Monthly Archives: July 2019

Sticky at any temperature and other American Chemical Society News

Just when I thought I’d seen all the carbon nanotube abbreviations; I find two new ones in my first news bit about adhesion. Later, I’m including a second news bit that has to do with the upcoming American Chemical Society (ACS) Meeting in San Diego, California.

Sticky carbon nanotubes (CNTs)

Scientists have developed an adhesive that retains its stickiness in extreme temperatures according to a July 10, 2019 news item on Nanowerk (Note: A link has been removed),

In very hot or cold environments, conventional tape can lose its stickiness and leave behind an annoying residue. But while most people can avoid keeping taped items in a hot car or freezer, those living in extreme environments such as deserts and the Antarctic often can’t avoid such conditions.

Now, researchers reporting in ACS’ journal Nano Letters (“Continuous, Ultra-lightweight, and Multipurpose Super-aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures”) say they have developed a new nanomaterial tape that can function over a wide temperature range.

In previous work, researchers have explored using nanomaterials, such as vertically aligned multi-walled carbon nanotubes (VA-MWNTs), to make better adhesive tapes. Although VA-MWNTs are stronger than conventional tapes at both high and low temperatures, the materials are relatively thick, and large amounts can’t be made cost-effectively.

These are my first vertically aligned multi-walled carbon nanotubes (VA-MWNTs) and superaligned carbon nanotubes (SACNTs). I was a little surprised that VA-MWNTs didn’t include the C since these are carbon nanotubes (CNTs) and there are other types of nanotubes. So, I searched and found that inclusion of the letter ‘C’ for carbon seems to be discretionary. Moving on.

A July 10, 2019 ACS press release (also on EurekAlert), which originated the news item, provides more detail,

… Kai Liu, Xide Li, Wenhui Duan, Kaili Jiang and coworkers wondered if they could develop a new type of tape composed of superaligned carbon nanotube (SACNT) films. As their name suggests, SACNTs are nanotubes that are precisely aligned parallel to each other, capable of forming ultrathin but strong yarns or films.

To make their tape, the researchers pulled a film from the interior of an array of SACNTs — similar to pulling a strip of tape from a roll. The resulting double-sided tape could adhere to surfaces through van der Waals interactions, which are weak electric forces generated between two atoms or molecules that are close together. The ultrathin, ultra-lightweight and flexible tape outperformed conventional adhesives, at temperatures ranging from -321 F to 1,832 F. Researchers could remove the tape by peeling it off, soaking it in acetone or burning it, with no noticeable residues. The tape adhered to many different materials such as metals, nonmetals, plastics and ceramics, but it stuck more strongly to smooth than rough surfaces, similar to regular tape. The SACNT tape can be made cost-effectively in large amounts. In addition to performing well in extreme environments, the new tape might be useful for electronic components that heat up during use, the researchers say.

Here’s a link to and a citation for the paper,

Continuous, Ultra-lightweight, and Multipurpose Super-aligned Carbon Nanotube Tapes Viable over a Wide Range of Temperatures by Xiang Jin, Hengxin Tan, Zipeng Wu, Jiecun Liang, Wentao Miao, Chao-Sheng Lian, Jiangtao Wang, Kai Liu, Haoming Wei, Chen Feng, Peng Liu, Yang Wei, Qunqing Li, Jiaping Wang, Liang Liu, Xide Li, Shoushan Fan, Wenhui Duan, Kaili Jiang. Nano Lett.2019 DOI: https://doi.org/10.1021/acs.nanolett.9b01629 Publication Date:June 16, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

American Chemical Society (ACS) National Meeting in San Diego, Aug. 25 to 29, 2019: an invite to journalists

A July 18, 2019 ACS press release (received via email) announced their upcoming meeting and it included an invitation to journalists. (ACS has two meetings per year, one on the East Coast and the other on the West, roughly speaking).

Materials science and nanotechnology topics at the upcoming 2019 American Chemical Society national meeting in San Diego

WASHINGTON, July 18, 2019 — Journalists who register for the American Chemical Society’s (ACS’) Fall 2019 National Meeting & Exposition in San Diego will have access to more than 9,500 presentations on the meeting’s theme, “Chemistry & Water,” will include  nanotechnology and materials science topics. The meeting, one of the largest scientific conferences of the year, will be held Aug. 25 to 29 [2019] in San Diego.

Nobel Prize winner Frances Arnold, Ph.D., of the California Institute of Technology and Thomas Markland, DPhil, of Stanford University will deliver the two Kavli Foundation lectures on Aug. 26 [2019].

The more than 9,500 presentations will include presentations on nanotechnology and materials science, such as: 

Colloids and nanomaterials for water purification
Nanozymes for bioanalysis and beyond
The latest in wearable and implantable sensors
Nanoscale and molecular assemblies: designing matter to control energy transport
Colloidal quantum dots for solar and other emerging technologies
Nanoscience of bourbon
Targeted delivery of nanomedicines 
Advances in nanocellulose research for engineered functionality
Water sustainability through nanotechnology

Looking for something else? Search the meeting’s abstracts

ACS will operate a press center with press conferences, a news media workroom fully staffed to assist in arranging interviews and free Wi-Fi, computers and refreshments.

Embargoed copies of press releases and a press conference schedule will be available in mid-August.  Reporters planning to cover the meeting from their home bases will have access to the press conferences on YouTube at http://bit.ly/acs2019sandiego.

ACS considers requests for press credentials and complimentary registration to national meetings from reporters (staff and freelance) and public information officers at government, non-profit and educational institutions. See the website for details.

Here’s who does and doesn’t quality for a free press registration (from the ACS complimentary registration webpage),

Press Registration Requirements

The ACS provides complimentary registration to national meetings to reporters (staff and freelancers) and public information officers from government, non-profit and educational institutions. Marketing and public relations professionals, lobbyists and scientists do not qualify as press and must register via the main meeting registration page. Journal managing editors, book commissioning editors, acquisitions editors, publishers and those who do not produce news for a publication or institution also do not qualify. We reserve the right to refuse press credentials for any reason.

No bloggers, eh? it’s been a long time since I’ve seen a press registration process that doesn’t mention bloggers at all.

Growing perfect human blood vessels in a Petri dish

I had not realized that blood vessels are considered organs (Live and learn.) The big news about blood vessel organoids was announced in a January 16, 2019 news item on ScienceDaily,

Scientists have managed to grow perfect human blood vessels as organoids in a petri dish for the first time

The breakthrough engineering technology, outlined in a new study published today [January 16, 2019] in Nature, dramatically advances research of vascular diseases like diabetes, identifying a key pathway to potentially prevent changes to blood vessels — a major cause of death and morbidity among those with diabetes.

A January 16, 2019 University of British Columbia (UBC; Canada) news release (also on EurekAlert), which originated the news item, explains organoids and describes the work in more detail,

An organoid is a three-dimensional structure grown from stem cells that mimics an organ and can be used to study aspects of that organ in a petri dish.

“Being able to build human blood vessels as organoids from stem cells is a game changer,” said the study’s senior author Josef Penninger, the Canada 150 Research Chair in Functional Genetics, director of the Life Sciences Institute at UBC and founding director of the Institute for Molecular Biotechnology of the Austrian Academy of Sciences (IMBA).

“Every single organ in our body is linked with the circulatory system. This could potentially allow researchers to unravel the causes and treatments for a variety of vascular diseases, from Alzheimer’s disease, cardiovascular diseases, wound healing problems, stroke, cancer and, of course, diabetes.”

Diabetes affects an estimated 420 million people worldwide. Many diabetic symptoms are the result of changes in blood vessels that result in impaired blood circulation and oxygen supply of tissues. Despite its prevalence, very little is known about the vascular changes arising from diabetes. This limitation has slowed the development of much-needed treatment.

To tackle this problem, Penninger and his colleagues developed a groundbreaking model: three-dimensional human blood vessel organoids grown in a petri dish. These so-called “vascular organoids” can be cultivated using stem cells in the lab, strikingly mimicking the structure and function of real human blood vessels.

When researchers transplanted the blood vessel organoids into mice, they found that they developed into perfectly functional human blood vessels including arteries and capillaries. The discovery illustrates that it is possible to not only engineer blood vessel organoids from human stem cells in a dish, but also to grow a functional human vascular system in another species.

“What is so exciting about our work is that we were successful in making real human blood vessels out of stem cells,” said Reiner Wimmer, the study’s first author and a postdoctoral research fellow at IMBA. “Our organoids resemble human capillaries to a great extent, even on a molecular level, and we can now use them to study blood vessel diseases directly on human tissue.”

One feature of diabetes is that blood vessels show an abnormal thickening of the basement membrane. As a result, the delivery of oxygen and nutrients to cells and tissues is strongly impaired, causing a multitude of health problems, such as kidney failure, heart attacks, strokes, blindness and peripheral artery disease, leading to amputations.

The researchers then exposed the blood vessel organoids to a “diabetic” environment in a petri dish.

“Surprisingly, we could observe a massive expansion of the basement membrane in the vascular organoids,” said Wimmer. “This typical thickening of the basement membrane is strikingly similar to the vascular damage seen in diabetic patients.”

The researchers then searched for chemical compounds that could block thickening of the blood vessel walls. They found none of the current anti-diabetic medications had any positive effects on these blood vessel defects. However, they discovered that an inhibitor of γ-secretase, a type of enzyme in the body, prevented the thickening of the blood vessel walls, suggesting, at least in animal models, that blocking γ-secretase could be helpful in treating diabetes.

The researchers say the findings could allow them to identify underlying causes of vascular disease, and to potentially develop and test new treatments for patients with diabetes.

Here’s a link to and a citation for the paper,

Human blood vessel organoids as a model of diabetic vasculopathy by Reiner A. Wimmer, Alexandra Leopoldi, Martin Aichinger, Nikolaus Wick, Brigitte Hantusch, Maria Novatchkova, Jasmin Taubenschmid, Monika Hämmerle, Christopher Esk, Joshua A. Bagley, Dominik Lindenhofer, Guibin Chen, Manfred Boehm, Chukwuma A. Agu, Fengtang Yang, Beiyuan Fu, Johannes Zuber, Juergen A. Knoblich, Dontscho Kerjaschki & Josef M. Penninger. Nature volume 565, pages505–510 (2019) DOI: https://doi.org/10.1038/s41586-018-0858-8 Issue Date: 24 January 2019

This paper is behind a paywall. One other thing, a patent application has been filed according to the Author information section (subsection: Competing interests) of the abstract.

Nanocellulosic 3D-printed ears

It’s been a while since I’ve had a story abut cellulose nanocrystals (CNC) and this one comes from Switzerland’s Empa (Swiss Federal Laboratories for Materials Science and Technology) in a January 15, 2019 news item on Nanowerk (Note: A link has been removed),

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing (ACS Nano, “Dynamics of Cellulose Nanocrystal Alignment during 3D Printing”).

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains: “In viscous state cellulose nanocrystals can easily be shaped together with nother biopolymers into complex 3-dimensional structures using a 3D printer, such as the Bioplotter.”

Once cross-linked, the structures remain stable despite their soft mechanical properties. Hausmann is currently investigating the characteristics of the nanocellulose composite hydrogels in order to further optimize their stability as well as the printing process. The researcher already used X-ray analysis to determine how cellulose is distributed and organized within the printed structures.

At this point in time the printed ear is entirely and solely made of cellulose nanocrystals and a biopolymer. However, the objective is to incorporate both human cells and therapeutics into the base structure in order to produce biomedical implants.

Here’s one of the researchers (Michael Hausmann) showing off their ‘ear’,

A 3D-printed ear: Empa researcher Michael Hausmann uses nanocellulose as the basis for novel implants (Image: Empa)

Doesn’t look like much does, eh? It’s scaffolding or, you could say, a kind of skeleton and a January 15, 2019 Empa press release, which originated the news item, describes it and explains how it will house new cells,

A new project is currently underway, looking into how chondrocytes (cartilage cells) can be integrated into the scaffold to yield artificial cartilage tissue. As soon as the colonization of the hydrogel with cells is established, nanocellulose based composites in the shape of an ear could serve as an implant for children with an inherited auricular malformation as for instance, in microtia, where the external ears are only incompletely developed. A reconstruction of the auricle can esthetically and medically correct the malformation; otherwise the hearing ability can be severely impaired. In the further course of the project, cellulose nanocrystals containing hydrogels will also be used for the replacement of articular cartilage (e.g. knee) in cases of joint wear due to, for example, chronic arthritis.

Once the artificial tissue has been implanted in the body, the biodegradable polymer material is expected to degrade over time. The cellulose itself is not degradable in the body, but biocompatible. However, it is not only its biocompatibility that makes nanocellulose the perfect material for implant scaffolds. “It is also the mechanical performance of cellulose nanocrystals that make them such promising candidates because the tiny but highly stable fibers can extremely well reinforce the produced implant,” said Hausmann.

Moreover, nanocellulose allows the incorporation of various functions by chemical modifications into the viscous hydrogel. Thus, the structure, the mechanical properties and the interactions of the nanocellulose with its environment can be specifically tailored to the desired end product. “For instance, we can incorporate active substances that promote the growth of chondrocytes or that sooth joint inflammation into the hydrogel,” says the Empa researcher.

And last but not least, as raw material cellulose is the most abundant natural polymer on earth. Therefore, the use of cellulose nanocrystals not only benefits from the mere elegance of the novel process but also from the availability of the raw material.

The white nanocellulose ear lies glossy on the glass carrier. Just out of the Bioplotter, it is already robust and dimensionally stable. Hausmann can give the go-ahead for the next steps. 

Here’s a link to and a citation for the paper,

Dynamics of Cellulose Nanocrystal Alignment during 3D Printing by Michael K. Hausmann, Patrick A. Rühs, Gilberto Siqueira, Jörg Läuger, Rafael Libanori, Tanja Zimmermann, and André R. Studart. ACS Nano, 2018, 12 (7), pp 6926–6937 DOI: 10.1021/acsnano.8b02366 Publication Date (Web): July 5, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Blockchain made physical: BlocKit

Caption: Parts of BlocKit Credit: Irni Khairuddin

I’m always on the lookout for something that helps make blockchain and cryptocurrency more understandable. (For the uninitiated or anyone like me who needed to refresh their memories, I have links to good essays on the topic further down in this posting.)

A July 10, 2019 news item on ScienceDaily announces a new approach to understanding blockchain technology,

A kit made from everyday objects is bringing the blockchain into the physical world.

The ‘BlocKit’, which includes items such as plastic tubs, clay discs, padlocks, envelopes, sticky notes and battery-powered candles, is aimed to help people understand how digital blockchains work and can also be used by innovators designing new systems and services around blockchain.

A team of computer scientists from Lancaster University, the University of Edinburgh in the UK, and the Universiti Teknologi MARA, in Malaysia, created the prototype BlocKit because blockchain — the decentralised digital infrastructure that is used to organise the cryptocurrency Bitcoin and holds promise to revolutionise many other sectors from finance, supply-chain and healthcare — is so difficult for people to comprehend.

A July 10, 2019 Lancaster University press release (also on EurekAlert), which originated the news item, expands on the theme,

“Despite growing interest in its potential, the blockchain is so novel, disruptive and complex, it is hard for most people to understand how these systems work,” said Professor Corina Sas of Lancaster University’s School of Computing and Communications. “We have created a prototype kit consisting of physical objects that fulfil the roles of different parts of the blockchain. The kit really helps people visualise the different component parts of blockchain, and how they all interact.

“Having tangible physical objects, such as a transparent plastic box for a Bitcoin wallet, clay discs for Bitcoins, padlocks for passwords and candles representing miners’ computational power, makes thinking around processes and systems much easier to comprehend.”

The BlocKit consisted of physical items that represented 11 key aspects of blockchain infrastructure and it was used to explore key characteristics of blockchain, such as trust – an important challenge for Bitcoin users. The kit was evaluated as part of a study involving 15 experienced Bitcoin users.

“We received very positive feedback from the people who used the kit in our study and, interestingly, we found that the BlocKit can also be used by designers looking to develop new services based around blockchain – such as managing patients’ health records for example.”

I will be providing a link to and a citation for the paper but first, I’m excerpting a few bits,

We report on a workshop with 15 bitcoin experts, [emphasis mine] 12 males, 3 females, (mean age 29, range 21-39). All participants had at least 2 years of engaging in bitcoin transactions: 9 had between 2 and 3 years, 4 had between 4 and 5 years, 2had more than 6 years. All participants have at least graduate education, i.e., 6 BSc, 7 MScs, and 2 Ph.D. Participants were recruited through the mailing lists of two universities,and through a local Bitcoins meetup group. [p. 3]

A striking finding was the overwhelmingly positive experience supported by BlocKit. Findings show that 10 participants deeply enjoyed physically touching [emphasis mine] its objects and enacting their movement in space while talking about blockchain processes: “there is going to be other transactions from other people essentially, so let’s put a few bitcoins in that box. I love this stuff, this is amazing” [P12]. Participants suggested that BlocKit could be a valuable tool for learning about blockchain: “I think this all makes sense and would be fine to explain to the novices. It is cool, this is really an interesting kit”[P7]. Other participants suggested leveraging gamification principles for learning about blockchain: “It’s almost like you could turn this into some kind of cool game like a monopoly”[P5] [p. 5]

A significant finding is the value of the kit in supporting experts to materialize and reflect on their understanding of blockchain infrastructure and its inner working. We argue that through its materiality, the kit allows bringing the mental models into question, which in turn helps experts confirm their understandings, develop more nuanced understandings, or even revise some previously held, less accurate assumptions. [emphasis mine]

Even experts are still learning about bitcoin and blockchain according to this research sample. it’s also interesting to note that the workshop participants enjoyed the physicality. I don’t see too many mentions of it in my wanderings but I can’t help wondering if all this digitization is going to leave people starved for touch.

Getting back to blockchain, here’s the link and citation I promised,

BlocKit: A Physical Kit for Materializing and Designing for Blockchain Infrastructure by Irni Eliana Khairuddin, Corina Sas, and Chris Speed.presented at Designing Interactive Systems (DIS) 2019
ACM International Conference Series [downloaded from https://eprints.lancs.ac.uk/id/eprint/132467/1/Design_Kit_DIS_28.pdf]

This paper is open access, as for BlocKit, it exists only as a prototype according to the July 10, 2019 Lancaster University press release.

Introductory essays for blockchain and cryptocurrency

Here are two of my favourites. First, there’s this February 6, 2018 essay (part ii of a series) by Tim Schneider on artnet.com explaining it all by using the art world and art market as examples,

… the fraught relationship between art and value lies at the molten core of several pieces made using blockchain technology. Part one of this series addressed how, in theory, the blockchain strengthens the markets for new media by introducing the concept of digital scarcity. This innovation means that works as simple as an “original” JPG or GIF could be made as rare as Francis Bacon paintings. (This fact leads to a host of business implications that will be covered in Part III.

However, a handful of forward-looking artists is using the blockchain to do more than reset the market’s perception of supply and demand. The technology, their work proves, is more than new software—it’s also a new medium.

The description of how artists using blockchain as a medium provides some of the best descriptions of cryptocurrency and blockchain that I’ve been able to find.

The other essay, a January 5, 2018 article for Slate.com by Joshua Oliver, provides some detail I haven’t seen anywhere else (Note: A link has been removed),

Already, blockchain has been hailed as likely to revolutionize … well … everything. Banks, health care, voting, supply chains, fantasy football, Airbnb, coffee: Nothing is beyond the hypothetical reach of blockchain as a revolutionary force. These predictions are easy to sell because blockchain is still little-understood. If you don’t quite know what blockchain is, it’s easier to imagine that it is whatever you want it to be. But before we can begin to search for the real potential amid the mass of blockchain conjecture and hype, we need to clear up what exactly we mean when we say blockchain.

One cause of confusion is the phrase the blockchain, which makes it sound like blockchain is one specific thing. In reality, the word blockchain is commonly used to describe two broad types of computer systems. [emphases mine] Both use similar underlying protocols, but they have other important differences. Bitcoin represents one approach to using blockchain, one wedded to principles of radical decentralization. The second approach—pioneered by more business-minded players—puts blockchain to use without adopting bitcoin’s revolutionary, decentralized governance. Both of these designs are short-handed as blockchains, so it’s easy to miss the crucial differences. Without grasping these differences, it’s hard to understand where we are today in the development of this promising technology, which blockchain ventures are worth your attention, and what might happen next.

That’s all I’ve got for now.

Controlling agricultural pests with CRISPR-based technology

CRISPR (clustered regularly interspaced short palindromic repeats) technology is often touted as being ‘precise’, which as far as I can tell, is not exactly the case (see my Nov. 28, 2018 posting about the CRISPR babies [scroll down about 30% of the way for the first hint that CRISPR isn’t]). So, it’s a bit odd to see the word ‘precise’ used as part of a new CRISPR-based technology’s name (from a January 8, 2019 news item on ScienceDaily,

Using the CRISPR gene editing tool, Nikolay Kandul, Omar Akbari and their colleagues at UC San Diego [UC is University of California] and UC Berkeley devised a method of altering key genes that control insect sex determination and fertility.

A description of the new “precision-guided sterile insect technique,” [emphasis mine] or pgSIT, is published Jan. 8 [2019] in the journal Nature Communications.

A January 8, 209 UCSD press release (also on EurekAlert) by Mario Aguilera, which originated the news item, delves further into the research,

When pgSIT-derived eggs are introduced into targeted populations, the researchers report, only adult sterile males emerge, resulting in a novel, environmentally friendly and relatively low-cost method of controlling pest populations in the future.

“CRISPR technology has empowered our team to innovate a new, effective, species-specific, self-limiting, safe and scalable genetic population control technology with remarkable potential to be developed and utilized in a plethora of insect pests and disease vectors,” said Akbari, an assistant professor in UC San Diego’s Division of Biological Sciences. “In the future, we strongly believe this technology will be safely used in the field to suppress and even eradicate target species locally, thereby revolutionizing how insects are managed and controlled going forward.”

Since the 1930s, agricultural researchers have used select methods to release sterile male insects into the wild to control and eradicate pest populations. In the 1950s, a method using irradiated males was implemented in the United States to eliminate the pest species known as the New World Screwworm fly, which consumes animal flesh and causes extensive damage to livestock. Such radiation-based methods were later used in Mexico and parts of Central America and continue today.

Instead of radiation, the new pgSIT (precision-guided sterile insect technique), developed over the past year-and-a-half by Kandul and Akbari in the fruit fly Drosophila, uses CRISPR to simultaneously disrupt key genes that control female viability and male fertility in pest species. pgSIT, the researchers say, results in sterile male progeny with 100 percent efficiency. Because the targeted genes are common to a vast cross-section of insects, the researchers are confident the technology can be applied to a range of insects, including disease-spreading mosquitoes.

The researchers envision a system in which scientists genetically alter and produce eggs of a targeted pest species. The eggs are then shipped to a pest location virtually anywhere in the world, circumventing the need for a production facility on-site. Once the eggs are deployed at the pest location, the researchers say, the newly born sterile males will mate with females in the wild and be incapable of producing offspring, driving down the population.

“This is a novel twist of a very old technology,” said Kandul, an assistant project scientist in UC San Diego’s Division of Biological Sciences. “That novel twist makes it extremely portable from one species to another species to suppress populations of mosquitoes or agricultural pests, for example those that feed on valuable wine grapes.”

The new technology is distinct from continuously self-propagating “gene drive” systems that propagate genetic alterations from generation to generation. Instead, pgSIT is considered a “dead end” since male sterility effectively closes the door on future generations.

“The sterile insect technique is an environmentally safe and proven technology,” [emphasis mine] the researchers note in the paper. “We aimed to develop a novel, safe, controllable, non-invasive genetic CRISPR-based technology that could be transferred across species and implemented worldwide in the short-term to combat wild populations.”

With pgSIT proven in fruit flies, the scientists are hoping to develop the technology in Aedes aegypti, the mosquito species responsible for transmitting dengue fever, Zika, yellow fever and other diseases to millions of people.

“The extension of this work to other insect pests could prove to be a general and very useful strategy to deal with many vector-borne diseases that plague humanity and wreak havoc an agriculture globally,” said Suresh Subramani, global director of the Tata Institute for Genetics and Society.

I have one comment about the ‘safety’ of the sterile insect technique. It’s been safe up until now but, assuming this technique works as described: What happens as this new and more powerful technique is more widely deployed possibly eliminating whole species of insects? Might these ‘pests’ have a heretofore unknown beneficial effect somewhere in the food chain or in an ecosystem? Or, there may be other unintended consequences.

Moving on, here’s a link to and a citation for the paper,

Transforming insect population control with precision guided sterile males with demonstration in flies by Nikolay P. Kandul, Junru Liu, Hector M. Sanchez C., Sean L. Wu, John M. Marshall, & Omar S. Akbari. Nature Communications volume 10, Article number: 84 (2019) DOI: https://doi.org/10.1038/s41467-018-07964-7 Published 08 January 2019

This paper is open access.

The researchers have made this illustrative image available,

Caption: This is a schematic of the new precision-guided sterile insect technique (pgSIT), which uses components of the CRISPR/Cas9 system to disrupt key genes that control female viability and male fertility, resulting in sterile male progeny. Credit: Nikolay Kandul, Akbari Lab, UC San Diego

Desalination and toxic brine

Have you ever wondered about the possible effects and impact of desalinating large amounts of ocean water? It seems that some United Nations University (UNU) researchers have asked and are beginning to answer that question. The following table illustrates the rise in desalination plants and processes,


Today 15,906 operational desalination plants are found in 177 countries. Almost half of the global desalination capacity is located in the Middle East and North Africa region (48 percent), with Saudi Arabia (15.5 percent), the United Arab Emirates (10.1 percent) and Kuwait (3.7 percent) being both the major producers in the region and globally. Credit: UNU-INWEH [downloaded from http://inweh.unu.edu/un-warns-of-rising-levels-of-toxic-brine-as-desalination-plants-meet-growing-water-needs/]

A January 14, 2019 news item on phys.org highlights the study on desalination from the UNU,

The fast-rising number of desalination plants worldwide—now almost 16,000, with capacity concentrated in the Middle East and North Africa—quench a growing thirst for freshwater but create a salty dilemma as well: how to deal with all the chemical-laden leftover brine.

In a UN-backed paper, experts estimate the freshwater output capacity of desalination plants at 95 million cubic meters per day—equal to almost half the average flow over Niagara Falls.
For every litre of freshwater output, however, desalination plants produce on average 1.5 litres of brine (though values vary dramatically, depending on the feedwater salinity and desalination technology used, and local conditions). Globally, plants now discharge 142 million cubic meters of hypersaline brine every day (a 50% increase on previous assessments).

That’s enough in a year (51.8 billion cubic meters) to cover Florida under 30.5 cm (1 foot) of brine.

The authors, from UN University’s Canadian-based Institute for Water, Environment and Health [at McMaster University], Wageningen University, The Netherlands, and the Gwangju Institute of Science and Technology, Republic of Korea, analyzed a newly-updated dataset—the most complete ever compiled—to revise the world’s badly outdated statistics on desalination plants.

And they call for improved brine management strategies to meet a fast-growing challenge, noting predictions of a dramatic rise in the number of desalination plants, and hence the volume of brine produced, worldwide.

A January 14, 2017 UNU press release, which originated the news item, details the findings,

The paper found that 55% of global brine is produced in just four countries: Saudi Arabia (22%), UAE (20.2%), Kuwait (6.6%) and Qatar (5.8%). Middle Eastern plants, which largely operate using seawater and thermal desalination technologies, typically produce four times as much brine per cubic meter of clean water as plants where river water membrane processes dominate, such as in the US.

The paper says brine disposal methods are largely dictated by geography but traditionally include direct discharge into oceans, surface water or sewers, deep well injection and brine evaporation ponds.

Desalination plants near the ocean (almost 80% of brine is produced within 10km of a coastline) most often discharge untreated waste brine directly back into the marine environment.

The authors cite major risks to ocean life and marine ecosystems posed by brine greatly raising the salinity of the receiving seawater, and by polluting the oceans with toxic chemicals used as anti-scalants and anti-foulants in the desalination process (copper and chlorine are of major concern).

“Brine underflows deplete dissolved oxygen in the receiving waters,” says lead author Edward Jones, who worked at UNU-INWEH, and is now at Wageningen University, The Netherlands. “High salinity and reduced dissolved oxygen levels can have profound impacts on benthic organisms, which can translate into ecological effects observable throughout the food chain.”

Meanwhile, the paper highlights economic opportunities to use brine in aquaculture, to irrigate salt tolerant species, to generate electricity, and by recovering the salt and metals contained in brine — including magnesium, gypsum, sodium chloride, calcium, potassium, chlorine, bromine and lithium.

With better technology, a large number of metals and salts in desalination plant effluent could be mined. These include sodium, magnesium, calcium, potassium, bromine, boron, strontium, lithium, rubidium and uranium, all used by industry, in products, and in agriculture. The needed technologies are immature, however; recovery of these resources is economically uncompetitive today.

“There is a need to translate such research and convert an environmental problem into an economic opportunity,” says author Dr. Manzoor Qadir, Assistant Director of UNU-INWEH. “This is particularly important in countries producing large volumes of brine with relatively low efficiencies, such as Saudi Arabia, UAE, Kuwait and Qatar.”

“Using saline drainage water offers potential commercial, social and environmental gains. Reject brine has been used for aquaculture, with increases in fish biomass of 300% achieved. It has also been successfully used to cultivate the dietary supplement Spirulina, and to irrigate forage shrubs and crops (although this latter use can cause progressive land salinization).”

“Around 1.5 to 2 billion people currently live in areas of physical water scarcity, where water resources are insufficient to meet water demands, at least during part of the year. Around half a billion people experience water scarcity year round,” says Dr. Vladimir Smakhtin, a co-author of the paper and the Director of UNU-INWEH, whose institute is actively pursuing research related to a variety of unconventional water sources.

“There is an urgent need to make desalination technologies more affordable and extend them to low-income and lower-middle income countries. At the same time, though, we have to address potentially severe downsides of desalination — the harm of brine and chemical pollution to the marine environment and human health.”

“The good news is that efforts have been made in recent years and, with continuing technology refinement and improving economic affordability, we see a positive and promising outlook.”

¹The authors use the term “brine” to refer to all concentrate discharged from desalination plants, as the vast majority of concentrate (>95%) originates from seawater and highly brackish groundwater sources.

Here’s a link to and a citation for the paper,

The state of desalination and brine production: A global outlook by Edward Jones, Manzoor Qadir, Michelle T.H.van Vliet, Vladimir Smakhtin, Seong-mu Kang. Science of The Total Environment Volume 657, 20 March 2019, Pages 1343-1356 DOI: https://doi.org/10.1016/j.scitotenv.2018.12.076 Available online 7 December 2018

Surprisingly (to me anyway), this paper is behind a paywall.

There’s no ‘I’ in team: coaching scientists to work together

While it’s true enough in English where you don’t spell the word team with the letter ‘I’, that’s not the case in French where the word is ‘equipe’. it makes me wonder how many other languages in the world have an ‘I’ in team.

Moving on. This English language saying is true enough in its way but there is no team unless you have a group of ‘I’s’ and the trick is getting them to work together as a July 18, 2019 Northwestern University news release (received via email) about a new online training tool notes,

Coaching scientists to play well together

Free tool shows how to avoid fights over data and authorship conflicts   

‘You stole my idea’ or ‘I’m not getting credit for my work’ are common disputes
Only tool validated by research to help scientists collaborate smoothly
Many NSF [US National Science Foundation] and NIH [US National Institutes of Health] grants now require applicants to show readiness for team science
Scientists can’t do it on their own

CHICAGO — When scientists from different disciplines collaborate – as is increasingly necessary to confront the complexity of challenging research problems – interpersonal tussles often arise. One scientist may accuse another of stealing her ideas. Or, a researcher may feel he is not getting credit for his work or doesn’t have access to important data. 
 
“Interdisciplinary team science is now the state of the art across all branches of science and engineering,” said Bonnie Spring, professor of preventive medicine at Northwestern University Feinberg School of Medicine. “But very few scientists have been trained to work with others outside of their own disciplinary silo.”
 
The skill is critical because many National Institute[s] of Health and National Science Foundationgrants require applicants to show readiness for team science.
 
A free, online training tool developed by Northwestern — teamscience.net — has been been proven to help scientists develop skills to work with other scientists outside their own discipline. 
 
A new study led by Spring showed scientists who completed the program’s modules – called COALESCE – significantly boosted their knowledge about team science and increased their self-confidence about being able to successfully work in scientific teams. Most people who completed one or more modules (84%) said that the experience of taking the modules was very likely to positively impact their future research.
 
The study will be published July 18 [2019] in the Journal of Clinical and Translational Science.
 
There are few training resources to teach scientists how to collaborate, and the ones that are available don’t have evidence of their effectiveness. Teamscience.net is the only free, validated-by-research tool available to anyone at any time. 
 
Almost 1,000 of the COALESCE users opted voluntarily to respond to questions about the learning modules, providing information about how taking each module influenced team science knowledge, skills and attitudes.
 
‘You stole my idea’
 
The most common area of dispute among collaborating scientists is authorship concerns, such as accusations that one person stole ideas from another or that a contributor was not getting credit for his or her work, the study authors said. Other disputes arise around access to and analysis of data, utilization of materials or resources and the general direction of the research itself. Underlying all of these issues is a common failure to prepare for working collaboratively with other scientists. 
 
“Preparing in advance before starting to collaborate, often through the creation of a formal collaboration agreement document, is the best way to head off these types of disputes,” said Angela Pfammatter, assistant professor of preventive medicine at Feinberg and a coauthor on the paper.
  
Spring suggested “having scientists discuss their expectations of one another and the collaboration to prevent acrimonious conflicts.” 
 
Skills to play well together
 
These skills are critical to a successful scientific team, the authors said: 

The ability to choose team members who have the right mix of expertise, temperament and accessibility to round out a team. 
The ability to anticipate what could go wrong and to develop contingency plans in advance. 
The ability to manage conflict within the team 

The teamscience.net modules help scientists acquire these skills by letting them interact with different problem scenarios that can arise in team-based research. Scientists can try out different solutions and learn from mistakes in a safe, online environment. 
 
More than 16,000 people have accessed the resource in the past six years.  Demand for team science training is expected to increase as interdisciplinary teams set out to tackle some of science’s most challenging problems. 
 
Other Northwestern authors on the paper are Ekaterina Klyachko, Phillip Rak, H. Gene McFadden, Juned Siddique and Leland Bardsley. 
 
Funding support for COALESCE is from the National Institutes of Health, National Center for Advancing Translational Sciences grants 3UL1RR025741 and UL1TR001422 and its Office of Behavioral and Social Sciences Research.

i once got caught here on this blog between two warring scientists. My August 24, 2015 posting was a pretty standard one for me. Initially, it was one of my more minimalistic pieces with a copy of the text from a university news release announcing the research and a link to the academic paper. I can’t remember if the problem was which scientist was listed first and which was listed last but one of them took exception and contacted me explaining how it was wrong. (Note: These decisions are not made by me.) I did my best to fix whatever the problem was and then the other scientist contacted me. After the dust settled, I ended up with a dog’s breakfast for my posting and a new policy.

Getting back to COALESCE: I wish the Northwestern University researchers all the best as they look for ways to help scientists work together more smoothly and cooperatively.

Here’s a link to and a citation for the paper,

Online, cross-disciplinary team science training for health and medical professionals: Evaluation of COALESCE (teamscience.net) by Bonnie Spring, Ekaterina A. Klyachko, Phillip W. Rak, H. Gene McFadden, Donald Hedeker, Juned Siddique, Leland R. Bardsley, and Angela Fidler Pfammatter. Jurnal of Clinical and Translational Science DOI: https://doi.org/10.1017/cts.2019.383 Published online by Cambridge University Press: 18 July 2019

This paper is open access.

Monitoring forest soundscapes for conservation and more about whale songs

I don’t understand why anyone would publicize science work featuring soundscapes without including an audio file. However, no one from Princeton University (US) phoned and asked for my advice :).

On the plus side, my whale story does have a sample audio file. However, I’m not sure if I can figure out how to embed it here.

Princeton and monitoring forests

In addition to a professor from Princeton University, there’s the founder of an environmental news organization and someone who’s both a professor at the University of Queensland (Australia) and affiliated with the Nature Conservancy making this of the more unusual collaborations I’ve seen.

Moving on to the news, a January 4, 2019 Princeton University news release (also on EurekAlert but published on Jan. 3, 2019) by B. Rose Kelly announces research into monitoring forests,

Recordings of the sounds in tropical forests could unlock secrets about biodiversity and aid conservation efforts around the world, according to a perspective paper published in Science.

Compared to on-the-ground fieldwork, bioacoustics –recording entire soundscapes, including animal and human activity — is relatively inexpensive and produces powerful conservation insights. The result is troves of ecological data in a short amount of time.

Because these enormous datasets require robust computational power, the researchers argue that a global organization should be created to host an acoustic platform that produces on-the-fly analysis. Not only could the data be used for academic research, but it could also monitor conservation policies and strategies employed by companies around the world.

“Nongovernmental organizations and the conservation community need to be able to truly evaluate the effectiveness of conservation interventions. It’s in the interest of certification bodies to harness the developments in bioacoustics for better enforcement and effective measurements,” said Zuzana Burivalova, a postdoctoral research fellow in Professor David Wilcove’s lab at Princeton University’s Woodrow Wilson School of Public and International Affairs.

“Beyond measuring the effectiveness of conservation projects and monitoring compliance with forest protection commitments, networked bioacoustic monitoring systems could also generate a wealth of data for the scientific community,” said co-author Rhett Butler of the environmental news outlet Mongabay.

Burivalova and Butler co-authored the paper with Edward Game, who is based at the Nature Conservancy and the University of Queensland.

The researchers explain that while satellite imagery can be used to measure deforestation, it often fails to detect other subtle ecological degradations like overhunting, fires, or invasion by exotic species. Another common measure of biodiversity is field surveys, but those are often expensive, time consuming and cover limited ground.

Depending on the vegetation of the area and the animals living there, bioacoustics can record animal sounds and songs from several hundred meters away. Devices can be programmed to record at specific times or continuously if there is solar polar or a cellular network signal. They can also record a range of taxonomic groups including birds, mammals, insects, and amphibians. To date, several multiyear recordings have already been completed.

Bioacoustics can help effectively enforce policy efforts as well. Many companies are engaged in zero-deforestation efforts, which means they are legally obligated to produce goods without clearing large forests. Bioacoustics can quickly and cheaply determine how much forest has been left standing.

“Companies are adopting zero deforestation commitments, but these policies do not always translate to protecting biodiversity due to hunting, habitat degradation, and sub-canopy fires. Bioacoustic monitoring could be used to augment satellites and other systems to monitor compliance with these commitments, support real-time action against prohibited activities like illegal logging and poaching, and potentially document habitat and species recovery,” Butler said.

Further, these recordings can be used to measure climate change effects. While the sounds might not be able to assess slow, gradual changes, they could help determine the influence of abrupt, quick differences to land caused by manufacturing or hunting, for example.

Burivalova and Game have worked together previously as you can see in a July 24, 2017 article by Justine E. Hausheer for a nature.org blog ‘Cool Green Science’ (Note: Links have been removed),

Morning in Musiamunat village. Across the river and up a steep mountainside, birds-of-paradise call raucously through the rainforest canopy, adding their calls to the nearly deafening insect chorus. Less than a kilometer away, small birds flit through a grove of banana trees, taro and pumpkin vines winding across the rough clearing. Here too, the cicadas howl.

To the ear, both garden and forest are awash with noise. But hidden within this dawn chorus are clues to the forest’s health.

New acoustic research from Nature Conservancy scientists indicates that forest fragmentation drives distinct changes in the dawn and dusk choruses of forests in Papua New Guinea. And this innovative method can help evaluate the conservation benefits of land-use planning efforts with local communities, reducing the cost of biodiversity monitoring in the rugged tropics.

“It’s one thing for a community to say that they cut fewer trees, or restricted hunting, or set aside a protected area, but it’s very difficult for small groups to demonstrate the effectiveness of those efforts,” says Eddie Game, The Nature Conservancy’s lead scientist for the Asia-Pacific region.

Aside from the ever-present logging and oil palm, another threat to PNG’s forests is subsistence agriculture, which feeds a majority of the population. In the late 1990s, The Nature Conservancy worked with 11 communities in the Adelbert Mountains to create land-use plans, dividing each community’s lands into different zones for hunting, gardening, extracting forest products, village development, and conservation. The goal was to limit degradation to specific areas of the forest, while keeping the rest intact.

But both communities and conservationists needed a way to evaluate their efforts, before the national government considered expanding the program beyond Madang province. So in July 2015, Game and two other scientists, Zuzana Burivalova and Timothy Boucher, spent two weeks gathering data in the Adelbert Mountains, a rugged lowland mountain range in Papua New Guinea’s Madang province.

Working with conservation rangers from Musiamunat, Yavera, and Iwarame communities, the research team tested an innovative method — acoustic sampling — to measure biodiversity across the community forests. Game and his team used small acoustic recorders placed throughout the forest to record 24-hours of sound from locations in each of the different land zones.

Soundscapes from healthy, biodiverse forests are more complex, so the scientists hoped that these recordings would show if parts of the community forests, like the conservation zones, were more biodiverse than others. “Acoustic recordings won’t pick up every species, but we don’t need that level of detail to know if a forest is healthy,” explains Boucher, a conservation geographer with the Conservancy.

Here’s a link to and a citation for the latest work from Burivalova and Game,

The sound of a tropical forest by Zuzana Burivalova, Edward T. Game, Rhett A. Butler. Science 04 Jan 2019: Vol. 363, Issue 6422, pp. 28-29 DOI: 10.1126/science.aav1902

This paper is behind a paywall. You can find out more about Mongabay and Rhett Butler in its Wikipedia entry.

***ETA July 18, 2019: Cara Cannon Byington, Associate Director, Science Communications for the Nature Conservancy emailed to say that a January 3, 2019 posting on the conservancy’s Cool Green Science Blog features audio files from the research published in ‘The sound of a tropical forest. Scroll down about 75% of the way for the audio.***

Whale songs

Whales share songs when they meet and a January 8, 2019 Wildlife Conservation Society news release (also on EurekAlert) describes how that sharing takes place,

Singing humpback whales from different ocean basins seem to be picking up musical ideas from afar, and incorporating these new phrases and themes into the latest song, according to a newly published study in Royal Society Open Science that’s helping scientists better understand how whales learn and change their musical compositions.

The new research shows that two humpback whale populations in different ocean basins (the South Atlantic and Indian Oceans) in the Southern Hemisphere sing similar song types, but the amount of similarity differs across years. This suggests that males from these two populations come into contact at some point in the year to hear and learn songs from each other.

The study titled “Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins” appears in the latest edition of the Royal Society Open Science journal. The authors are: Melinda L. Rekdahl, Carissa D. King, Tim Collins, and Howard Rosenbaum of WCS (Wildlife Conservation Society); Ellen C. Garland of the University of St. Andrews; Gabriella A. Carvajal of WCS and Stony Brook University; and Yvette Razafindrakoto of COSAP [ (Committee for the Management of the Protected Area of Bezà Mahafaly ] and Madagascar National Parks.

“Song sharing between populations tends to happen more in the Northern Hemisphere where there are fewer physical barriers to movement of individuals between populations on the breeding grounds, where they do the majority of their singing. In some populations in the Southern Hemisphere song sharing appears to be more complex, with little song similarity within years but entire songs can spread to neighboring populations leading to song similarity across years,” said Dr. Melinda Rekdahl, marine conservation scientist for WCS’s Ocean Giants Program and lead author of the study. “Our study shows that this is not always the case in Southern Hemisphere populations, with similarities between both ocean basin songs occurring within years to different degrees over a 5-year period.”

The study authors examined humpback whale song recordings from both sides of the African continent–from animals off the coasts of Gabon and Madagascar respectively–and transcribed more than 1,500 individual sounds that were recorded between 2001-2005. Song similarity was quantified using statistical methods.

Male humpback whales are one of the animal kingdom’s most noteworthy singers, and individual animals sing complex compositions consisting of moans, cries, and other vocalizations called “song units.” Song units are composed into larger phrases, which are repeated to form “themes.” Different themes are produced in a sequence to form a song cycle that are then repeated for hours, or even days. For the most part, all males within the same population sing the same song type, and this population-wide song similarity is maintained despite continual evolution or change to the song leading to seasonal “hit songs.” Some song learning can occur between populations that are in close proximity and may be able to hear the other population’s song.

Over time, the researchers detected shared phrases and themes in both populations, with some years exhibiting more similarities than others. In the beginning of the study, whale populations in both locations shared five “themes.” One of the shared themes, however, had differences. Gabon’s version of Theme 1, the researchers found, consisted of a descending “cry-woop”, whereas the Madagascar singers split Theme 1 into two parts: a descending cry followed by a separate woop or “trumpet.”

Other differences soon emerged over time. By 2003, the song sung by whales in Gabon became more elaborate than their counterparts in Madagascar. In 2004, both population song types shared the same themes, with the whales in Gabon’s waters singing three additional themes. Interestingly, both whale groups had dropped the same two themes from the previous year’s song types. By 2005, songs being sung on both sides of Africa were largely similar, with individuals in both locations singing songs with the same themes and order. However, there were exceptions, including one whale that revived two discontinued themes from the previous year.

The study’s results stands in contrast to other research in which a song in one part of an ocean basin replaces or “revolutionizes” another population’s song preference. In this instance, the gradual changes and degrees of similarity shared by humpbacks on both sides of Africa was more gradual and subtle.

“Studies such as this one are an important means of understanding connectivity between different whale populations and how they move between different seascapes,” said Dr. Howard Rosenbaum, Director of WCS’s Ocean Giants Program and one of the co-authors of the new paper. “Insights on how different populations interact with one another and the factors that drive the movements of these animals can lead to more effective plans for conservation.”

The humpback whale is one of the world’s best-studied marine mammal species, well known for its boisterous surface behavior and migrations stretching thousands of miles. The animal grows up to 50 feet in length and has been globally protected from commercial whaling since the 1960s. WCS has studied humpback whales since that time and–as the New York Zoological Society–played a key role in the discovery that humpback whales sing songs. The organization continues to study humpback whale populations around the world and right here in the waters of New York; research efforts on humpback and other whales in New York Bight are currently coordinated through the New York Aquarium’s New York Seascape program.

I’m not able to embed the audio file here but, for the curious, there is a portion of a humpback whale song from Gabon here at EurekAlert.

Here’s a link to and a citation for the research paper,

Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins by Melinda L. Rekdahl, Ellen C. Garland, Gabriella A. Carvajal, Carissa D. King, Tim Collins, Yvette Razafindrakoto and Howard Rosenbaum. Royal Society Open Science 21 November 2018 Volume 5 Issue 11 https://doi.org/10.1098/rsos.172305 Published:28 November 2018

This is an open access paper.

Nanoflowers for better drug delivery; researchers looking for commercial partners

Caption: Schematic representation of the movement of the flower-like particle as it makes its way through a cellular trap to deliver therapeutic genes. Credit: WSU [Washington State University]

It looks more like a swimming pool with pool toys to me but I imagine that nobody wants to say that they’re sending ‘pool toys’ through your bloodstream. Nanoflowers or flower-shaped nanoparticles sounds nicer.

From a January 10, 2019 news item on Nanowerk,

Washington State University [WSU] researchers have developed a novel way to deliver drugs and therapies into cells at the nanoscale without causing toxic effects that have stymied other such efforts.

The work could someday lead to more effective therapies and diagnostics for cancer and other illnesses.

Led by Yuehe Lin, professor in WSU’s School of Mechanical and Materials Engineering, and Chunlong Chen, senior scientist at the Department of Energy’s Pacific Northwest National Laboratory (PNNL), the research team developed biologically inspired materials at the nanoscale that were able to effectively deliver model therapeutic genes into tumor cells. …

A January 10, 2019 WSU news release (also on EurekAlert) by Tina Hilding, which originated the news item, describes the work in greater detail,

Researchers have been working to develop nanomaterials that can effectively carry therapeutic genes directly into the cells for the treatment of diseases such as cancer. The key issues for gene delivery using nanomaterials are their low delivery efficiency of medicine and potential toxicity.

“To develop nanotechnology for medical purposes, the first thing to consider is toxicity — That is the first concern for doctors,” said Lin.

The flower-like particle the WSU and PNNL team developed is about 150 nanometers in size, or about one thousand times smaller than the width of a piece of paper. It is made of sheets of peptoids, which are similar to natural peptides that make up proteins. The peptoids make for a good drug delivery particle because they’re fairly easy to synthesize and, because they’re similar to natural biological materials, work well in biological systems.

The researchers added fluorescent probes in their peptoid nanoflowers, so they could trace them as they made their way through cells, and they added the element fluorine, which helped the nanoflowers more easily escape from tricky cellular traps that often impede drug delivery.

The flower-like particles loaded with therapeutic genes were able to make their way smoothly out of the predicted cellular trap, enter the heart of the cell, and release their drug there.

“The nanoflowers successfully and rapidly escaped (the cell trap) and exhibited minimal cytotoxicity,” said Lin.

After their initial testing with model drug molecules, the researchers hope to conduct further studies using real medicines.

“This paves a new way for us to develop nanocargoes that can efficiently deliver drug molecules into the cell and offers new opportunities for targeted gene therapies,” he said.

The WSU and PNNL team have filed a patent application for the new technology, and they are seeking industrial partners for further development.

Should you and your company be interested in partnering with the researchers, contact:

  • Yuehe Lin, professor, School of Mechanical and Materials Engineering, 509‑335‑8523, yuehe.lin@wsu.edu
  • Tina Hilding, communications director, Voiland College of Engineering and Architecture, 509‑335‑5095, thilding@wsu.edu

For those who’d like more information, here’s a link to and a citation for the paper,

Efficient Cytosolic Delivery Using Crystalline Nanoflowers Assembled from Fluorinated Peptoids by Yang Song, Mingming Wang, Suiqiong Li, Haibao Jin, Xiaoli Cai, Dan Du, He Li, Chun‐Long Chen, Yuehe Lin. Small DOI: https://doi.org/10.1002/smll.201803544 First published: 22 November 2018

This paper is behind a paywall.