bul, prohibited fishing during critical spawning periods, or when a species showed signs of over-harvesting.

Before the Christianity that now dominates Palauan religion sailed in on eighteenth-century mission ships, the culture’s creation lore began with a giant clam called to life in an empty sea. The clam grew bigger and bigger until it sired Latmikaik, the mother of human children, who birthed them with the help of storms and ocean currents.

The legend evokes giant clams in their larval phase, moving with the currents for their first two weeks of life. Before they can settle, the swimming larvae must find and ingest one or two photosynthetic alga, which later multiply, becoming self-replicating fuel cells. After the larvae down the alga and develop a wee shell and a foot, they kick around like undersea farmers, looking for a sunny spot for their crop. When they’ve chosen a well-lit home in a shallow lagoon or reef, they affix to the rock, their shell gaping to the sky. After the sun hits and photosynthesis begins, the microalgae will multiply to millions, or in the case of T. gigas, billions, and clam and algae will live in symbiosis for life.

Giant clam is a beloved staple in Palau and many other Pacific islands, prepared raw with lemon, simmered into coconut soup, baked into a savory pancake, or sliced and sautéed in a dozen other ways. But luxury demand for their ivory-like shells and their adductor muscle, which is coveted as high-end sashimi and an alleged aphrodisiac, has driven T. gigas extinct in China, Taiwan, and other parts of their native habitat. Some of the toughest marine-protection laws in the world, along with giant-clam aquaculture pioneered here, have helped Palau’s wild clams survive. The Palau Mariculture Demonstration Center raises hundreds of thousands of giant clams a year, supplying local clam farmers who sell to restaurants and the aquarium trade and keeping pressure off the wild population. But as other nations have wiped out their clams, Palau’s 230,000-square-mile ocean territory is an increasing target of illegal foreign fishers.

Barnett delves into how the country of Palau is responding to the voracious appetite for the giant clams and other marine life,

Palau, drawing on its ancient conservation tradition of bul, is fighting back. In 2015, President Tommy Remengesau Jr. signed into law the Palau National Marine Sanctuary Act, which prohibits fishing in 80 percent of Palau’s Exclusive Economic Zone and creates a domestic fishing area in the remaining 20 percent, set aside for local fishers selling to local markets. In 2016, the nation received a $6.6 million grant from Japan to launch a major renovation of the Palau Mariculture Demonstration Center. Now under construction at the waterfront on the southern tip of Malakal Island, the new facility will amp up clam-aquaculture research and increase giant-clam production five-fold, to more than a million seedlings a year.

Last year, Palau amended its immigration policy to require that all visitors sign a pledge to behave in an ecologically responsible manner. The pledge, stamped into passports by an immigration officer who watches you sign, is written to the island’s children:

Children of Palau, I take this pledge, as your guest, to preserve and protect your beautiful and unique island home. I vow to tread lightly, act kindly and explore mindfully. I shall not take what is not given. I shall not harm what does not harm me. The only footprints I shall leave are those that will wash away.

The pledge is winning hearts and public-relations awards. But Palau’s existential challenge is still the collective “we,” the world’s rising carbon emissions and the resulting upturns in global temperatures, sea levels, and destructive storms.

F. Umiich Sengebau, Palau’s Minister for Natural Resources, Environment, and Tourism, grew up on Koror and is full of giant-clam proverbs, wisdom and legends from his youth. He tells me a story I also heard from an elder in the state of Airai: that in old times, giant clams were known as “stormy-weather food,” the fresh staple that was easy to collect and have on hand when it was too stormy to go out fishing.

As Palau faces the storms of climate change, Sengebau sees giant clams becoming another sort of stormy-weather food, serving as a secure source of protein; a fishing livelihood; a glowing icon for tourists; and now, an inspiration for alternative energy and other low-carbon technologies. “In the old days, clams saved us,” Sengebau tells me. “I think there’s a lot of power in that, a great power and meaning in the history of clams as food, and now clams as science.”

I highly recommend Barnett’s article, which is one article in a larger series, from a November 6, 2017 The Atlantic press release,

The Atlantic is expanding the global footprint of its science writing today with a multi-year series to investigate life in all of its multitudes. The series, “Life Up Close,” created with support from Howard Hughes Medical Institute’s Department of Science Education (HHMI), begins today at TheAtlantic.com. In the first piece for the project, “The Zombie Diseases of Climate Change,” The Atlantic’s Robinson Meyer travels to Greenland to report on the potentially dangerous microbes emerging from thawing Arctic permafrost.

The project is ambitious in both scope and geographic reach, and will explore how life is adapting to our changing planet. Journalists will travel the globe to examine these changes as they happen to microbes, plants, and animals in oceans, grasslands, forests, deserts, and the icy poles. The Atlantic will question where humans should look for life next: from the Martian subsurface, to Europa’s oceans, to the atmosphere of nearby stars and beyond. “Life Up Close” will feature at least twenty reported pieces continuing through 2018.

“The Atlantic has been around for 160 years, but that’s a mere pinpoint in history when it comes to questions of life and where it started, and where we’re going,” said Ross Andersen, The Atlantic’s senior editor who oversees science, tech, and health. “The questions that this project will set out to tackle are critical; and this support will allow us to cover new territory in new and more ambitious ways.”

About The Atlantic:
Founded in 1857 and today one of the fastest growing media platforms in the industry, The Atlantic has throughout its history championed the power of big ideas and continues to shape global debate across print, digital, events, and video platforms. With its award-winning digital presence TheAtlantic.com and CityLab.com on cities around the world, The Atlantic is a multimedia forum on the most critical issues of our times—from politics, business, urban affairs, and the economy, to technology, arts, and culture. The Atlantic is celebrating its 160th anniversary this year. Bob Cohn is president of The Atlantic and Jeffrey Goldberg is editor in chief.

About the Howard Hughes Medical Institute (HHMI) Department of Science Education:
HHMI is the leading private nonprofit supporter of scientific research and science education in the United States. The Department of Science Education’s BioInteractive division produces free, high quality educational media for science educators and millions of students around the globe, its HHMI Tangled Bank Studios unit crafts powerful stories of scientific discovery for television and big screens, and its grants program aims to transform science education in universities and colleges. For more information, visit www.hhmi.org.

Getting back to the giant clams, sometimes all you can do is marvel, eh?

Artificial synapse based on tantalum oxide from Korean researchers

This memristor story comes from South Korea as we progress on the way to neuromorphic computing (brainlike computing). A Sept. 7, 2018 news item on ScienceDaily makes the announcement,

A research team led by Director Myoung-Jae Lee from the Intelligent Devices and Systems Research Group at DGIST (Daegu Gyeongbuk Institute of Science and Technology) has succeeded in developing an artificial synaptic device that mimics the function of the nerve cells (neurons) and synapses that are response for memory in human brains. [sic]

Synapses are where axons and dendrites meet so that neurons in the human brain can send and receive nerve signals; there are known to be hundreds of trillions of synapses in the human brain.

This chemical synapse information transfer system, which transfers information from the brain, can handle high-level parallel arithmetic with very little energy, so research on artificial synaptic devices, which mimic the biological function of a synapse, is under way worldwide.

Dr. Lee’s research team, through joint research with teams led by Professor Gyeong-Su Park from Seoul National University; Professor Sung Kyu Park from Chung-ang University; and Professor Hyunsang Hwang from Pohang University of Science and Technology (POSTEC), developed a high-reliability artificial synaptic device with multiple values by structuring tantalum oxide — a trans-metallic material — into two layers of Ta2O5-x and TaO2-x and by controlling its surface.

A September 7, 2018 DGIST press release (also on EurekAlert), which originated the news item, delves further into the work,

The artificial synaptic device developed by the research team is an electrical synaptic device that simulates the function of synapses in the brain as the resistance of the tantalum oxide layer gradually increases or decreases depending on the strength of the electric signals. It has succeeded in overcoming durability limitations of current devices by allowing current control only on one layer of Ta2O5-x.

In addition, the research team successfully implemented an experiment that realized synapse plasticity [or synaptic plasticity], which is the process of creating, storing, and deleting memories, such as long-term strengthening of memory and long-term suppression of memory deleting by adjusting the strength of the synapse connection between neurons.

The non-volatile multiple-value data storage method applied by the research team has the technological advantage of having a small area of an artificial synaptic device system, reducing circuit connection complexity, and reducing power consumption by more than one-thousandth compared to data storage methods based on digital signals using 0 and 1 such as volatile CMOS (Complementary Metal Oxide Semiconductor).

The high-reliability artificial synaptic device developed by the research team can be used in ultra-low-power devices or circuits for processing massive amounts of big data due to its capability of low-power parallel arithmetic. It is expected to be applied to next-generation intelligent semiconductor device technologies such as development of artificial intelligence (AI) including machine learning and deep learning and brain-mimicking semiconductors.

Dr. Lee said, “This research secured the reliability of existing artificial synaptic devices and improved the areas pointed out as disadvantages. We expect to contribute to the development of AI based on the neuromorphic system that mimics the human brain by creating a circuit that imitates the function of neurons.”

Here’s a link to and a citation for the paper,

Reliable Multivalued Conductance States in TaOx Memristors through Oxygen Plasma-Assisted Electrode Deposition with in Situ-Biased Conductance State Transmission Electron Microscopy Analysis by Myoung-Jae Lee, Gyeong-Su Park, David H. Seo, Sung Min Kwon, Hyeon-Jun Lee, June-Seo Kim, MinKyung Jung, Chun-Yeol You, Hyangsook Lee, Hee-Goo Kim, Su-Been Pang, Sunae Seo, Hyunsang Hwang, and Sung Kyu Park. ACS Appl. Mater. Interfaces, 2018, 10 (35), pp 29757–29765 DOI: 10.1021/acsami.8b09046 Publication Date (Web): July 23, 2018

Copyright © 2018 American Chemical Society

This paper is open access.

You can find other memristor and neuromorphic computing stories here by using the search terms I’ve highlighted,  My latest (more or less) is an April 19, 2018 posting titled, New path to viable memristor/neuristor?

Finally, here’s an image from the Korean researchers that accompanied their work,

Caption: Representation of neurons and synapses in the human brain. The magnified synapse represents the portion mimicked using solid-state devices. Credit: Daegu Gyeongbuk Institute of Science and Technology(DGIST)

Quantum Rhapsodies

“Quantum Rhapsodies” combines a narrative script, video images and live music by the Jupiter String Quartet to explore the world of quantum physics. The performance will premiere April 10 [2019] at the Beckman Institute for Advanced Science and Technology. Courtesy Beckman Institute for Advanced Science and Technology

Here’s more about Quantum Rhapsodies, a free public art/science music performance at the University of Illinois on April 10, 2019, from an April 5, 2019 University of Illinois news release (also here) by Jodi Heckel,

A new performance that explores the world of quantum physics will feature the music of the Jupiter String Quartet, a fire juggler and a fantastical “Alice in Quantumland” scene.

“Quantum Rhapsodies,” the vision of physics professor Smitha Vishveshwara, looks at the foundational developments in quantum physics, the role it plays in our world and in technology such as the MRI, and the quantum mysteries that remain unanswered.

“The quantum world is a world that inspires awe, but it’s also who we are and what we are made of,” said Vishveshwara, who wrote the piece and guided the visuals.

The performance will premiere April 10 [2019] as part of the 30th anniversary celebration of the Beckman Institute for Advanced Science and Technology. The event begins with a 5 p.m. reception, followed by the performance at 6 p.m. and a meet-and-greet with the show’s creators at 7 p.m. The performance will be in the atrium of the Beckman Institute, 405 N. Mathews Ave., Urbana, [emphases mine] and it is free and open to the public. While the available seating is filling up, the atrium space will allow for an immersive experience in spite of potentially restricted viewing.

The production is a sister piece to “Quantum Voyages,” a performance created in 2018 by Vishveshwara and theatre professor Latrelle Bright to illustrate the basic concepts of quantum physics. It was performed at a quantum physics conference celebrating Nobel Prize-winning physicist Anthony Leggett’s 80th birthday in 2018.

While “Quantum Voyages” was a live theater piece, “Quantum Rhapsodies” combines narration by Bright, video images and live music from the Jupiter String Quartet. It ponders the wonder of the cosmos, the nature of light and matter, and the revolutionary ideas of quantum physics. A central part of the narrative involves the theory of Nobel Prize-winning French physicist Louis de Broglie that matter, like light, can behave as a wave.

The visuals – a blend of still images, video and animation – were created by a team consisting of the Beckman Visualization Laboratory; Steven Drake, a video producer at Beckman; filmmaker Nic Morse of Protagonist Pizza Productions; and members of a class Vishveshwara teaches, Where the Arts Meet Physics.

The biggest challenge in illustrating the ideas in the script was conveying the scope of the piece, from the galactic scale of the cosmos to the subatomic scale of the quantum world, Drake said. The concepts of quantum physics “are not something you can see. It’s theoretical or so small you can’t put it under a microscope or go out into the real world and film it,” he said.

Much of the work involved finding images, both scientific and artistic, that would help illustrate the concepts of the piece and complement the poetic language that Vishveshwara used, as well as the music.

Students and teaching assistant Danielle Markovich from Vishveshwara’s class contributed scientific images and original paintings. Drake used satellite images from the Hubble Space Telescope and other satellites, as well as animation created by the National Center for Supercomputing Applications in its work with NASA, for portions of the script talking about the cosmos. The Visualization Laboratory provided novel scientific visualizations.

“What we’re good at doing and have done for years is taking research content and theories and visualizing that information. We do that for a very wide variety of research and data. We’re good at coming up with images that represent these invisible worlds, like quantum physics,” said Travis Ross, the director of the lab.

Some ideas required conceptual images, such as footage by Morse of a fire juggler at Allerton Park to represent light and of hands moving to depict the rotational behavior of water-based hydrogen within a person in an MRI machine.

Motion was incorporated into a painting of a lake to show water rippling and light flickering across it to illustrate light waves. In the “Alice in Quantumland” sequence, a Mad Hatter’s tea party filmed at the Illini Union was blended with cartoonlike animated elements into the fantasy sequence by Jose Vazquez, an illustrator and concept artist who works in the Visualization Lab.

“Our main objective is making sure we’re representing it in a believable way that’s also fun and engaging,” Ross said. “We’ve never done anything quite like this. It’s pretty unique.”

In addition to performing the score, members of the Jupiter String Quartet were the musical directors, creating the musical narrative to mesh with the script. The music includes contemplative compositions by Beethoven to evoke the cosmos and playful modern compositions that summon images of the movements of particles and waves.

“I was working with such talented people and creative minds, and we had fun and came up with these seemingly absurd ideas. But then again, it’s like that with the quantum world as well,” Vishveshwara said.

“My hope is not necessarily for people to understand everything, but to infuse curiosity and to feel the grandness and the beauty that is part of who we are and the cosmos that we live in,” she said..

Here’s a preview of this free public performance,

How to look at SciArt (also known as, art/science depending on your religion)

There’s an intriguing April 8, 2019 post on the Science Borealis blog by Katrina Vera Wong and Raymond Nakamura titled: How to look at (and appreciate) SciArt,

….

The recent #SciArt #TwitterStorm, in which participants tweeted their own sciart and retweeted that of others, illustrated the diversity of approaches to melding art and science. With all this work out there, what can we do, as advocates of art and science, to better appreciate sciart? We’d like to foster interest in, and engagement with, sciart so that its value goes beyond how much it costs or how many likes it gets.

An article by Kit Messham-Muir based on the work of art historian Erwin Panofsky outlines a three-step strategy for looking at art: Look. See. Think. Looking is observing what the elements are. Seeing draws meaning from it. Thinking links personal experience and accessible information to the piece at hand.

Looking and seeing is also part of the Visual Thinking Strategies (VTS) method originally developed for looking at art and subsequently applied to science and other subjects as a social, object-oriented learning process. It begins by asking, “What is going on here?”, followed by “What do you see that makes you think that?” This allows learners of different backgrounds to participate and encourages the pursuit of evidence to back up opinions.

Let’s see how these approaches might work on your own or in conversation. Take, for example, the following work by natural history illustrator Julius Csotonyi:

I hope some of our Vancouver-based (Canada) art critics get a look at some of this material. I read a review a few years ago and the critic seemed intimidated by the idea of looking at work that explicitly integrated and reflected on science. Since that time (Note: there aren’t that many art reviewers here), I have not seen another attempt by an art critic.

Alleviating joint damage and inflammation from arthritis with neutrophil nanosponges

Assuming you’d be happy with limiting the damage for rheumatoid arthritis, at some point in the future, this research looks promisin. Right now it appears the researchers aren’t anywhere close to a clinical trial. From a Sept. 3, 2018 news item on ScienceDaily,

Engineers at the University of California San Diego [UCSD] have developed neutrophil “nanosponges” that can safely absorb and neutralize a variety of proteins that play a role in the progression of rheumatoid arthritis. Injections of these nanosponges effectively treated severe rheumatoid arthritis in two mouse models. Administering the nanosponges early on also prevented the disease from developing.

A Sept. 3, 2018 UCSD press release (also on EurekAlert), which originated the news item, provides more detail,

“Nanosponges are a new paradigm of treatment to block pathological molecules from triggering disease in the body,” said senior author Liangfang Zhang, a nanoengineering professor at the UC San Diego Jacobs School of Engineering. “Rather than creating treatments to block a few specific types of pathological molecules, we are developing a platform that can block a broad spectrum of them, and this way we can treat and prevent disease more effectively and efficiently.”

This work is one of the latest examples of therapeutic nanosponges developed by Zhang’s lab. Zhang, who is affiliated with the Institute of Engineering in Medicine and Moores Cancer Center at UC San Diego, and his team previously developed red blood cell nanosponges to combat and prevent MRSA infections and macrophage nanosponges to treat and manage sepsis.

neutrophil nanosponge cartoon
Illustration of a neutrophil cell membrane-coated nanoparticle.

The new nanosponges are nanoparticles of biodegradable polymer coated with the cell membranes of neutrophils, a type of white blood cell.

Neutrophils are among the immune system’s first responders against invading pathogens. They are also known to play a role in the development of rheumatoid arthritis, a chronic autoimmune disease that causes painful inflammation in the joints and can ultimately lead to damage of cartilage and bone tissue.

When rheumatoid arthritis develops, cells in the joints produce inflammatory proteins called cytokines. Release of cytokines signals neutrophils to enter the joints. Once there, cytokines bind to receptors on the neutrophil surfaces, activating them to release more cytokines, which in turn draws more neutrophils to the joints and so on.

The nanosponges essentially nip this inflammatory cascade in the bud. By acting as tiny neutrophil decoys, they intercept cytokines and stop them from signaling even more neutrophils to the joints, reducing inflammation and joint damage.

These nanosponges offer a promising alternative to current treatments for rheumatoid arthritis. Some monoclonal antibody drugs, for example, have helped patients manage symptoms of the disease, but they work by neutralizing only specific types of cytokines. This is not sufficient to treat the disease, said Zhang, because there are so many different types of cytokines and pathological molecules involved.

“Neutralizing just one or two types might not be as effective. So our approach is to take neutrophil cell membranes, which naturally have receptors to bind all these different types of cytokines, and use them to manage an entire population of inflammatory molecules,” said Zhang.

“This strategy removes the need to identify specific cytokines or inflammatory signals in the process. Using entire neutrophil cell membranes, we’re cutting off all these inflammatory signals at once,” said first author Qiangzhe Zhang, a Ph.D. student in Professor Liangfang Zhang’s research group at UC San Diego.

To make the neutrophil nanosponges, the researchers first developed a method to separate neutrophils from whole blood. They then processed the cells in a solution that causes them to swell and burst, leaving the membranes behind. The membranes were then broken up into much smaller pieces. Mixing them with ball-shaped nanoparticles made of biodegradable polymer fused the neutrophil cell membranes onto the nanoparticle surfaces.

“One of the major challenges of this work was streamlining this entire process, from isolating neutrophils from blood to removing the membranes, and making this process repeatable. We spent a lot of time figuring this out and eventually created a consistent neutrophil nanosponge production line,” said Qiangzhe Zhang.

In mouse models of severe rheumatoid arthritis, injecting nanosponges in inflamed joints led to reduced swelling and protected cartilage from further damage. The nanosponges performed just as well as treatments in which mice were administered a high dose of monoclonal antibodies.

The nanosponges also worked as a preventive treatment when administered prior to inducing the disease in another group of mice.

Professor Liangfang Zhang cautions that the nanosponge treatment does not eliminate the disease. “We are basically able to manage the disease. It’s not completely gone. But swelling is greatly reduced and cartilage damage is minimized,” he said.

The team hopes to one day see their work in clinical trials.

Here’s a link to and a citation for the paper,

Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis by Qiangzhe Zhang, Diana Dehaini, Yue Zhang, Julia Zhou, Xiangyu Chen, Lifen Zhang, Ronnie H. Fang, Weiwei Gao, & Liangfang Zhang. Nature Nanotechnology (2018) DOI: https://doi.org/10.1038/s41565-018-0254-4 Published 03 September 2018

This paper is behind a paywall.

Deadline for 2019 Canadian Science Policy Conference panel submissions: April 15, 2019

I received (via email) an April 2019 ‘newsletter’ from the Canadian Science Policy Centre (CSPC) with news about the November 13 – 15, 2019 (10th annual) Canadian Science Policy Conference (CSPC) to be held in what seems to be the conference’s permanent home, Ottawa, Ontario.

Let’s start with the call for panel submissions,

ONLY 10 DAYS LEFT: Deadline for CSPC 2019 Panel Proposals is April 15, 2019!
What questions and topics would you like to see addressed at CSPC 2019? Propose a panel, and be part of the biggest science and innovation policy conference in Canada.

The new deadline to submit a panel proposal is April 15, 2019.

Proposals from organizations and individuals across all sectors and disciplines are welcome. Please carefully review the proposal ranking criteria before you make your submission to increase your chances of success.
Submit a proposal

The overall conference theme seems to be ‘2009 – 2019 A Decade of Profound Impact’. I wonder how they’ve measured impact. So far, I haven’t seen the evidence for this claim but perhaps they’re still compiling it. They do however list five subthemes with some interesting topics (from the CSPC 2019 Themes webpage),

Canadian Science Policy Centre is pleased to announce the themes of this year conference. Since 2018, we have decided to have fix general themes in order to have a big tenet for all interesting discussions at the intersection of science, innovation policy and society. Each theme includes several topics. These topics are selected through consultations with experts, delegates feedback. While the proposals do not have to be within any specific bullet point, these topics are encouraged.
 
Science and Policy
What constitutes evidence and whose evidence counts
Traditional knowledge and policy making
Case studies of science informing policy
Open science and its impact on policy for science
Policy making and new scientific and technological advances: e.g. CRISPR, Synthetic Biology, AI [artificial intelligence]
Changing configurations of science funding mechanisms – opportunities and challenges
Federal provincial coordination in policy making for science and innovation
New frontiers of science: Interdisciplinary, multidisciplinary and convergence science
 
Science and Society
Science in the age of populism
A national agenda for science
Convergence science and tackling grand challenges
Disruptive technology and societal impacts
Democratization of science; participatory science, challenges and opportunities
Communicating science; interdisciplinary and the use of new technologies
Science and inclusivity
Diaspora scientists
 
Science, Innovation and Economic Development
Innovation and Canadian private sector: perspectives and challenges
Super clusters; review a year into the process
Canada’s inclusive Innovation Agenda
Changing landscape of Canadian R&D: government, industry and post-secondary Institutions
Economic strategy tables
Harnessing science and technology to economic growth and job creation
The impact of the social sciences and humanities on innovation 
 
Science, International Affairs and Security
Science diplomacy and new world order
Science in the age of de-globalization
Cyber Security; a serious global challenge
Sustainable Development Goals 2030
International community and climate change
 
Science and the Next Generation
Modernization of scientists training
New generation of science advocates
What is science professional career path?
Skills, training, and work integrated learning

Here’s the CSPC 2019 Panel Submission Form. Good luck!

There were a few other CSPC-related items in this ‘newsletter’,

CSPC Half-Day Symposium on the 2019 Federal Budget
at the Chestnut Conference Centre, Toronto [Ontario]


The CSPC is excited to present “Decoding the 2019 Federal Budget for Canadian R&D and Innovation,” co-sponsored by the University of Toronto and Ryerson University at the Chestnut Conference Centre, 89 Chestnut Street, Toronto.

There will be a continental breakfast at 8:00am and the symposium will begin at 8:30am with a comprehensive analysis of the 2019 budget by David Watters, CEO of Global Advantage and a veteran of the Canadian Public Service. This will be followed by two responding panels.

We hope you will join us for what promises to be a thoughtful and stimulating examination of the federal budget. For detailed information and symposium agenda, please visit the event page here.

Please RSVP to info@sciencepolicy.ca.

New Editorials added!
CSPC’s Featured Editorials on the 2019 Federal Budget

More CSPC’s featured editorials on the 2019 Federal Budget have been added.  These cover numerous topics including innovation and business tax, mental health, space, biosciences and big sciences, drug accessibility, school food programs, and many more. They present perspectives from industry, academia, and the non-profit sector. Explore the huge range of opinions here.
Browse all featured editorials

There you have it.

Heart and mind: Dr. Paolo Raggi speaks about cardiovascular health and its links to mental health on April 16, 2019 in Vancouver (Canada)

ARPICO, the Embassy of Italy in Ottawa, the Consulate General of Italy in Vancouver, and Paolo Raggi on April 16, 2019, Italian Research Day in the World

I love this image with the brain and heart as plants rooted in the earth for this upcoming ARPICO (Society of Italian Researchers & Professionals in Western Canada) event. I received a March 19, 2019 announcement (via email) from ARPICO about their latest Vancouver event, which is celebrating the 2019 Italian Research Day in the World,

… we are pleased to announce our next event in celebration of Italian Research of the World Day. On April 16th, 2019 at the Italian Cultural Centre, we will have the privilege of hosting the distinguished Dr. Paolo Raggi to present on the topic of mental disorders and cardiovascular health.  Dr. Raggi is a pioneer and luminary in the field of heart health, especially for his approach of considering heart disease not as an isolated condition, but in relation to the health of many other organs, an important one among them being our brain.

This event is organized in collaboration with the Embassy of Italy in Ottawa and with the Consulate General of Italy in Vancouver to celebrate the Italian Research in the World Day, instituted starting in 2018 as part of the Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo. The celebration day was chosen by government decree to be every year on April 15 on the anniversary of the birth of Leonardo da Vinci.

The main objective of the Italian Research Day in the World is to value the quality and competencies of Italian researchers abroad, but also to promote concrete actions and investments to allow Italian researchers to continue pursuing their careers in their homeland. Italy wishes to enable Italian talents to return from abroad as well as to become an attractive environment for foreign researchers.

We look forward to seeing everyone there.
The evening agenda is as follows:
6:30 pm – Doors Open for Registration
7:00 pm – Start of the evening event with introductions & lecture by Dr. Paolo Raggi
~8:00 pm – Q & A Period
to follow – Mingling & Refreshments until about 9:30 pm
If you have not already done so, please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.
Further details are also available at arpico.ca and Eventbrite.

Mental Disorders and Cardiovascular Health: A Critical, if Overlooked, Connection
Despite extraordinary advances in the diagnosis and care of heart disease, this ailment continues to affect a very large portion of the North American population and its related costs keep climbing. Reducing morbidity and mortality from heart disease will require a strong and integrated approach involving both research and clinical efforts aimed at prevention of disease rather than delayed care of its advanced complications. Dr. Raggi’s research investigates the mechanisms and prevention of heart disease and includes, among many other facets of this complex condition, the impact of mental stress disorders on coronary artery disease.

Paolo Raggi, MD, is a Professor of Medicine at the University of Alberta in Edmonton, AB and he is the former Director of the Mazankowski Alberta Heart Institute and Chair of Cardiac Research at the University of Alberta, in Edmonton AB, Canada. He is also an Adjunct Professor of Radiology as well as Professor of Population Health and Epidemiology at Emory University in Atlanta, GA, USA.

Dr. Raggi has been involved in research in the following fields: atherosclerosis imaging, vascular calcification, lipid metabolism, cardiovascular disease associated with: chronic kidney disease, rheumatological disorders, HIV infection, diabetes mellitus, the metabolic syndrome and the impact of mental stress disorders on coronary artery disease. He regularly engages in the interpretation of echocardiography, computed tomography, magnetic resonance and nuclear cardiology imaging studies for the diagnosis of coronary artery disease, subclinical atherosclerosis and evaluation of left ventricular function and viability.

He lectured extensively both nationally and internationally and has been a research mentor for numerous trainees. The results of his work have been published in the New England Journal of Medicine, The Lancet, Archives of Internal Medicine, Circulation, Journal of the American College of Cardiology, European Heart Journal, Kidney International, American Journal of Kidney Diseases, Radiology, Chest and several others. He has contributed over 350 publications to major peer-reviewed journals and 30 chapters for books on cardiovascular imaging and preventive cardiology.

Dr. Raggi has received numerous awards as best teaching attending and best clinical investigator nationally and internationally. He serves as a consultant for 30 scientific medical publications, he is Co-Editor of Atherosclerosis, and sits on the Board of 3 peer-reviewed medical journals. He is a fellow of the American College of Physicians, the American College of Cardiology, the American Heart Association, the Canadian Cardiovascular Society, the American Society of Nuclear Cardiology and the Society of Cardiac Computed Tomography of which he was a co-founder. Dr. Raggi received the highest honours from the President of Italy in October 2017 and was named Knight of the Order of Stars, typically bestowed upon Italian citizens who have distinguished themselves for their service to the Country of origin and/or adoptive countries.
 
WHEN: Tuesday, April 16th, 2019 at 7:00pm (doors open at 6:30pm)
WHERE: Italian Cultural Centre – Museum & Art Gallery – 3075 Slocan St, Vancouver, BC, V5M 3E4
RSVP: Please RSVP at EventBrite (https://mentaldisorderscardiovascularhealth.eventbrite.ca) or email info@arpico.ca
 
Tickets are Needed
Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.

All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.
 
FAQs
Where can I contact the organizer with any questions? info@arpico.ca
Do I have to bring my printed ticket to the event? No, you do not. Your name will be on our Registration List at the Check-in Desk.
Is my registration/ticket transferrable? If you are unable to attend, another person may use your ticket. Please send us an email at info@arpico.ca of this substitution to correct our audience Registration List and to prepare guest name tags.
Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca
I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.
 
What are my transport/parking options?
Bus/Train: The Millenium Line Renfrew Skytrain station is a 5 minute walk from the Italian Cultural Centre.
Parking: Free Parking is vastly available at the ICC’s own parking lot.

I’m a sucker for any reference to the ancient Romans, which can be found on the event announcement on ARPICO’s homepage and on the EventBrite registration page for the event,

The ancient Romans believed that a healthy body and mind go hand in hand: mens sana in corpore sano! During the American Civil War physicians described the Soldier’s Heart as a syndrome that occurred on the battlefield that involved symptoms very similar to modern day posttraumatic stress disorder (PTSD). They also noted that these soldiers manifested exaggerated cardiovascular reactivity and “abnormalities of the heart”. Interventions were developed to reduce the damage on the cardiovascular system and included surgical interventions to neutralize the sympathetic nervous system hyper-activity. With the advent of modern psychoanalysis, psychiatric symptoms became divorced from the body and were re-located to unconscious systems.

More recently, advancements in psychosomatic medicine and related fields clarified the complexity of the interaction between central and peripheral nervous system disorders, inflammation and cardiovascular diseases. This field of research has witnessed a quick expansion that brought to the discovery of important mechanisms of cardiovascular disease and potential therapeutic advances.

Happy Italian Research Day in the World (Giornata della ricerca Italiana nel mondo) which is held on April 15, 2019 (da Vinci’s birthday) as noted in the ARPICO announcement! If you’re planning to attend, don’t forget to register for Dr. Raggi’s talk at EventBrite (https://mentaldisorderscardiovascularhealth.eventbrite.ca) or email info@arpico.ca.