Monthly Archives: April 2021

New podcast—Mission: Interplanetary and Event Rap: a one-stop custom rap shop Kickstarter

I received two email notices recently, one from Dr. Andrew Maynard (Arizona State University; ASU) and one from Baba Brinkman (Canadian rapper of science and other topics now based in New York).

Mission: Interplanetary

I found a “Mission: Interplanetary— a podcast on the future of humans as a spacefaring species!” webpage (Link: https://collegeofglobalfutures.asu.edu/blog/2021/03/23/mission-interplanetary-redefining-how-we-talk-about-humans-in-space/) on the Arizona State University College of Global Futures website,

Back in January 2019 I got an email from my good friend and colleague Lance Gharavi with the title “Podcast brainstorming.” Two years on, we’ve just launched the Mission: Interplanetary podcast–and it’s amazing!

It’s been a long journey — especially with a global pandemic thrown in along the way — but on March 23 [2021], the Mission: Interplanetary podcast with Slate and ASU finally launched.

After two years of planning, many discussions, a bunch dry runs, and lots (and by that I mean lots) of Zoom meetings, we are live!

As the team behind the podcast talked about and developed the ideas underpinning the Mission: Interplanetary,we were interested in exploring new ways of thinking and talking about the future of humanity as a space-faring species as part of Arizona State University’s Interplanetary Initiative. We also wanted to go big with these conversations — really big!

And that is exactly what we’ve done in this partnership with Slate.

The guests we’re hosting, the conversations we have lined up, the issues we grapple with, are all literally out of this world. But don’t just take my word for it — listen to the first episode above with the incredible Lindy Elkins-Tanton talking about NASA’s mission to the asteroid 16 Psyche.

And this is just a taste of what’s to come over the next few weeks as we talk to an amazing lineup of guests.

So if you’re looking for a space podcast with a difference, and one that grapples with big questions around our space-based future, please do subscribe on your favorite podcast platform. And join me and the fabulous former NASA astronaut Cady Coleman as we explore the future of humanity in space.

See you there!

Slate’s webpage (Mission: Interplanetary; Link: https://slate.com/podcasts/mission-interplanetary) offers more details about the co-hosts and the programmes along with embedded podcasts,

Cady Coleman is a former NASA astronaut and Air Force colonel. She flew aboard the International Space Station on a six-month expedition as the lead science and robotics officer. A frequent speaker on space and STEM topics, Coleman is also a musician who’s played from space with the Chieftains and Ian Anderson of Jethro Tull.

Andrew Maynard is a scientist, author, and expert in risk innovation. His books include Films From the Future: The Technology and Morality of Sci-Fi Movies and Future Rising

Latest Episodes

April 27, 2021

Murder in Space

What laws govern us when we leave Earth?

Happy listening. And, I apologize for the awkward links.

Event Rap Kickstarter

Baba Brinkman’s April 27, 2021 email notice has this to say about his latest venture,

Join the Movement, Get Rewards

My new Kickstarter campaign for Event Rap is live as of right now! Anyone who backs the project is helping to launch an exciting new company, actually a new kind of company, the first creator marketplace for rappers. Please take a few minutes to read the campaign description, I put a lot of love into it.

The campaign goal is to raise $26K in 30 days, an average of $2K per artist participating. If we succeed, this platform becomes a new income stream for independent artists during the pandemic and beyond. That’s the vision, and I’m asking for your help to share it and support it.

But instead of why it matters, let’s talk about what you get if you support the campaign!

$10-$50 gets you an advance copy of my new science rap album, Bright Future. I’m extremely proud of this record, which you can preview here, and Bright Future is also a prototype for Event Rap, since all ten of the songs were commissioned by people like you.

$250 – $500 gets you a Custom Rap Video written and produced by one of our artists, and you have twelve artists and infinite topics to choose from. This is an insanely low starting price for an original rap video from a seasoned professional, and it applies only during the Kickstarter. What can the video be about? Anything at all. You choose!

In case it’s helpful, here’s a guide I wrote entitled “How to Brief a Rapper

$750 – $1,500 gets you a live rap performance at your virtual event. This is also an amazingly low price, especially since you can choose to have the artist freestyle interactively with your audience, write and perform a custom rap live, or best of all compose a “Rap Up” summary of the event, written during the event, that the artist will perform as the grand finale.

That’s about as fresh and fun as rap gets.

$3,000 – $5,000 the highest tiers bring the highest quality, a brand new custom-written, recorded, mixed and mastered studio track, or studio track plus full rap music video, with an exclusive beat and lyrics that amplify your message in the impactful, entertaining way that rap does best.

I know this higher price range isn’t for everyone, but check out some of the music videos our artists have made, and maybe you can think of a friend to send this to who has a budget and a worthy cause.

Okay, that’s it!

Those prices are in US dollars.

I gather at least one person has backed given enough money to request a custom rap on cycling culture in the Netherlands.

The campaign runs for another 26 days. It has amassed over $8,400 CAD towards a goal of $32,008 CAD. (The site doesn’t show me the goal in USD although the pledges/reward are listed in that currency.)

Call for papers for the 13th (2021) Canadian Science Policy Conference (CSPC)

“Building Forward Better” (sigh) is the concept for the upcoming 2021 Canadian Science Policy Conference. (I wish the theme didn’t seem derivative of “Build Back Better,” President Joe Biden’s agenda.) The deadline as it stands now is May 21, 2021 for the panel proposals and, I believe, the short talk proposals.

As usual, the conference is being held in Ottawa, which is convenient when most government science policy wonks are in Ottawa, of course, the rest of us can ‘Zoom’ attend.

Note: CSPC is the abbreviation for both the Canadian Science Policy Centre and the Canadian Science Policy Conference, which the Centre organizes. Confusing, eh? conference.

From the 2021 CSPC call for submissions webpage (Note formatting changes),

CSPC [Canadian Science Policy Centre] is excited to announce the themes and topics for the 13th Canadian Science Policy Conference!

As Canada focuses on the future and post-pandemic rebuilding process, the overarching message of CSPC 2021 is shaped by the concept of Building Forward Better.

PANEL DEADLINE MAY 21ST

There is no fee associated with the panel submission.

Theme 1:  Science and Policy

STI Policy frameworks

Towards holistic STI policies: Approaches that are inclusive of governments, agencies, private sector, academe

Beyond the Endless Frontier; Renegotiating the Social Contract between Science, Innovation, and Society 

The international research ecosystem/supply chain – opportunities and risks  

Policy and regulation of emerging technologies 

Indigenous knowledge:

Integration in evidence-informed decision making

Climate change:

Carbon management goals: Issues and approaches for agriculture, forestry, food production, manufacturing, and land use 

Agriculture: Production, sustainability, and life cycle; precision agriculture

Biodiversity and conservation

Indigenous communities’ engagement in managing and adapting to climate change   

Smart cities and smart infrastructure 

Theme 2: Science and Society

Public engagement

Responses to the science of COVID-19 – lessons learned

Misinformation/Disinformation 

Public trust in science, especially in the post pandemic world

Digital media

Democracy and politics in a ‘post-trust’ / ‘post-truth’ / post-pandemic era

Science and Post Pandemic Politics, Platforms and Elections 

Theme 3:  Science, Innovation and Economic Development

International

Best Global practices in commercializing new knowledge from scientific research 

Priority Sectors/Challenges 

Sustainable development and the circular resource economy 

What should be Canada’s competitive priority: Technology innovation or technology adoption? 

Assessing the impact of Disruptive Technologies on Canada’s Job Growth and Economic Development 

Theme 4:  Science and International Affairs and Security

Security of Research and Innovation:

State and non-state espionage

Cyber, and data security

International Collaboration and Security

Science diplomacy in post pandemic era

International STI developments: Implications for Canada:  

American Science Policy

Horizon Europe 

International science and technology agreements 

Social Media, international regulations, and citizen rights International knowledge and talent strategy, brain circulation

Science and Technology in an increasingly tense global order

Theme 5: Science and the Next Generation

New graduates and new realities 

Capacity building:

The next generation of Indigenous leaders

The next generation of innovative tech leaders, e.g. space, AI, cybersecurity cleantech

Indigenous led research by Indigenous for Indigenous 

Theme 6:  Grand Challenges 

Canada’s energy policies for a sustainable future

Food security 

Climate change

Climate Adaptation

Next steps to Net Zero 

Water scarcity and quality 

Oceans and sea rise 

As I’ve noted elsewhere (and frequently), much of the science policy discussion coming out of Ottawa via these conferences and the Council of Canadian Academies is Eurocentric and UScentric as can be seen in Theme 4’s International STI developments: Implications for Canada., which highlights these three topics: American Science Policy, Horizon Europe, and International science and technology agreements. No mention of China? Perhaps it will be found here in submissions for Science and Technology in an increasingly tense global order. Finally and surprisingly, there’s no mention of the Arctic in the Grand Challenges’ Climate change subgroups or elsewhere.

I have some more details from the 2021 CSPC’s Criteria for proposal selection webpage,

CSPC is a national forum, a mosaic which aims to have a balanced representation of regional, sectoral, and topical diversity; as well as to provide under-represented groups an opportunity to present their ideas. These criteria will also be factored in for the final selection of panels.

There are two streams for proposal submission this year. Please read the criteria for each stream carefully before finalizing your submission. Both streams are expected to adhere to the CSPC 2021 themes and topics to increase chances of acceptance. 

1. Panel proposals 

80 minute panels (50 minute presentation, 20-30 minutes of questions) where a diverse, multisectoral group discuss topics in science policy (see CSPC 2021 themes and topics)

2. Short talk proposals.

10 minute presentations for those individuals who do not have the means to organize a panel, in particular student and early career professionals.

Good luck!

Artificial emotional intelligence detection

Sabotage was not my first thought on reading about artificial emotional intelligence so this February 11, 2021 Incheon National University press release (also on EurekAlert) is educational in an unexpected way (Note: A link has been removed),

With the advent of 5G communication technology and its integration with AI, we are looking at the dawn of a new era in which people, machines, objects, and devices are connected like never before. This smart era will be characterized by smart facilities and services such as self-driving cars, smart UAVs [unmanned aerial vehicle], and intelligent healthcare. This will be the aftermath of a technological revolution.

But the flip side of such technological revolution is that AI [artificial intelligence] itself can be used to attack or threaten the security of 5G-enabled systems which, in turn, can greatly compromise their reliability. It is, therefore, imperative to investigate such potential security threats and explore countermeasures before a smart world is realized.

In a recent study published in IEEE Network, a team of researchers led by Prof. Hyunbum Kim from Incheon National University, Korea, address such issues in relation to an AI-based, 5G-integrated virtual emotion recognition system called 5G-I-VEmoSYS, which detects human emotions using wireless signals and body movement. “Emotions are a critical characteristic of human beings and separates humans from machines, defining daily human activity. However, some emotions can also disrupt the normal functioning of a society and put people’s lives in danger, such as those of an unstable driver. Emotion detection technology thus has great potential for recognizing any disruptive emotion and in tandem with 5G and beyond-5G communication, warning others of potential dangers,” explains Prof. Kim. “For instance, in the case of the unstable driver, the AI enabled driver system of the car can inform the nearest network towers, from where nearby pedestrians can be informed via their personal smart devices.”

The virtual emotion system developed by Prof. Kim’s team, 5G-I-VEmoSYS, can recognize at least five kinds of emotion (joy, pleasure, a neutral state, sadness, and anger) and is composed of three subsystems dealing with the detection, flow, and mapping of human emotions. The system concerned with detection is called Artificial Intelligence-Virtual Emotion Barrier, or AI-VEmoBAR, which relies on the reflection of wireless signals from a human subject to detect emotions. This emotion information is then handled by the system concerned with flow, called Artificial Intelligence-Virtual Emotion Flow, or AI-VEmoFLOW, which enables the flow of specific emotion information at a specific time to a specific area. Finally, the Artificial Intelligence-Virtual Emotion Map, or AI-VEmoMAP, utilizes a large amount of this virtual emotion data to create a virtual emotion map that can be utilized for threat detection and crime prevention.

A notable advantage of 5G-I-VEmoSYS is that it allows emotion detection without revealing the face or other private parts of the subjects, thereby protecting the privacy of citizens in public areas. Moreover, in private areas, it gives the user the choice to remain anonymous while providing information to the system. Furthermore, when a serious emotion, such as anger or fear, is detected in a public area, the information is rapidly conveyed to the nearest police department or relevant entities who can then take steps to prevent any potential crime or terrorism threats.

However, the system suffers from serious security issues such as the possibility of illegal signal tampering, abuse of anonymity, and hacking-related cyber-security threats. Further, the danger of sending false alarms to authorities remains.

While these concerns do put the system’s reliability at stake, Prof. Kim’s team are confident that they can be countered with further research. “This is only an initial study. In the future, we need to achieve rigorous information integrity and accordingly devise robust AI-based algorithms that can detect compromised or malfunctioning devices and offer protection against potential system hacks,” explains Prof. Kim, “Only then will it enable people to have safer and more convenient lives in the advanced smart cities of the future.”

Intriguing, yes? The researchers have used this image to illustrate their work,

Caption: With 5G communication technology and new AI-based systems such as emotion recognition systems, smart cities are all set to become a reality; but these systems need to be honed and security issues need to be ironed out before the smart reality can be realized. Credit: macrovector on Freepik

Before getting to the link and citation for the paper, I have a March 8, 2019 article by Meredith Somers for MIT (Massachusetts Institute of Technology) Sloan School of Management’s Ideas Made to Matter publication (Note Links have been removed),

What did you think of the last commercial you watched? Was it funny? Confusing? Would you buy the product? You might not remember or know for certain how you felt, but increasingly, machines do. New artificial intelligence technologies are learning and recognizing human emotions, and using that knowledge to improve everything from marketing campaigns to health care.

These technologies are referred to as “emotion AI.” Emotion AI is a subset of artificial intelligence (the broad term for machines replicating the way humans think) that measures, understands, simulates, and reacts to human emotions. It’s also known as affective computing, or artificial emotional intelligence. The field dates back to at least 1995, when MIT Media lab professor Rosalind Picard published “Affective Computing.”

Javier Hernandez, a research scientist with the Affective Computing Group at the MIT Media Lab, explains emotion AI as a tool that allows for a much more natural interaction between humans and machines.“Think of the way you interact with other human beings; you look at their faces, you look at their body, and you change your interaction accordingly,” Hernandez said. “How can [a machine] effectively communicate information if it doesn’t know your emotional state, if it doesn’t know how you’re feeling, it doesn’t know how you’re going to respond to specific content?”

While humans might currently have the upper hand on reading emotions, machines are gaining ground using their own strengths. Machines are very good at analyzing large amounts of data, explained MIT Sloan professor Erik Brynjolfsson. They can listen to voice inflections and start to recognize when those inflections correlate with stress or anger. Machines can analyze images and pick up subtleties in micro-expressions on humans’ faces that might happen even too fast for a person to recognize.

“We have a lot of neurons in our brain for social interactions. We’re born with some of those skills, and then we learn more. It makes sense to use technology to connect to our social brains, not just our analytical brains.” Brynjolfsson said. “Just like we can understand speech and machines can communicate in speech, we also understand and communicate with humor and other kinds of emotions. And machines that can speak that language — the language of emotions — are going to have better, more effective interactions with us. It’s great that we’ve made some progress; it’s just something that wasn’t an option 20 or 30 years ago, and now it’s on the table.”

Somers describes current uses of emotion AI (I’ve selected two from her list; Note: A link has been removed),

Call centers —Technology from Cogito, a company co-founded in 2007 by MIT Sloan alumni, helps call center agents identify the moods of customers on the phone and adjust how they handle the conversation in real time. Cogito’s voice-analytics software is based on years of human behavior research to identify voice patterns.

Mental health —  In December 2018 Cogito launched a spinoff called CompanionMx, and an accompanying mental health monitoring app. The Companion app listens to someone speaking into their phone, and analyzes the speaker’s voice and phone use for signs of anxiety and mood changes.

The app improves users’ self-awareness, and can increase coping skills including steps for stress reduction. The company has worked with the Department of Veterans Affairs, the Massachusetts General Hospital, and Brigham & Women’s Hospital in Boston.

Somers’ March 8, 2019 article was an eye-opener.

Getting back to the Korean research, here’s a link to and a citation for the paper,

Research Challenges and Security Threats to AI-Driven 5G Virtual Emotion Applications Using Autonomous Vehicles, Drones, and Smart Devices by Hyunbum Kim; Jalel Ben-Othman; Lynda Mokdad; Junggab Son; Chunguo Li. IEEE Network Volume: 34 Issue: 6 November/December 2020 Page(s): 288 – 294 DOI: 10.1109/MNET.011.2000245 Date of Publication (online): 12 October 2020

This paper is behind a paywall.

Getting to be more literate than humans

Lucinda McKnight, lecturer at Deakin University, Australia, has a February 9, 2021 essay about literacy in the coming age of artificial intelligence (AI) for The Conversation (Note 1: You can also find this essay as a February 10, 2021 news item on phys.org; Note 2: Links have been removed),

Students across Australia have started the new school year using pencils, pens and keyboards to learn to write.

In workplaces, machines are also learning to write, so effectively that within a few years they may write better than humans.

Sometimes they already do, as apps like Grammarly demonstrate. Certainly, much everyday writing humans now do may soon be done by machines with artificial intelligence (AI).

The predictive text commonly used by phone and email software is a form of AI writing that countless humans use every day.

According to an industry research organisation Gartner, AI and related technology will automate production of 30% of all content found on the internet by 2022.

Some prose, poetry, reports, newsletters, opinion articles, reviews, slogans and scripts are already being written by artificial intelligence.

Literacy increasingly means and includes interacting with and critically evaluating AI.

This means our children should no longer be taught just formulaic writing. [emphasis mine] Instead, writing education should encompass skills that go beyond the capacities of artificial intelligence.

McKnight’s focus is on how Australian education should approach the coming AI writer ‘supremacy’, from her February 9, 2021 essay (Note: Links have been removed),

In 2019, the New Yorker magazine did an experiment to see if IT company OpenAI’s natural language generator GPT-2 could write an entire article in the magazine’s distinctive style. This attempt had limited success, with the generator making many errors.

But by 2020, GPT-3, the new version of the machine, trained on even more data, wrote an article for The Guardian newspaper with the headline “A robot wrote this entire article. Are you scared yet, human?”

This latest much improved generator has implications for the future of journalism, as the Elon Musk-funded OpenAI invests ever more in research and development.

AI writing is said to have voice but no soul. Human writers, as the New Yorker’s John Seabrook says, give “color, personality and emotion to writing by bending the rules”. Students, therefore, need to learn the rules and be encouraged to break them.

Creativity and co-creativity (with machines) should be fostered. Machines are trained on a finite amount of data, to predict and replicate, not to innovate in meaningful and deliberate ways.

AI cannot yet plan and does not have a purpose. Students need to hone skills in purposeful writing that achieves their communication goals.

AI is not yet as complex as the human brain. Humans detect humor and satire. They know words can have multiple and subtle meanings. Humans are capable of perception and insight; they can make advanced evaluative judgements about good and bad writing.

There are calls for humans to become expert in sophisticated forms of writing and in editing writing created by robots as vital future skills.

… OpenAI’s managers originally refused to release GPT-3, ostensibly because they were concerned about the generator being used to create fake material, such as reviews of products or election-related commentary.

AI writing bots have no conscience and may need to be eliminated by humans, as with Microsoft’s racist Twitter prototype, Tay.

Critical, compassionate and nuanced assessment of what AI produces, management and monitoring of content, and decision-making and empathy with readers are all part of the “writing” roles of a democratic future.

It’s an interesting line of thought and McKnight’s ideas about writing education could be applicable beyond Australia., assuming you accept her basic premise.

I have a few other postings here about AI and writing:

Writing and AI or is a robot writing this blog? a July 16, 2014 posting

AI (artificial intelligence) text generator, too dangerous to release? a February 18, 2019 posting

Automated science writing? a September 16, 2019 posting

It seems I have a lot of questions* about the automation of any kind of writing.

*’question’ changed to ‘questions’ on November 25, 2021.

Canada wide Science Odyssey May 1 – 16, 2021

This coming Saturday, May 1, 2021 is the start of Canada’s annual Science Odyssey (the rebranded Canada Science and Technology Week). These days the exercise is funded through the Natural Sciences and Engineering Council of Canada’s (NSERC) science promotion (PromoScience) programme.

Let’s move on to the important things: Science Odyssey runs from May 1 – 16, 2021. You can find the events listed here on the Science Odyssey website. where you will find them listed by date. (I was not able to use the filters to narrow down my searches to a geographic area or topic but perhaps your system is more up-to-date than mine.)

You can check out the @Sci_Od Twitter feed or the @OdySci hash tag for tips about events,

Science Odyssey @Sci_Od· [April 26, 2021] Marine invertebrates are getting a close-up on May 5th for #OdySci with @MaritimeMusBC!

Maritime Museum BC @MaritimeMusBC · 1h Marine invertebrates are getting a close-up on May 5th at 10 AM PDT for @Sci_Od. Join @Ocean_Networks for a virtual presentation with MMBC and friends from @BamfieldMSC @FisheriesTrust and @SalishSeaCentre Register for FREE: http://sciod.ca/event/2606/ #KnowTheOcean #MuseumAtHome

Science Rendezvous on May 8, 2021 (part of Science Odyssey)

This year, Science Rendezvous, an annual family festival, is being held on Saturday, May 8, 2021. Here’s a description of this year’s event from the About page,

Science Rendezvous will STEAM Green Saturday, May 8, 2021, and you are invited to the first ever virtual Science Chase.  Race between event sites across the country, answer STEAM challenges, learn about Canadian research and innovations along with the art in Science, and collect points for the national Science Chase leaderboard.  This FREE kick-off festival for Science Odyssey week will be the most fun your family will have with science all year!

In typical years, Science Rendezvous takes science, technology, engineering, art, and math (STEAM) research and innovation out of the lab and onto the street in true festival style for you to discover and experience. Stage shows, robotics, virtual reality, INVENTours, large-scales experiments and demonstrations, science buskers and Science Chase races are designed to delight and excite the young and the young at heart. Hands on experiments, make-and-take projects, and demonstrations will allow you and your family to participate, and really get in the action. Slime, liquid nitrogen ice-cream, fire tornadoes, walking on water, and explosions are some of our favourite activities! We have been busy this year reimagining these activities in a virtual way to keep us all safe.

Science Rendezvous is unique because it is created by scientists and innovators, and the next generation of STEAM students, the people who are the most passionate about STEAM.  We work with Canada’s top research institutes to present a coast-to-coast open house and festival that is FREE for everyone. With over 300 events across 30 cities and 1000’s of mind-blowing activities, Science Rendezvous is Canada’s largest celebration of the amazing feats of science and engineering happening right here at home.

This SATURDAY, MAY 8th 2021 may look a little different due to COVID-19. We are working with Canada’s greatest innovators, researchers, engineers, and scientists from 285 partner organizations to develop some very exciting events~ From the physics of rock and roll to the chemistry of ice-cream, Science Rendezvous has something for everyone!

As for the inspirational video on the Science Rendezvous About page, I had a flashback to a time when Canadian items of interest on television or Canadian educational movies shown in class were narrated by a man with an English accent or a man with a Canadian dainty accent. From the Canadian English entry on Wikipedia,

Historically, Canadian English included a class-based sociolect known as Canadian dainty.[33] Treated as a marker of upper-class prestige in the 19th and early 20th centuries, Canadian dainty was marked by the use of some features of British English pronunciation, resulting in an accent similar, but not identical, to the Mid-Atlantic accent known in the United States.[33] This accent faded in prominence following World War II, when it became stigmatized as pretentious, and is now almost never heard in modern Canadian life outside of archival recordings used in film, television or radio documentaries. [emphasis mine][33]

Getting back to the events, here’s the Science Rendezvous website where you can find this list of virtual events being held from now to May 14, 2021. BTW, I found this listing easier to navigate and more informative than the one on the Science Odyssey website.

Council of Canadian Academies and its expert panel for the AI for Science and Engineering project

There seems to be an explosion (metaphorically and only by Canadian standards) of interest in public perceptions/engagement/awareness of artificial intelligence (see my March 29, 2021 posting “Canada launches its AI dialogues” and these dialogues run until April 30, 2021 plus there’s this April 6, 2021 posting “UNESCO’s Call for Proposals to highlight blind spots in AI Development open ’til May 2, 2021” which was launched in cooperation with Mila-Québec Artificial Intelligence Institute).

Now there’s this, in a March 31, 2020 Council of Canadian Academies (CCA) news release, four new projects were announced. (Admittedly these are not ‘public engagement’ exercises as such but the reports are publicly available and utilized by policymakers.) These are the two projects of most interest to me,

Public Safety in the Digital Age

Information and communications technologies have profoundly changed almost every aspect of life and business in the last two decades. While the digital revolution has brought about many positive changes, it has also created opportunities for criminal organizations and malicious actors to target individuals, businesses, and systems.

This assessment will examine promising practices that could help to address threats to public safety related to the use of digital technologies while respecting human rights and privacy.

Sponsor: Public Safety Canada

AI for Science and Engineering

The use of artificial intelligence (AI) and machine learning in science and engineering has the potential to radically transform the nature of scientific inquiry and discovery and produce a wide range of social and economic benefits for Canadians. But, the adoption of these technologies also presents a number of potential challenges and risks.

This assessment will examine the legal/regulatory, ethical, policy and social challenges related to the use of AI technologies in scientific research and discovery.

Sponsor: National Research Council Canada [NRC] (co-sponsors: CIFAR [Canadian Institute for Advanced Research], CIHR [Canadian Institutes of Health Research], NSERC [Natural Sciences and Engineering Research Council], and SSHRC [Social Sciences and Humanities Research Council])

For today’s posting the focus will be on the AI project, specifically, the April 19, 2021 CCA news release announcing the project’s expert panel,

The Council of Canadian Academies (CCA) has formed an Expert Panel to examine a broad range of factors related to the use of artificial intelligence (AI) technologies in scientific research and discovery in Canada. Teresa Scassa, SJD, Canada Research Chair in Information Law and Policy at the University of Ottawa, will serve as Chair of the Panel.  

“AI and machine learning may drastically change the fields of science and engineering by accelerating research and discovery,” said Dr. Scassa. “But these technologies also present challenges and risks. A better understanding of the implications of the use of AI in scientific research will help to inform decision-making in this area and I look forward to undertaking this assessment with my colleagues.”

As Chair, Dr. Scassa will lead a multidisciplinary group with extensive expertise in law, policy, ethics, philosophy, sociology, and AI technology. The Panel will answer the following question:

What are the legal/regulatory, ethical, policy and social challenges associated with deploying AI technologies to enable scientific/engineering research design and discovery in Canada?

“We’re delighted that Dr. Scassa, with her extensive experience in AI, the law and data governance, has taken on the role of Chair,” said Eric M. Meslin, PhD, FRSC, FCAHS, President and CEO of the CCA. “I anticipate the work of this outstanding panel will inform policy decisions about the development, regulation and adoption of AI technologies in scientific research, to the benefit of Canada.”

The CCA was asked by the National Research Council of Canada (NRC), along with co-sponsors CIFAR, CIHR, NSERC, and SSHRC, to address the question. More information can be found here.

The Expert Panel on AI for Science and Engineering:

Teresa Scassa (Chair), SJD, Canada Research Chair in Information Law and Policy, University of Ottawa, Faculty of Law (Ottawa, ON)

Julien Billot, CEO, Scale AI (Montreal, QC)

Wendy Hui Kyong Chun, Canada 150 Research Chair in New Media and Professor of Communication, Simon Fraser University (Burnaby, BC)

Marc Antoine Dilhac, Professor (Philosophy), University of Montreal; Director of Ethics and Politics, Centre for Ethics (Montréal, QC)

B. Courtney Doagoo, AI and Society Fellow, Centre for Law, Technology and Society, University of Ottawa; Senior Manager, Risk Consulting Practice, KPMG Canada (Ottawa, ON)

Abhishek Gupta, Founder and Principal Researcher, Montreal AI Ethics Institute (Montréal, QC)

Richard Isnor, Associate Vice President, Research and Graduate Studies, St. Francis Xavier University (Antigonish, NS)

Ross D. King, Professor, Chalmers University of Technology (Göteborg, Sweden)

Sabina Leonelli, Professor of Philosophy and History of Science, University of Exeter (Exeter, United Kingdom)

Raymond J. Spiteri, Professor, Department of Computer Science, University of Saskatchewan (Saskatoon, SK)

Who is the expert panel?

Putting together a Canadian panel is an interesting problem especially so when you’re trying to find people of expertise who can also represent various viewpoints both professionally and regionally. Then, there are gender, racial, linguistic, urban/rural, and ethnic considerations.

Statistics

Eight of the panelists could be said to be representing various regions of Canada. Five of those eight panelists are based in central Canada, specifically, Ontario (Ottawa) or Québec (Montréal). The sixth panelist is based in Atlantic Canada (Nova Scotia), the seventh panelist is based in the Prairies (Saskatchewan), and the eighth panelist is based in western Canada, (Vancouver, British Columbia).

The two panelists bringing an international perspective to this project are both based in Europe, specifically, Sweden and the UK.

(sigh) It would be good to have representation from another part of the world. Asia springs to mind as researchers in that region are very advanced in their AI research and applications meaning that their experts and ethicists are likely to have valuable insights.

Four of the ten panelists are women, which is closer to equal representation than some of the other CCA panels I’ve looked at.

As for Indigenous and BIPOC representation, unless one or more of the panelists chooses to self-identify in that fashion, I cannot make any comments. It should be noted that more than one expert panelist focuses on social justice and/or bias in algorithms.

Network of relationships

As you can see, the CCA descriptions for the individual members of the expert panel are a little brief. So, I did a little digging and In my searches, I noticed what seems to be a pattern of relationships among some of these experts. In particular, take note of the Canadian Institute for Advanced Research (CIFAR) and the AI Advisory Council of the Government of Canada.

Individual panelists

Teresa Scassa (Ontario) whose SJD designation signifies a research doctorate in law chairs this panel. Offhand, I can recall only one or two other panels being chaired by women of the 10 or so I’ve reviewed. In addition to her profile page at the University of Ottawa, she hosts her own blog featuring posts such as “How Might Bill C-11 Affect the Outcome of a Clearview AI-type Complaint?” She writes clearly (I didn’t seen any jargon) for an audience that is somewhat informed on the topic.

Along with Dilhac, Teresa Scassa is a member of the AI Advisory Council of the Government of Canada. More about that group when you read Dilhac’s description.

Julien Billot (Québec) has provided a profile on LinkedIn and you can augment your view of M. Billot with this profile from the CreativeDestructionLab (CDL),

Mr. Billot is a member of the faculty at HEC Montréal [graduate business school of the Université de Montréal] as an adjunct professor of management and the lead for the CreativeDestructionLab (CDL) and NextAi program in Montreal.

Julien Billot has been President and Chief Executive Officer of Yellow Pages Group Corporation (Y.TO) in Montreal, Quebec. Previously, he was Executive Vice President, Head of Media and Member of the Executive Committee of Solocal Group (formerly PagesJaunes Groupe), the publicly traded and incumbent local search business in France. Earlier experience includes serving as CEO of the digital and new business group of Lagardère Active, a multimedia branch of Lagardère Group and 13 years in senior management positions at France Telecom, notably as Chief Marketing Officer for Orange, the company’s mobile subsidiary.

Mr. Billot is a graduate of École Polytechnique (Paris) and from Telecom Paris Tech. He holds a postgraduate diploma (DEA) in Industrial Economics from the University of Paris-Dauphine.

Wendy Hui Kyong Chun (British Columbia) has a profile on the Simon Fraser University (SFU) website, which provided one of the more interesting (to me personally) biographies,

Wendy Hui Kyong Chun is the Canada 150 Research Chair in New Media at Simon Fraser University, and leads the Digital Democracies Institute which was launched in 2019. The Institute aims to integrate research in the humanities and data sciences to address questions of equality and social justice in order to combat the proliferation of online “echo chambers,” abusive language, discriminatory algorithms and mis/disinformation by fostering critical and creative user practices and alternative paradigms for connection. It has four distinct research streams all led by Dr. Chun: Beyond Verification which looks at authenticity and the spread of disinformation; From Hate to Agonism, focusing on fostering democratic exchange online; Desegregating Network Neighbourhoods, combatting homophily across platforms; and Discriminating Data: Neighbourhoods, Individuals and Proxies, investigating the centrality of race, gender, class and sexuality [emphasis mine] to big data and network analytics.

I’m glad to see someone who has focused on ” … the centrality of race, gender, class and sexuality to big data and network analytics.” Even more interesting to me was this from her CV (curriculum vitae),

Professor, Department of Modern Culture and Media, Brown University, July 2010-June 2018

.•Affiliated Faculty, Multimedia & Electronic Music Experiments (MEME), Department of Music,2017.

•Affiliated Faculty, History of Art and Architecture, March 2012-

.•Graduate Field Faculty, Theatre Arts and Performance Studies, Sept 2008-.[sic]

….

[all emphases mine]

And these are some of her credentials,

Ph.D., English, Princeton University, 1999.
•Certificate, School of Criticism and Theory, Dartmouth College, Summer 1995.

M.A., English, Princeton University, 1994.

B.A.Sc., Systems Design Engineering and English, University of Waterloo, Canada, 1992.
•first class honours and a Senate Commendation for Excellence for being the first student to graduate from the School of Engineering with a double major

It’s about time the CCA started integrating some of kind of arts perspective into their projects. (Although, I can’t help wondering if this was by accident rather than by design.)

Marc Antoine Dilhac, an associate professor at l’Université de Montréal, he, like Billot, graduated from a French university, in his case, the Sorbonne. Here’s more from Dilhac’s profile on the Mila website,

Marc-Antoine Dilhac (Ph.D., Paris 1 Panthéon-Sorbonne) is a professor of ethics and political philosophy at the Université de Montréal and an associate member of Mila – Quebec Artificial Intelligence Institute. He currently holds a CIFAR [Canadian Institute for Advanced Research] Chair in AI ethics (2019-2024), and was previously Canada Research Chair in Public Ethics and Political Theory 2014-2019. He specialized in theories of democracy and social justice, as well as in questions of applied ethics. He published two books on the politics of toleration and inclusion (2013, 2014). His current research focuses on the ethical and social impacts of AI and issues of governance and institutional design, with a particular emphasis on how new technologies are changing public relations and political structures.

In 2017, he instigated the project of the Montreal Declaration for a Responsible Development of AI and chaired its scientific committee. In 2020, as director of Algora Lab, he led an international deliberation process as part of UNESCO’s consultation on its recommendation on the ethics of AI.

In 2019, he founded Algora Lab, an interdisciplinary laboratory advancing research on the ethics of AI and developing a deliberative approach to the governance of AI and digital technologies. He is co-director of Deliberation at the Observatory on the social impacts of AI and digital technologies (OBVIA), and contributes to the OECD Policy Observatory (OECD.AI) as a member of its expert network ONE.AI.

He sits on the AI Advisory Council of the Government of Canada and co-chair its Working Group on Public Awareness.

Formerly known as Mila only, Mila – Quebec Artificial Intelligence Institute is a beneficiary of the 2017 Canadian federal budget’s inception of the Pan-Canadian Artificial Intelligence Strategy, which named CIFAR as an agency that would benefit as the hub and would also distribute funds for artificial intelligence research to (mainly) three agencies: Mila in Montréal, the Vector Institute in Toronto, and the Alberta Machine Intelligence Institute (AMII; Edmonton).

Consequently, Dilhac’s involvement with CIFAR is not unexpected but when added to his presence on the AI Advisory Council of the Government of Canada and his role as co-chair of its Working Group on Public Awareness, one of the co-sponsors for this future CCA report, you get a sense of just how small the Canadian AI ethics and public awareness community is.

Add in CIFAR’s Open Dialogue: AI in Canada series (ongoing until April 30, 2021) which is being held in partnership with the AI Advisory Council of the Government of Canada (see my March 29, 2021 posting for more details about the dialogues) amongst other familiar parties and you see a web of relations so tightly interwoven that if you could produce masks from it you’d have superior COVID-19 protection to N95 masks.

These kinds of connections are understandable and I have more to say about them in my final comments.

B. Courtney Doagoo has a profile page at the University of Ottawa, which fills in a few information gaps,

As a Fellow, Dr. Doagoo develops her research on the social, economic and cultural implications of AI with a particular focus on the role of laws, norms and policies [emphasis mine]. She also notably advises Dr. Florian Martin-Bariteau, CLTS Director, in the development of a new research initiative on those topical issues, and Dr. Jason Millar in the development of the Canadian Robotics and Artificial Intelligence Ethical Design Lab (CRAiEDL).

Dr. Doagoo completed her Ph.D. in Law at the University of Ottawa in 2017. In her interdisciplinary research, she used empirical methods to learn about and describe the use of intellectual property law and norms in creative communities. Following her doctoral research, she joined the World Intellectual Property Organization’s Coordination Office in New York as a legal intern and contributed to developing the joint initiative on gender and innovation in collaboration with UNESCO and UN Women. She later joined the International Law Research Program at the Centre for International Governance Innovation as a Post-Doctoral Fellow, where she conducted research in technology and law focusing on intellectual property law, artificial intelligence and data governance.

Dr. Doagoo completed her LL.L. at the University of Ottawa, and LL.M. in Intellectual Property Law at the Benjamin N. Cardozo School of Law [a law school at Yeshiva University in New York City].  In between her academic pursuits, Dr. Doagoo has been involved with different technology start-ups, including the one she is currently leading aimed at facilitating access to legal services. She’s also an avid lover of the arts and designed a course on Arts and Cultural Heritage Law taught during her doctoral studies at the University of Ottawa, Faculty of Law.

It’s probably because I don’t know enough but this “the role of laws, norms and policies” seems bland to the point of meaningless. The rest is more informative and brings it back to the arts with Wendy Hui Kyong Chun at SFU.

Doagoo’s LinkedIn profile offers an unexpected link to this expert panel’s chairperson, Teresa Scassa (in addition to both being lawyers whose specialties are in related fields and on faculty or fellow at the University of Ottawa),

Soft-funded Research Bursary

Dr. Teresa Scassa

2014

I’m not suggesting any conspiracies; it’s simply that this is a very small community with much of it located in central and eastern Canada and possible links into the US. For example, Wendy Hui Kyong Chun, prior to her SFU appointment in December 2018, worked and studied in the eastern US for over 25 years after starting her academic career at the University of Waterloo (Ontario).

Abhishek Gupta provided me with a challenging search. His LinkedIn profile yielded some details (I’m not convinced the man sleeps), Note: I have made some formatting changes and removed the location, ‘Montréal area’ from some descriptions

Experience

Microsoft Graphic
Software Engineer II – Machine Learning
Microsoft

Jul 2018 – Present – 2 years 10 months

Machine Learning – Commercial Software Engineering team

Serves on the CSE Responsible AI Board

Founder and Principal Researcher
Montreal AI Ethics Institute

May 2018 – Present – 3 years

Institute creating tangible and practical research in the ethical, safe and inclusive development of AI. For more information, please visit https://montrealethics.ai

Visiting AI Ethics Researcher, Future of Work, International Visitor Leadership Program
U.S. Department of State

Aug 2019 – Present – 1 year 9 months

Selected to represent Canada on the future of work

Responsible AI Lead, Data Advisory Council
Northwest Commission on Colleges and Universities

Jun 2020 – Present – 11 months

Faculty Associate, Frankfurt Big Data Lab
Goethe University

Mar 2020 – Present – 1 year 2 months

Advisor for the Z-inspection project

Associate Member
LF AI Foundation

May 2020 – Present – 1 year

Author
MIT Technology Review

Sep 2020 – Present – 8 months

Founding Editorial Board Member, AI and Ethics Journal
Springer Nature

Jul 2020 – Present – 10 months

Education

McGill University Bachelor of Science (BS)Computer Science

2012 – 2015

Exhausting, eh? He also has an eponymous website and the Montreal AI Ethics Institute can found here where Gupta and his colleagues are “Democratizing AI ethics literacy.” My hat’s off to Gupta getting on an expert panel for CCA is quite an achievement for someone without the usual academic and/or industry trappings.

Richard Isnor, based in Nova Scotia and associate vice president of research & graduate studies at St. Francis Xavier University (StFX), seems to have some connection to northern Canada (see the reference to Nunavut Research Institute below); he’s certainly well connected to various federal government agencies according to his profile page,

Prior to joining StFX, he was Manager of the Atlantic Regional Office for the Natural Sciences and Engineering Research Council of Canada (NSERC), based in Moncton, NB.  Previously, he was Director of Innovation Policy and Science at the International Development Research Centre in Ottawa and also worked for three years with the National Research Council of Canada [NRC] managing Biotechnology Research Initiatives and the NRC Genomics and Health Initiative.

Richard holds a D. Phil. in Science and Technology Policy Studies from the University of Sussex, UK; a Master’s in Environmental Studies from Dalhousie University [Nova Scotia]; and a B. Sc. (Hons) in Biochemistry from Mount Allison University [New Burnswick].  His primary interest is in science policy and the public administration of research; he has worked in science and technology policy or research administrative positions for Environment Canada, Natural Resources Canada, the Privy Council Office, as well as the Nunavut Research Institute. [emphasis mine]

I don’t know what Dr. Isnor’s work is like but I’m hopeful he (along with Spiteri) will be able to provide a less ‘big city’ perspective to the proceedings.

(For those unfamiliar with Canadian cities, Montreal [three expert panelists] is the second largest city in the country, Ottawa [two expert panelists] as the capital has an outsize view of itself, Vancouver [one expert panelist] is the third or fourth largest city in the country for a total of six big city representatives out of eight Canadian expert panelists.)

Ross D. King, professor of machine intelligence at Sweden’s Chalmers University of Technology, might be best known for Adam, also known as, Robot Scientist. Here’s more about King, from his Wikipedia entry (Note: Links have been removed),

King completed a Bachelor of Science degree in Microbiology at the University of Aberdeen in 1983 and went on to study for a Master of Science degree in Computer Science at the University of Newcastle in 1985. Following this, he completed a PhD at The Turing Institute [emphasis mine] at the University of Strathclyde in 1989[3] for work on developing machine learning methods for protein structure prediction.[7]

King’s research interests are in the automation of science, drug design, AI, machine learning and synthetic biology.[8][9] He is probably best known for the Robot Scientist[4][10][11][12][13][14][15][16][17] project which has created a robot that can:

hypothesize to explain observations

devise experiments to test these hypotheses

physically run the experiments using laboratory robotics

interpret the results from the experiments

repeat the cycle as required

The Robot Scientist Wikipedia entry has this to add,

… a laboratory robot created and developed by a group of scientists including Ross King, Kenneth Whelan, Ffion Jones, Philip Reiser, Christopher Bryant, Stephen Muggleton, Douglas Kell and Steve Oliver.[2][6][7][8][9][10]

… Adam became the first machine in history to have discovered new scientific knowledge independently of its human creators.[5][17][18]

Sabina Leonelli, professor of philosophy and history of science at the University of Exeter, is the only person for whom I found a Twitter feed (@SabinaLeonelli). Here’s a bit more from her Wikipedia entry Note: Links have been removed),

Originally from Italy, Leonelli moved to the UK for a BSc degree in History, Philosophy and Social Studies of Science at University College London and a MSc degree in History and Philosophy of Science at the London School of Economics. Her doctoral research was carried out in the Netherlands at the Vrije Universiteit Amsterdam with Henk W. de Regt and Hans Radder. Before joining the Exeter faculty, she was a research officer under Mary S. Morgan at the Department of Economic History of the London School of Economics.

Leonelli is the Co-Director of the Exeter Centre for the Study of the Life Sciences (Egenis)[3] and a Turing Fellow at the Alan Turing Institute [emphases mine] in London.[4] She is also Editor-in-Chief of the international journal History and Philosophy of the Life Sciences[5] and Associate Editor for the Harvard Data Science Review.[6] She serves as External Faculty for the Konrad Lorenz Institute for Evolution and Cognition Research.[7]

Notice that Ross King and Sabina Leonelli both have links to The Alan Turing Institute (“We believe data science and artificial intelligence will change the world”), although the institute’s link to the University of Strathclyde (Scotland) where King studied seems a bit tenuous.

Do check out Leonelli’s profile at the University of Exeter as it’s comprehensive.

Raymond J. Spiteri, professor and director of the Centre for High Performance Computing, Department of Computer Science at the University of Saskatchewan, has a profile page at the university the likes of which I haven’t seen in several years perhaps due to its 2013 origins. His other university profile page can best be described as minimalist.

His Canadian Applied and Industrial Mathematics Society (CAIMS) biography page could be described as less charming (to me) than the 2013 profile but it is easier to read,

Raymond Spiteri is a Professor in the Department of Computer Science at the University of Saskatchewan. He performed his graduate work as a member of the Institute for Applied Mathematics at the University of British Columbia. He was a post-doctoral fellow at McGill University and held faculty positions at Acadia University and Dalhousie University before joining USask in 2004. He serves on the Executive Committee of the WestGrid High-Performance Computing Consortium with Compute/Calcul Canada. He was a MITACS Project Leader from 2004-2012 and served in the role of Mitacs Regional Scientific Director for the Prairie Provinces between 2008 and 2011.

Spiteri’s areas of research are numerical analysis, scientific computing, and high-performance computing. His area of specialization is the analysis and implementation of efficient time-stepping methods for differential equations. He actively collaborates with scientists, engineers, and medical experts of all flavours. He also has a long record of industry collaboration with companies such as IBM and Boeing.

Spiteri has been lifetime member of CAIMS/SCMAI since 2000. He helped co-organize the 2004 Annual Meeting at Dalhousie and served on the Cecil Graham Doctoral Dissertation Award Committee from 2005 to 2009, acting as chair from 2007. He has been an active participant in CAIMS, serving several times on the Scientific Committee for the Annual Meeting, as well as frequently attending and organizing mini-symposia. Spiteri believes it is important for applied mathematics to play a major role in the efforts to meet Canada’s most pressing societal challenges, including the sustainability of our healthcare system, our natural resources, and the environment.

A last look at Spiteri’s 2013 profile gave me this (Note: Links have been removed),

Another biographical note: I obtained my B.Sc. degree in Applied Mathematics from the University of Western Ontario [also known as, Western University] in 1990. My advisor was Dr. M.A.H. (Paddy) Nerenberg, after whom the Nerenberg Lecture Series is named. Here is an excerpt from the description, put here is his honour, as a model for the rest of us:

The Nerenberg Lecture Series is first and foremost about people and ideas. Knowledge is the true treasure of humanity, accrued and passed down through the generations. Some of it, particularly science and its language, mathematics, is closed in practice to many because of technical barriers that can only be overcome at a high price. These technical barriers form part of the remarkable fractures that have formed in our legacy of knowledge. We are so used to those fractures that they have become almost invisible to us, but they are a source of profound confusion about what is known.

The Nerenberg Lecture is named after the late Morton (Paddy) Nerenberg, a much-loved professor and researcher born on 17 March– hence his nickname. He was a Professor at Western for more than a quarter century, and a founding member of the Department of Applied Mathematics there. A successful researcher and accomplished teacher, he believed in the unity of knowledge, that scientific and mathematical ideas belong to everyone, and that they are of human importance. He regretted that they had become inaccessible to so many, and anticipated serious consequences from it. [emphases mine] The series honors his appreciation for the democracy of ideas. He died in 1993 at the age of 57.

So, we have the expert panel.

Thoughts about the panel and the report

As I’ve noted previously here and elsewhere, assembling any panels whether they’re for a single event or for a longer term project such as producing a report is no easy task. Looking at the panel, there’s some arts representation, smaller urban centres are also represented, and some of the members have experience in more than one region in Canada. I was also much encouraged by Spiteri’s acknowledgement of his advisor’s, Morton (Paddy) Nerenberg, passionate commitment to the idea that “scientific and mathematical ideas belong to everyone.”

Kudos to the Council of Canadian Academies (CCA) organizers.

That said, this looks like an exceptionally Eurocentric panel. Unusually, there’s no representation from the US unless you count Chun who has spent the majority of her career in the US with only a little over two years at Simon Fraser University on Canada’s West Coast.

There’s weakness to a strategy (none of the ten or so CCA reports I’ve reviewed here deviates from this pattern) that seems to favour international participants from Europe and/or the US (also, sometimes, Australia/New Zealand). This leaves out giant chunks of the international community and brings us dangerously close to an echo chamber.

The same problem exists regionally and with various Canadian communities, which are acknowledged more in spirit than in actuality, e.g., the North, rural, indigenous, arts, etc.

Getting back to the ‘big city’ emphsais noted earlier, two people from Ottawa and three from Montreal; half of the expert panel lives within a two hour train ride of each other. (For those who don’t know, that’s close by Canadian standards. For comparison, a train ride from Vancouver to Seattle [US] is about four hours, a short trip when compared to a 24 hour train trip to the closest large Canadian cities.)

I appreciate that it’s not a simple problem but my concern is that it’s never acknowledged by the CCA. Perhaps they could include a section in the report acknowledging the issues and how the expert panel attempted to address them , in other words, transparency. Coincidentally, transparency, which has been related to trust, have both been identified as big issues with artificial intelligence.

As for solutions, these reports get sent to external reviewers and, prior to the report, outside experts are sometimes brought in as the panel readies itself. That would be two opportunities afforded by their current processes.

Anyway, good luck with the report and I look forward to seeing it.

Uniting oil and water for a manufacturing-friendly approach to gel production

This is a newish type of gel for which a new manufacturing has been developed jointly by the US National Institute of Standards and Technology (NIST) and the University of Delaware as described in a February 11, 2021 news item on phys.org (Note: A link has been removed),

Oil and water may not mix, but adding the right nanoparticles to the recipe can convert these two immiscible fluids into an exotic gel with uses ranging from batteries to water filters to tint-changing smart windows. A new approach to creating this unusual class of soft materials could carry them out of the laboratory and into the marketplace.

Scientists at the National Institute of Standards and Technology (NIST) and the University of Delaware have found what appears to be a better way to create these gels, which have been an area of intense research focus for more than a decade. Part of their potentially broad utility is the complex set of interconnected microscopic channels that form within them, creating a spongelike structure. These channels not only offer passageways for other materials to travel through, making them useful for filtration, but also give the gel a high amount of internal surface area, a characteristic valuable for speeding up chemical reactions or as scaffolding on which living tissue can grow.

..

It seems they have great hopes for what they’ve called ‘SeedGel’, if this image is anything to go by,

Unlike other gel-creation approaches, where nanoparticles remain at the interface between the gel’s two constituent solvents (top left), the new approach concentrates nanoparticles in the interior of one of the solvents (top right), giving the resulting “SeedGel” unusual mechanical strength. The method could lead to gels that could be manufactured at industrial scales for a wide variety of potential applications. Credit: N. Hanacek / NIST

A February 10, 2021 NIST news release (also on EurekAlert), which originated the news item, delves further into the topic,

While these and other advantages make it sound like gel innovators have struck oil, their creations have not yet mixed well with the marketplace. The gels are commonly formed of two liquid solvents mingled together. As with oil and water, these solvents do not mix well, but to prevent them from completely separating, researchers add custom-designed nanoparticles that can stay at the interface between them. Carefully cooking these ingredients allows a cohesive gel to form. However, the process is demanding because custom-designing nanoparticles for each application has been difficult, and forming the gels has required carefully controlled rapid temperature change. These constraints have made it hard to create this type of gel in any more than small quantities suitable for lab experiments rather than on an industrial scale.

As described in a new Nature Communications paper, the NIST/Delaware team has found ways to sidestep many of these problems. Its novel approach forms what the researchers refer to as a “SeedGel,” an abbreviation for “solvent segregation driven gel.” Instead of designing nanoparticles to remain at the interface between the two solvents, their chosen particles concentrate within one of them. While these particles tend to repel one another, the particles’ affinity toward one of the solvents is stronger and keeps them together in the channel. Using neutron scattering tools at the NIST Center for Neutron Research (NCNR), the team unambiguously proved that it had succeeded at concentrating the nanoparticles where it wanted. 

The resulting gel could be far easier to create, as its two solvents are essentially oil and water, and its nanoparticles are silicon dioxide — essentially tiny spheres of common quartz. It also could have a variety of industrial uses. 

“Our SeedGel has great mechanical strength, it’s much easier to make, and the process is scalable to what manufacturers would need,” said Yun Liu, who is both an NCNR scientist and an affiliated full professor at the University of Delaware. “Plus it’s thermo-reversible.”

This reversibility refers to an optical property that the finished SeedGel possesses: It can switch from transparent to opaque and back again, just by changing its temperature. This property could be harnessed in smart windows that sandwich a thin layer of the gel between two panes of glass.

“This optical property could make the SeedGel useful in other light-sensitive applications as well,” said Yuyin Xi, a researcher from the University of Delaware also working at the NCNR. “They could be useful in sensors.”

Because the team’s gel-creation approach could be used with other solvent-and-nanoparticle combinations, it could become useful in filters for water purification and possibly other filtration processes depending on what type of nanoparticles are used.

Liu also said that the creation approach allows for the size of the channels within the gel to be tuned by changing the rate at which the temperature changes during the formation process, offering application designers another degree of freedom to explore.

“Ours is a generic approach working for many different nanoparticles and solvents,” he said. “It greatly extends the applications of these sorts of gels.”

Here’s a link to and a citation for the paper,

Tunable thermo-reversible bicontinuous nanoparticle gel driven by the binary solvent segregation by Yuyin Xi, Ronald S. Lankone, Li-Piin Sung & Yun Liu. Nature Communications volume 12, Article number: 910 (2021) DOI: https://doi.org/10.1038/s41467-020-20701-3 Published: 10 February 2021

This is paper is open access.

Hot nano-chisel for creating artificial bones?

If ‘chisel’ made you think of sculpting, you are correct. The researchers are alluding to the process of sculpting in their research.

Researchers were able to replicate — with sub-15 nm resolution — bone tissue structure in a biocompatible material using thermal scanning probe lithography. This method opens up unprecedented possibilities for pioneering new stem cell studies and biomedical applications. Courtesy: New York University Tandon School of Engineering

From a February 9, 2021 news item on phys.org (Note: Links have been removed),

A holy grail for orthopedic research is a method for not only creating artificial bone tissue that precisely matches the real thing, but does so in such microscopic detail that it includes tiny structures potentially important for stem cell differentiation, which is key to bone regeneration.

Researchers at the NYU [New York University] Tandon School of Engineering and New York Stem Cell Foundation Research Institute (NYSF) have taken a major step by creating the exact replica of a bone using a system that pairs biothermal imaging with a heated “nano-chisel.” In a study, “Cost and Time Effective Lithography of Reusable Millimeter Size Bone Tissue Replicas with Sub-15 nm Feature Size on a Biocompatible Polymer,” which appears in the journal Advanced Functional Materials, the investigators detail a system allowing them to sculpt, in a biocompatible material, the exact structure of the bone tissue, with features smaller than the size of a single protein—a billion times smaller than a meter. This platform, called, bio-thermal scanning probe lithography (bio-tSPL), takes a “photograph” of the bone tissue, and then uses the photograph to produce a bona-fide replica of it.

The team, led by Elisa Riedo, professor of chemical and biomolecular engineering at NYU Tandon, and Giuseppe Maria de Peppo, a Ralph Lauren Senior Principal Investigator at the NYSF, demonstrated that it is possible to scale up bio-tSPL to produce bone replicas on a size meaningful for biomedical studies and applications, at an affordable cost. These bone replicas support the growth of bone cells derived from a patient’s own stem cells, creating the possibility of pioneering new stem cell applications with broad research and therapeutic potential. This technology could revolutionize drug discovery and result in the development of better orthopedic implants and devices.

A February 8, 2021 NYU Tandon School of Engineering news release (also on EurekAlert but published February 9, 2021), which originated the news item, explains the work in further detail,

In the human body, cells live in specific environments that control their behavior and support tissue regeneration via provision of morphological and chemical signals at the molecular scale. In particular, bone stem cells are embedded in a matrix of fibers — aggregates of collagen molecules, bone proteins, and minerals. The bone hierarchical structure consists of an assembly of micro- and nano- structures, whose complexity has hindered their replication by standard fabrication methods so far.

“tSPL is a powerful nanofabrication method that my lab pioneered a few years ago, and it is at present implemented by using a commercially available instrument, the NanoFrazor,” said Riedo. “However, until today, limitations in terms of throughput and biocompatibility of the materials have prevented its use in biological research. We are very excited to have broken these barriers and to have led tSPL into the realm of biomedical applications.”

Its time- and cost-effectiveness, as well as the cell compatibility and reusability of the bone replicas, make bio-tSPL an affordable platform for the production of surfaces that perfectly reproduce any biological tissue with unprecedented precision.

“I am excited about the precision achieved using bio-tSPL. Bone-mimetic surfaces, such as the one reproduced in this study, create unique possibilities for understanding cell biology and modeling bone diseases, and for developing more advanced drug screening platforms,” said de Peppo. “As a tissue engineer, I am especially excited that this new platform could also help us create more effective orthopedic implants to treat skeletal and maxillofacial defects resulting from injury or disease.”

Here’s a link to and a citation for the paper,

Cost and Time Effective Lithography of Reusable Millimeter Size Bone Tissue Replicas With Sub‐15 nm Feature Size on A Biocompatible Polymer by Xiangyu Liu, Alessandra Zanut, Martina Sladkova‐Faure, Liyuan Xie, Marcus Weck, Xiaorui Zheng, Elisa Riedo, Giuseppe Maria de Peppo. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202008662 First published: 05 February 2021

This paper is behind a paywall.

Graphene and its magnetism

I have two news bits about graphene and magnetism. If I understood what I was reading, one is more focused on applications and the other is focused on further establishing the field of valleytronics.

University of Cambridge and superconductivity

A February 8, 2021 news item on Nanowerk announces ‘magnetic work’ from the University of Cambridge (Note: A link has been removed),

The researchers, led by the University of Cambridge, were able to control the conductivity and magnetism of iron thiophosphate (FePS3), a two-dimensional material which undergoes a transition from an insulator to a metal when compressed. This class of magnetic materials offers new routes to understanding the physics of new magnetic states and superconductivity.

Using new high-pressure techniques, the researchers have shown what happens to magnetic graphene during the transition from insulator to conductor and into its unconventional metallic state, realised only under ultra-high pressure conditions. When the material becomes metallic, it remains magnetic, which is contrary to previous results and provides clues as to how the electrical conduction in the metallic phase works. The newly discovered high-pressure magnetic phase likely forms a precursor to superconductivity so understanding its mechanisms is vital.

Their results, published in the journal Physical Review X, also suggest a way that new materials could be engineered to have combined conduction and magnetic properties, which could be useful in the development of new technologies such as spintronics, which could transform the way in which computers process information.

A February 8, 2021 University of Cambridge press release (also on EurekAlert), which originated the news item, delves into the topic,

Properties of matter can alter dramatically with changing dimensionality. For example, graphene, carbon nanotubes, graphite and diamond are all made of carbon atoms, but have very different properties due to their different structure and dimensionality.

“But imagine if you were also able to change all of these properties by adding magnetism,” said first author Dr Matthew Coak, who is jointly based at Cambridge’s Cavendish Laboratory and the University of Warwick. “A material which could be mechanically flexible and form a new kind of circuit to store information and perform computation. This is why these materials are so interesting, and because they drastically change their properties when put under pressure so we can control their behaviour.”

In a previous study by Sebastian Haines of Cambridge’s Cavendish Laboratory and the Department of Earth Sciences, researchers established that the material becomes a metal at high pressure, and outlined how the crystal structure and arrangement of atoms in the layers of this 2D material change through the transition.

“The missing piece has remained however, the magnetism,” said Coak. “With no experimental techniques able to probe the signatures of magnetism in this material at pressures this high, our international team had to develop and test our own new techniques to make it possible.”

The researchers used new techniques to measure the magnetic structure up to record-breaking high pressures, using specially designed diamond anvils and neutrons to act as the probe of magnetism. They were then able to follow the evolution of the magnetism into the metallic state.

“To our surprise, we found that the magnetism survives and is in some ways strengthened,” co-author Dr Siddharth Saxena, group leader at the Cavendish Laboratory. “This is unexpected, as the newly-freely-roaming electrons in a newly conducting material can no longer be locked to their parent iron atoms, generating magnetic moments there – unless the conduction is coming from an unexpected source.”

In their previous paper, the researchers showed these electrons were ‘frozen’ in a sense. But when they made them flow or move, they started interacting more and more. The magnetism survives, but gets modified into new forms, giving rise to new quantum properties in a new type of magnetic metal.

How a material behaves, whether conductor or insulator, is mostly based on how the electrons, or charge, move around. However, the ‘spin’ of the electrons has been shown to be the source of magnetism. Spin makes electrons behave a bit like tiny bar magnets and point a certain way. Magnetism from the arrangement of electron spins is used in most memory devices: harnessing and controlling it is important for developing new technologies such as spintronics, which could transform the way in which computers process information.

“The combination of the two, the charge and the spin, is key to how this material behaves,” said co-author Dr David Jarvis from the Institut Laue-Langevin, France, who carried out this work as the basis of his PhD studies at the Cavendish Laboratory. “Finding this sort of quantum multi-functionality is another leap forward in the study of these materials.”

“We don’t know exactly what’s happening at the quantum level, but at the same time, we can manipulate it,” said Saxena. “It’s like those famous ‘unknown unknowns’: we’ve opened up a new door to properties of quantum information, but we don’t yet know what those properties might be.”

There are more potential chemical compounds to synthesise than could ever be fully explored and characterised. But by carefully selecting and tuning materials with special properties, it is possible to show the way towards the creation of compounds and systems, but without having to apply huge amounts of pressure.

Additionally, gaining fundamental understanding of phenomena such as low-dimensional magnetism and superconductivity allows researchers to make the next leaps in materials science and engineering, with particular potential in energy efficiency, generation and storage.

As for the case of magnetic graphene, the researchers next plan to continue the search for superconductivity within this unique material. “Now that we have some idea what happens to this material at high pressure, we can make some predictions about what might happen if we try to tune its properties through adding free electrons by compressing it further,” said Coak.

“The thing we’re chasing is superconductivity,” said Saxena. “If we can find a type of superconductivity that’s related to magnetism in a two-dimensional material, it could give us a shot at solving a problem that’s gone back decades.”

The citation and link to the paper are at the end of this blog posting.

Aalto University’s valleytronics

Further north in Finland, researchers at Aalto University make some advances applicable to the field of valleytronics, from a February 5, 2021 Aalto University press release (also on EurekAltert but published February 8, 2021),

Electrons in materials have a property known as ‘spin’, which is responsible for a variety of properties, the most well-known of which is magnetism. Permanent magnets, like the ones used for refrigerator doors, have all the spins in their electrons aligned in the same direction. Scientists refer to this behaviour as ferromagnetism, and the research field of trying to manipulate spin as spintronics.

Down in the quantum world, spins can arrange in more exotic ways, giving rise to frustrated states and entangled magnets. Interestingly, a property similar to spin, known as “the valley,” appears in graphene materials. This unique feature has given rise to the field of valleytronics, which aims to exploit the valley property for emergent physics and information processing, very much like spintronics relies on pure spin physics.

‘Valleytronics would potentially allow encoding information in the quantum valley degree of freedom, similar to how electronics do it with charge and spintronics with the spin.’ Explains Professor Jose Lado, from Aalto’s Department of applied physics, and one of the authors of the work. ‘What’s more, valleytronic devices would offer a dramatic increase in the processing speeds in comparison with electronics, and with much higher stability towards magnetic field noise in comparison with spintronic devices.’

Structures made of rotated, ultra-thin materials provide a rich solid-state platform for designing novel devices. In particular, slightly twisted graphene layers have recently been shown to have exciting unconventional properties, that can ultimately lead to a new family of materials for quantum technologies. These unconventional states which are already being explored depend on electrical charge or spin. The open question is if the valley can also lead to its own family of exciting states.

Making materials for valleytronics

For this goal, it turns out that conventional ferromagnets play a vital role, pushing graphene to the realms of valley physics. In a recent work, Ph.D. student Tobias Wolf, together with Profs. Oded Zilberberg and Gianni Blatter at ETH Zurich, and Prof. Jose Lado at Aalto University, showed a new direction for correlated physics in magnetic van der Waals materials.

The team showed that sandwiching two slightly rotated layers of graphene between a ferromagnetic insulator provides a unique setting for new electronic states. The combination of ferromagnets, graphene’s twist engineering, and relativistic effects force the “valley” property to dominate the electrons behaviour in the material. In particular, the researchers showed how these valley-only states can be tuned electrically, providing a materials platform in which valley-only states can be generated. Building on top of the recent breakthrough in spintronics and van der Waals materials, valley physics in magnetic twisted van der Waals multilayers opens the door to the new realm of correlated twisted valleytronics.

‘Demonstrating these states represents the starting point towards new exotic entangled valley states.’ Said Professor Lado, ‘Ultimately, engineering these valley states can allow realizing quantum entangled valley liquids and fractional quantum valley Hall states. These two exotic states of matter have not been found in nature yet, and would open exciting possibilities towards a potentially new graphene-based platform for topological quantum computing.’

Citations and links

Here’s a link to and a citation for the University of Cambridge research,

Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3 by Matthew J. Coak, David M. Jarvis, Hayrullo Hamidov, Andrew R. Wildes, Joseph A. M. Paddison, Cheng Liu, Charles R. S. Haines, Ngoc T. Dang, Sergey E. Kichanov, Boris N. Savenko, Sungmin Lee, Marie Kratochvílová, Stefan Klotz, Thomas C. Hansen, Denis P. Kozlenko, Je-Geun Park, and Siddharth S. Saxena. Phys. Rev. X 11, 011024 DOI: https://doi.org/10.1103/PhysRevX.11.011024 Published 5 February 2021

This article appears to be open access.

Here’s a link to and a citation for the Aalto University research,

Spontaneous Valley Spirals in Magnetically Encapsulated Twisted Bilayer Graphene by Tobias M. R. Wolf, Oded Zilberberg, Gianni Blatter, and Jose L. Lado. Phys. Rev. Lett. 126, 056803 DOI: https://doi.org/10.1103/PhysRevLett.126.056803 Published 4 February 2021

This paper is behind a paywall.

AI (Audeo) uses visual cues to play the right music

A February 4, 2021 news item on ScienceDaily highlights research from the University of Washington (state) about artificial intelligence, piano playing, and Audeo,

Anyone who’s been to a concert knows that something magical happens between the performers and their instruments. It transforms music from being just “notes on a page” to a satisfying experience.

A University of Washington team wondered if artificial intelligence could recreate that delight using only visual cues — a silent, top-down video of someone playing the piano. The researchers used machine learning to create a system, called Audeo, that creates audio from silent piano performances. When the group tested the music Audeo created with music-recognition apps, such as SoundHound, the apps correctly identified the piece Audeo played about 86% of the time. For comparison, these apps identified the piece in the audio tracks from the source videos 93% of the time.

The researchers presented Audeo Dec. 8 [2020] at the NeurIPS 2020 conference.

A February 4, 2021 University of Washington news release (also on EurekAlert), which originated the news item, offers more detail,

“To create music that sounds like it could be played in a musical performance was previously believed to be impossible,” said senior author Eli Shlizerman, an assistant professor in both the applied mathematics and the electrical and computer engineering departments. “An algorithm needs to figure out the cues, or ‘features,’ in the video frames that are related to generating music, and it needs to ‘imagine’ the sound that’s happening in between the video frames. It requires a system that is both precise and imaginative. The fact that we achieved music that sounded pretty good was a surprise.”

Audeo uses a series of steps to decode what’s happening in the video and then translate it into music. First, it has to detect which keys are pressed in each video frame to create a diagram over time. Then it needs to translate that diagram into something that a music synthesizer would actually recognize as a sound a piano would make. This second step cleans up the data and adds in more information, such as how strongly each key is pressed and for how long.

“If we attempt to synthesize music from the first step alone, we would find the quality of the music to be unsatisfactory,” Shlizerman said. “The second step is like how a teacher goes over a student composer’s music and helps enhance it.”

The researchers trained and tested the system using YouTube videos of the pianist Paul Barton. The training consisted of about 172,000 video frames of Barton playing music from well-known classical composers, such as Bach and Mozart. Then they tested Audeo with almost 19,000 frames of Barton playing different music from these composers and others, such as Scott Joplin.

Once Audeo has generated a transcript of the music, it’s time to give it to a synthesizer that can translate it into sound. Every synthesizer will make the music sound a little different — this is similar to changing the “instrument” setting on an electric keyboard. For this study, the researchers used two different synthesizers.

“Fluidsynth makes synthesizer piano sounds that we are familiar with. These are somewhat mechanical-sounding but pretty accurate,” Shlizerman said. “We also used PerfNet, a new AI synthesizer that generates richer and more expressive music. But it also generates more noise.”

Audeo was trained and tested only on Paul Barton’s piano videos. Future research is needed to see how well it could transcribe music for any musician or piano, Shlizerman said.

“The goal of this study was to see if artificial intelligence could generate music that was played by a pianist in a video recording — though we were not aiming to replicate Paul Barton because he is such a virtuoso,” Shlizerman said. “We hope that our study enables novel ways to interact with music. For example, one future application is that Audeo can be extended to a virtual piano with a camera recording just a person’s hands. Also, by placing a camera on top of a real piano, Audeo could potentially assist in new ways of teaching students how to play.”

The researchers have created videos featuring the live pianist and the AI pianist, which you will find embedded in the February 4, 2021 University of Washington news release.

Here’s a link to and a citation for the researchers’ paper,

Audeo: Generating music just from a video of pianist movements by Kun Su, Xiulong Liu, and E. Shlizerman. http://faculty.washington.edu/shlizee/audeo/?_ga=2.11972724.1912597934.1613414721-714686724.1612482256 (I had some difficulty creating a link and ended up with this unwieldy open access (?) version.)

The paper also appears in the proceedings for Advances in Neural Information Processing Systems 33 (NeurIPS 2020) Edited by: H. Larochelle and M. Ranzato and R. Hadsell and M.F. Balcan and H. Lin. I had to scroll through many papers and all I found for ‘Audeo’ was an abstract.