Monthly Archives: July 2022

An ‘artificial brain’ and life-long learning

Talk of artificial brains (also known as, brainlike computing or neuromorphic computing) usually turns to memory fairly quickly. This February 3, 2022 news item on ScienceDaily does too although the focus is on how memory and forgetting affect the ability to learn,

When the human brain learns something new, it adapts. But when artificial intelligence learns something new, it tends to forget information it already learned.

As companies use more and more data to improve how AI recognizes images, learns languages and carries out other complex tasks, a paper publishing in Science this week shows a way that computer chips could dynamically rewire themselves to take in new data like the brain does, helping AI to keep learning over time.

“The brains of living beings can continuously learn throughout their lifespan. We have now created an artificial platform for machines to learn throughout their lifespan,” said Shriram Ramanathan, a professor in Purdue University’s [Indiana, US] School of Materials Engineering who specializes in discovering how materials could mimic the brain to improve computing.

Unlike the brain, which constantly forms new connections between neurons to enable learning, the circuits on a computer chip don’t change. A circuit that a machine has been using for years isn’t any different than the circuit that was originally built for the machine in a factory.

This is a problem for making AI more portable, such as for autonomous vehicles or robots in space that would have to make decisions on their own in isolated environments. If AI could be embedded directly into hardware rather than just running on software as AI typically does, these machines would be able to operate more efficiently.

A February 3, 2022 Purdue University news release (also on EurekAlert), which originated the news item, provides more technical detail about the work (Note: Links have been removed),

In this study, Ramanathan and his team built a new piece of hardware that can be reprogrammed on demand through electrical pulses. Ramanathan believes that this adaptability would allow the device to take on all of the functions that are necessary to build a brain-inspired computer.

“If we want to build a computer or a machine that is inspired by the brain, then correspondingly, we want to have the ability to continuously program, reprogram and change the chip,” Ramanathan said.

Toward building a brain in chip form

The hardware is a small, rectangular device made of a material called perovskite nickelate,  which is very sensitive to hydrogen. Applying electrical pulses at different voltages allows the device to shuffle a concentration of hydrogen ions in a matter of nanoseconds, creating states that the researchers found could be mapped out to corresponding functions in the brain.

When the device has more hydrogen near its center, for example, it can act as a neuron, a single nerve cell. With less hydrogen at that location, the device serves as a synapse, a connection between neurons, which is what the brain uses to store memory in complex neural circuits.

Through simulations of the experimental data, the Purdue team’s collaborators at Santa Clara University and Portland State University showed that the internal physics of this device creates a dynamic structure for an artificial neural network that is able to more efficiently recognize electrocardiogram patterns and digits compared to static networks. This neural network uses “reservoir computing,” which explains how different parts of a brain communicate and transfer information.

Researchers from The Pennsylvania State University also demonstrated in this study that as new problems are presented, a dynamic network can “pick and choose” which circuits are the best fit for addressing those problems.

Since the team was able to build the device using standard semiconductor-compatible fabrication techniques and operate the device at room temperature, Ramanathan believes that this technique can be readily adopted by the semiconductor industry.

“We demonstrated that this device is very robust,” said Michael Park, a Purdue Ph.D. student in materials engineering. “After programming the device over a million cycles, the reconfiguration of all functions is remarkably reproducible.”

The researchers are working to demonstrate these concepts on large-scale test chips that would be used to build a brain-inspired computer.

Experiments at Purdue were conducted at the FLEX Lab and Birck Nanotechnology Center of Purdue’s Discovery Park. The team’s collaborators at Argonne National Laboratory, the University of Illinois, Brookhaven National Laboratory and the University of Georgia conducted measurements of the device’s properties.

Here’s a link to and a citation for the paper,

Reconfigurable perovskite nickelate electronics for artificial intelligence by Hai-Tian Zhang, Tae Joon Park, A. N. M. Nafiul Islam, Dat S. J. Tran, Sukriti Manna, Qi Wang, Sandip Mondal, Haoming Yu, Suvo Banik, Shaobo Cheng, Hua Zhou, Sampath Gamage, Sayantan Mahapatra, Yimei Zhu, Yohannes Abate, Nan Jiang, Subramanian K. R. S. Sankaranarayanan, Abhronil Sengupta, Christof Teuscher, Shriram Ramanathan. Science • 3 Feb 2022 • Vol 375, Issue 6580 • pp. 533-539 • DOI: 10.1126/science.abj7943

This paper is behind a paywall.

When poetry feels like colour, posture or birdsong plus some particle fiction

A June 10, 2022 Tallinn University (Estonia) press release (also on EurekAlert but published on June 16, 2022 on behalf of the Estonian Research Council) provides information on a fascinating PhD thesis examining poetry in a very new way,

In addition to searching for the meaning of poems, they can also often be described through the emotions that the reader feels while reading them. Kristiine Kikas, a doctoral student at the School of Humanities of Tallinn University, studied which other sensations arise whilst reading poetry and how they affect the understanding of poems.

The aim of the doctoral thesis was to study the palpability of language [emphasis mine], i.e. sensory saturation, which has not found sufficient analysis and application so far. “In my research, I see reading as an impersonal process, meaning the sensations that arise do not seem to belong to either the reader or the poetry, but to both at the same time,” Kikas describes the perspective of her thesis.

In general, the language of poetry is studied metaphorically, in order to try to understand what a word means either directly or figuratively. A different perspective called “affective perspective” usually studies the effects of pre-linguistic impulses or impulses not related to the meaning of the word on the reader. However, Kikas viewed language as a simultaneous proposition and flow of consciousness, i.e. a discussion moving from one statement to another as well as connections that seem to occur intuitively while reading. She sought to identify ways to approach verbal language, that is considered to trigger analytical thinking in particular, in a way that would help open up sensory saturation and put their observation in poetic analysis at the forefront along with other modes of studying poetry. To achieve her goals, Kikas applied Gilles Deleuze’s method of radical empiricism and compared several other approaches with it: semiotics, biology, anthropology, modern psychoanalysis and cognitive sciences. [emphases mine]

Kikas describes reading in her doctoral thesis as a constant presence in verbal language, which is sometimes more and sometimes less pronounced. This type of presence can be felt like colour, posture or birdsong [emphasis mine]. “Following the neuroscientific origins of metaphors, I used the human organism’s tendency to perceive language at the sensory-motor level in my close reading to help replay it using body memory. This trait allows us to physically experience the words we read,” explains Kikas. According to her, the sensations stored in the body evoked by words can be considered the oneness of the reader and the words, or the reader’s becoming the words. Kikas emphasises that this can only happen if the multiplicity of sensations and meanings that arise during reading are recognised.

“Although the study showed that the saturations associated with verbal language cannot be linked to a broader literary discourse without representational and analytical thinking, the conclusion is that noticing and acknowledging them is important in both experiencing and interpreting the poem,” summarises Kikas her doctoral thesis. As her research was only the first attempt in examining sensations in poetry, Kikas hopes to provide material for further discussion. Above all, she encourages readers in their attempts to understand poetry to notice and trust even the slightest sensations and impulses triggered while reading, as these are the beginning of even the most abstract meaning.

I was able to track down the thesis ‘Uncommonness in the Commonplace: Reading for Senseation in Poetry‘ to here where the title is in English but the rest of the entry is in Estonian. Unfortunately, it’s not possible to download the thesis, which I believe is written in English.

Particle fiction

This is a somewhat older thesis and is only loosely related in that it is about literary matters and there’s a science aspect to it too. Tania Hershman, “poet, writer, teacher and editor based in Manchester, UK,” adds this from the about page on her eponymous website, Note: I have moved the paragraphs into a different order,

… After making a living for 13 years as a science journalist, writing for publications such as WIRED and NewScientist, I gave it all up to write fiction, later also poetry and hybrid pieces, and am now based in Manchester in the north of England. I have a first degree in Maths and Physics, a diploma in journalism, an MSc in Philosophy of Science, an MA and a PhD in Creative Writing.

My hybrid book, And What If We Were All Allowed to Disappear, was published in a limited edition by Guillemot Press in March 2020. It is now sold out but can be read in electronic form as part of my PhD in Creative Writing, ‘Particle fictions: an experimental approach to creative writing and reading informed by particle physics’, available to be downloaded from Bath Spa University here: http://researchspace.bathspa.ac.uk/10693/.

You can download her PhD thesis (Particle fictions: an experimental approach to creative writing and reading informed by particle physics). This abstract offers a few highlights,

This two-part document comprises the work submitted for Tania Hershman’s practice-based PhD in Creative Writing in answer to her primary research question: Can particle fiction and particle physics interrogate each other? Her secondary research question examined the larger question of wholeness and wholes versus parts. The first of the two elements of the PhD is a book-length creative work of what Hershman has defined as “particle fiction” – a book made of parts which works as a whole – entitled ‘And What If We Were All Allowed to Disappear’: an experimental, hybrid work comprised of prose, poetry, elements that morph between the two forms, and images, and takes concepts from particle physics as inspiration. The second element of this PhD, the contextualising research, entitled ‘And What If We Were All Allowed To Separate And Come Together’, which is written in the style of fictocriticism, provides an overview of particle physics and the many other topics relating to wholeness and wholes versus parts – from philosophy to postmodernism and archaeology – that Hershman investigated in the course of her project. This essay also details the “experiments” Hershman carried out on works which she defined as particle fictions, in order to examine whether it was possible to generalise and formulate a “Standard Model of Particle Fiction” inspired by a the Standard Model of Particle Physics, and to inform the creation of her own work of particle fiction.

Enjoy!

STEM (science, technology, engineering and math) brings life to the global hit television series “The Walking Dead” and a Canadian AI initiative for women and diversity

I stumbled across this June 8, 2022 AMC Networks news release in the last place I was expecting (i.e., a self-described global entertainment company’s website) to see a STEM (science, technology, engineering, and mathematics) announcement,

AMC NETWORKS CONTENT ROOM TEAMS WITH THE AD COUNCIL TO EMPOWER GIRLS IN STEM, FEATURING “THE WALKING DEAD”

AMC Networks Content Room and the Ad Council, a non-profit and leading producer of social impact campaigns for 80 years, announced today a series of new public service advertisements (PSAs) that will highlight the power of girls in STEM (science, technology, engineering and math) against the backdrop of the global hit series “The Walking Dead.”  In the spots, behind-the-scenes talent of the popular franchise, including Director Aisha Tyler, Costume Designer Vera Chow and Art Director Jasmine Garnet, showcase how STEM is used to bring the post-apocalyptic world of “The Walking Dead” to life on screen.  Created by AMC Networks Content Room, the PSAs are part of the Ad Council’s national She Can STEM campaign, which encourages girls, trans youth and non-binary youth around the country to get excited about and interested in STEM.

The new creative consists of TV spots and custom videos created specifically for TikTok and Instagram.  The spots also feature Gitanjali Rao, a 16-year-old scientist, inventor and activist, interviewing Tyler, Chow and Garnet discussing how they and their teams use STEM in the production of “The Walking Dead.”  Using before and after visuals, each piece highlights the unique and unexpected uses of STEM in the making of the series.  In addition to being part of the larger Ad Council campaign, the spots will be available on “The Walking Dead’s” social media platforms, including Facebook, Instagram, Twitter and YouTube pages, and across AMC Networks linear channels and digital platforms.

PSA:   https://youtu.be/V20HO-tUO18

Social: https://youtu.be/LnDwmZrx6lI

Said Kim Granito, EVP of AMC Networks Content Room: “We are thrilled to partner with the Ad Council to inspire young girls in STEM through the unexpected backdrop of ‘The Walking Dead.’  Over the last 11 years, this universe has been created by an array of insanely talented women that utilize STEM every day in their roles.  This campaign will broaden perceptions of STEM beyond the stereotypes of lab coats and beakers, and hopefully inspire the next generation of talented women in STEM.  Aisha Tyler, Vera Chow and Jasmine Garnet were a dream to work with and their shared enthusiasm for this mission is inspiring.”

“Careers in STEM are varied and can touch all aspects of our lives. We are proud to partner with AMC Networks Content Room on this latest work for the She Can STEM campaign. With it, we hope to inspire young girls, non-binary youth, and trans youth to recognize that their passion for STEM can impact countless industries – including the entertainment industry,” said Michelle Hillman, Chief Campaign Development Officer, Ad Council.

Women make up nearly half of the total college-educated workforce in the U.S., but they only constitute 27% of the STEM workforce, according to the U.S. Census Bureau. Research shows that many girls lose interest in STEM as early as middle school, and this path continues through high school and college, ultimately leading to an underrepresentation of women in STEM careers.  She Can STEM aims to dismantle the intimidating perceived barrier of STEM fields by showing girls, non-binary youth, and trans youth how fun, messy, diverse and accessible STEM can be, encouraging them to dive in, no matter where they are in their STEM journey.

Since the launch of She Can STEM in September 2018, the campaign has been supported by a variety of corporate, non-profit and media partners. The current funder of the campaign is IF/THEN, an initiative of Lyda Hill Philanthropies.  Non-profit partners include Black Girls Code, ChickTech, Girl Scouts of the USA, Girls Inc., Girls Who Code, National Center for Women & Information Technology, The New York Academy of Sciences and Society of Women Engineers.

About AMC Networks Inc.

AMC Networks (Nasdaq: AMCX) is a global entertainment company known for its popular and critically-acclaimed content. Its brands include targeted streaming services AMC+, Acorn TV, Shudder, Sundance Now, ALLBLK, and the newest addition to its targeted streaming portfolio, the anime-focused HIDIVE streaming service, in addition to AMC, BBC AMERICA (operated through a joint venture with BBC Studios), IFC, SundanceTV, WE tv and IFC Films. AMC Studios, the Company’s in-house studio, production and distribution operation, is behind some of the biggest titles and brands known to a global audience, including The Walking Dead, the Anne Rice catalog and the Agatha Christie library.  The Company also operates AMC Networks International, its international programming business, and 25/7 Media, its production services business.

About Content Room

Content Room is AMC Networks’ award-winning branded entertainment studio that collaborates with advertising partners to build brand stories and create bespoke experiences across an expanding range of digital, social, and linear platforms. Content Room enables brands to fully tap into the company’s premium programming, distinct IP, deep talent roster and filmmaking roots through an array of creative partnership opportunities— from premium branded content and integrations— to franchise and gaming extensions.

Content Room is also home to the award-winning digital content studio which produces dozens of original series annually, which expands popular AMC Networks scripted programming for both fans and advertising partners by leveraging the built-in massive series and talent fandoms.

The Ad Council
The Ad Council is where creativity and causes converge. The non-profit organization brings together the most creative minds in advertising, media, technology and marketing to address many of the nation’s most important causes. The Ad Council has created many of the most iconic campaigns in advertising history. Friends Don’t Let Friends Drive Drunk. Smokey Bear. Love Has No Labels.

The Ad Council’s innovative social good campaigns raise awareness, inspire action and save lives. To learn more, visit AdCouncil.org, follow the Ad Council’s communities on Facebook and Twitter, and view the creative on YouTube.

You can find the ‘She Can Stem’ Ad Council initiative here.

Canadian women and the AI4Good Lab

A June 9, 2022 posting on the Borealis AI website describes an artificial intelligence (AI) initiative designed to encourage women to enter the field,

The AI4Good Lab is one of those programs that creates exponential opportunities. As the leading Canadian AI-training initiative for women-identified STEM students, the lab helps encourage diversity in the field of AI. Participants work together to use AI to solve a social problem, delivering untold benefits to their local communities. And they work shoulder-to-shoulder with other leaders in the field of AI, building their networks and expanding the ecosystem.

At this year’s [2022] AI4Good Lab Industry Night, program partners – like Borealis AI, RBC [Royal Bank of Canada], DeepMind, Ivado and Google – had an opportunity to (virtually) meet the nearly 90  participants of this year’s program. Many of the program’s alumni were also in attendance. So, too, were representatives from CIFAR [Canadian Institute for Advanced Research], one of Canada’s leading global research organizations.

Industry participants – including Dr. Eirene Seiradaki, Director of Research Partnerships at Borealis AI, Carey Mende-Gibson, RBC’s Location Intelligence ambassador, and Lucy Liu, Director of Data Science at RBC – talked with attendees about their experiences in the AI industry, discussed career opportunities and explored various career paths that the participants could take in the industry. For the entire two hours, our three tables  and our virtually cozy couches were filled to capacity. It was only after the end of the event that we had the chance to exchange visits to the tables of our partners from CIFAR and AMII [Alberta Machine Intelligence Institute]. Eirene did not miss the opportunity to catch up with our good friend, Warren Johnston, and hear first-hand the news from AMII’s recent AI Week 2022.

Borealis AI is funded by the Royal Bank of Canada. Somebody wrote this for the homepage (presumably tongue in cheek),

All you can bank on.

The AI4Good Lab can be found here,

The AI4Good Lab is a 7-week program that equips women and people of marginalized genders with the skills to build their own machine learning projects. We emphasize mentorship and curiosity-driven learning to prepare our participants for a career in AI.

The program is designed to open doors for those who have historically been underrepresented in the AI industry. Together, we are building a more inclusive and diverse tech culture in Canada while inspiring the next generation of leaders to use AI as a tool for social good.

A most recent programme ran (May 3 – June 21, 2022) in Montréal, Toronto, and Edmonton.

There are a number of AI for Good initiatives including this one from the International Telecommunications Union (a United Nations Agency).

For the curious, I have a May 10, 2018 post “The Royal Bank of Canada reports ‘Humans wanted’ and some thoughts on the future of work, robots, and artificial intelligence” where I ‘examine’ RBC and its AI initiatives.

Lightweight nanomaterial for firefighters’ safety suits

This piece of research on firefighters’ safety suits comes from Australia’s Nuclear Science and Technology Organisation (ANSTO). A February 3, 2022 article by Judy Skatssoon for governmentnews.com.au describes the work, (Note: Despite the date of the article, the research is from 2021)

Researchers at ANSTO are developing a new highly protective nano-material they believe will produce light-weight safety suits that are perfect for Australian firefighters.

The technology involves the use of super-thin nanosheets made from a new fire and heat-resistant non-organic compound, thermo-hydraulics specialist Professor Guan Heng Yeoh says.

The compound is created from titanium carbide and produces a lightweight coating which can be used in place of traditional fire protection measures. 

A compound extracted from prawn shells, chitosan, is used to bind the nanomaterial together.

I found more details about the work in a January 25, 2022 ANSTO press release, Note: Links have been removed,

Scientists from UNSW [University of New South Wales] and ANSTO have characterised the structure of advanced materials, that could be used as a lightweight fire-retardant filler.

Fire retardant materials can self-extinguish if they ignite. 

A team under Professor Guan Heng Yeoh, Director of the ARC Training Centre for Fire Retardant Materials and Safety Technologies at UNSW and Thermal-Hydraulic Specialist at ANSTO, are working to commercialise advanced products for bushfire fighting, building protection and other applications.    

They investigated a family of two-dimensional transition metal carbides, carbonites and nitrides, known as MXenes.

In research published in Composites Part C, they reported the molecular structure of MXene, using neutron scattering and other advanced techniques.

Because the stability, properties, and various applications of MXene rely heavily on its atomic and molecular structure,  Prof Yeoh and associates conducted a detailed structural and surface characterisation of MXene.

Knowledge from this research provided good insight on how structure affects electrical, thermoelectric, magnetic and other properties of Mxene.

Experiments at ANSTO’s Australian Centre for Neutron Scattering on the Bilby small-angle neutron scattering (SANS) instrument were undertaken to characterise the two-dimensional structure of nanosheets—revealing the thickness of the material and the gaps between layers.

Theoretical modelling was used to extrapolate key information from the SANS data regarding the structural architecture of the titanium carbide nanosheets and investigate the influence of temperature on the structure.

Measurements revealed that MXene that is suspended in a colloidal solution consists of nanosheets of ultrathin multilayers with clear sharp edges.

The material comprises nanolayers, which overlap each other and form clusters of micro-sized units that endow a level of protection.

The nanolayers can be added on top of organic fire-retardant polymers. The total thickness of MXene was found to be 3 nm.

The information was in alignment with observations made using scanning electron microscopy and transmission electron microscopy.

Senior Instrument scientist Dr Jitendra Mata said, “Using SANS is like looking through a keyhole, the keyhole gives you a size indication from 1 nanometre to 500nm.  It may feel like a small size, but it’s actually not – many physical phenomena and the chemical structure occur within that size range.

“There are not many techniques in the world that gives you information about the structure and surface that accurately in a suspension and in films. Also, neutrons are ideal for many in-situ studies.”

Protective suits made with traditional retardant use as much as 30 to 40 per cent carbon compounds to achieve fire-retardant properties, which makes them heavy.

“Because we can use very low concentrations of the two-dimensional material, it comprises only about 1- 5 per cent of the total weight of the final material,” explained Prof Yeoh.

“And because it can be applied as a post-treatment, it doesn’t complicate the manufacturing process.”

When heat comes from above the surface of the material, it is conducted and moved along the nanosheets dispersing it. The nanosheets also act as a heat shield.

“At this point, it takes a lot of time to etch out the aluminium, but there are groups working on upscaling the MXene production process,” said Prof Yeoh.

“We also need to look at the performance and characteristics of the material at higher temperatures up to 800°C,” he added.

At the macro level, early tests have found the material to be an effective fire retardant.

A large team of researchers from the UNSW and ANSTO contributed to the research including first authors, Anthony Chun Yin Yuen and Timothy Bo Yuan Chen and ANSTO instrument scientist, Dr Andrew Whitten.

The versatile material could also potentially be used in energy storage devices.

Here’s a link to and a citation for the paper,

Study of structure morphology and layer thickness of Ti3C2 MXene with Small-Angle Neutron Scattering (SANS) by Anthony Chun Yin Yuen, Timothy Bo Yuan Chen, Bo Lin, Wei Yang, Imrana I.Kabir, Ivan Miguel De Cachinho Cordeiro, Andrew E.Whitten, Jitendra Mata, Bin Yu, Hong-Dian Lu. Guan Heng Yeoh. Composites Part C: Open Access Volume 5, July 2021, 100155 https://doi.org/10.1016/j.jcomc.2021.100155

This paper is open access.

Spiky materials that can pop bacteria?

Bacteria interacting with four different topographies Courtesy: Imperial College London

A February 9, 2022 news item on phys.org describes some bioinspired research that could help cut down on the use of disinfectants,

Researchers have created intricately patterned materials that mimic antimicrobial, adhesive and drag reducing properties found in natural surfaces.

The team from Imperial College London found inspiration in the wavy and spiky surfaces found in insects, including on cicada and dragonfly wings, which ward off bacteria.

They hope the new materials could be used to create self-disinfecting surfaces and offer an alternative to chemically functionalized surfaces and cleaners, which can promote the growth of antibiotic-resistant bacteria.

A February 9, 2022 Imperial College London (ICL) press release by Caroline Brogan, which originated the news item, describes the work in more technical detail,

The tiny waves, which overlap at defined angles to create spikes and ripples, could also help to reduce drag on marine transport by mimicking shark skin, and to enhance the vibrancy of color without needing pigment, by mimicking insects.

Senior author Professor Joao Cabral, of Imperial’s Department of Chemical Engineering, said, “It’s inspiring to see in miniscule detail how the wings and skins of animals help them master their environments. Animals evolved wavy surfaces to kill bacteria, enhance color, and reduce drag while moving through water. We’re borrowing these natural tricks for the very same purposes, using a trick reminiscent of a Fourier wave superposition.”

Spiky structures

Researchers created the new materials by stretching and compressing a thin, soft, sustainable plastic resembling clingfilm to create three-dimensional nano- and microscale wavy patterns, compatible with sustainable and biodegradable polymers. 

The spiky structure was inspired by the way insects and fish have evolved to interact with their environments. The corrugated ripple effect is seen in the wings of cicadas and dragonflies, whose surfaces are made of tiny spikes which pop bacterial cells to keep the insects clean.  

The structure could also be applied to ships to reduce drag and boost efficiency – an application inspired by shark skin, which contains nanoscale horizontal ridges to reduce friction and drag.

Another application is in producing vibrant colours like those seen in the wings of morpho blue butterflies, whose cells are arranged to reflect and bend light into a brilliant blue without using pigment. Known as structural colour, other examples include the blue in peacock feathers, the shells of iridescent beetles, and blue human eyes.

Scaling up waves

To conduct the research, which is published in Physical Review Letters, the researchers studied specimens of cicadas and dragonflies from the Natural History Museum, and sedimentary deposits and rock formations documented by Trinity College Dublin.

They discovered that they could recreate these naturally occurring surface waves by stretching and then relaxing thin polymer skins in precise directions at the nanoscale.

While complex patterns can be fabricated by lithography and other methods, for instance in silicon microchip production, these are generally prohibitively expensive to use over large areas. This new technique, on the other hand, is ready to be scaled up relatively inexpensively if confirmed to be effective and robust. 

Potential applications include self-disinfecting surfaces in hospitals, schools, public transport, and food manufacturing. They could even help keep medical implants clean, which is important as these can host networks of bacterial matter known as biofilms that are notoriously difficult to kill. 

Naturally occurring wave patterns are also seen in the wrinkling of the human brain and fingertips as well as the ripples in sand beds. First author Dr Luca Pellegrino from the Department of Chemical Engineering, said: “The idea is compelling because it is simple: by mimicking the surface waves found in nature, we can create a palette of patterns with important applications. Through this work we can also learn more about the possible origins of these natural forms – a field called morphogenesis.” 

he next focus for the team is to test the effectiveness and robustness of the material in real-world settings, like on bus surfaces. The researchers hope it can contribute to solutions to surface cleanliness that are not reliant on chemical cleaners. To this end, they have been awarded a €5.4million EU HORIZON grant with collaborators ranging from geneticists at KU Leuven to a bus manufacturer to develop sustainable and robust antimicrobial surfaces for high traffic contexts. 

Here’s a link (the press release also has a link) to and a citation for the paper,

Ripple Patterns Spontaneously Emerge through Sequential Wrinkling Interference in Polymer Bilayers by Luca Pellegrino, Annabelle Tan, and João T. Cabral. Phys. Rev. Lett. 128, 058001 Vol. 128, Issue 5 — 4 February 2022 Published online 2 February 2022

This paper is behind a paywall.

This work reminds me of Sharklet, a company that was going to produce materials that mimicked the structure of sharkskin. Apparently, sharks have nanostructures on their skin which prevents bacteria and more from finding a home there.

Inhaled vaccine delivers broad protection against SARS-CoV-2

The results described in the news release are from a preclinical study, meaning they tested the vaccine on animals. The results were promising enough that there is a phase 1 clinical trial taking place now. On to the news.

A February 9, 2022 news item on ScienceDaily features some exciting research news,

Scientists at McMaster University who have developed an inhaled form of COVID vaccine have confirmed it can provide broad, long-lasting protection against the original strain of SARS-CoV-2 and variants of concern.

The research, recently published in the journal Cell, reveals the immune mechanisms and significant benefits of vaccines being delivered directly into the respiratory tract, rather than by traditional injection.

A February 9, 2022 McMaster University news release (also on EurekAlert) by Michelle Donovan, which originated the news item, provides more detail about the work,

Because inhaled vaccines target the lungs and upper airways where respiratory viruses first enter the body, they are far more effective at inducing a protective immune response, the researchers report.

The reported preclinical study, which was conducted on animal models, has provided the critical proof of concept to enable a Phase 1 clinical trial that is currently under way to evaluate inhaled aerosol vaccines in healthy adults who had already received two doses of a COVID mRNA vaccine.

The tested COVID vaccine strategy was built upon a robust tuberculosis vaccine research program established by Zhou Xing, a co-lead author of the new study and a professor at the McMaster Immunology Research Centre and Department of Medicine. 

“What we’ve discovered from many years’ research is that the vaccine delivered into the lung induces all-around protective respiratory mucosal immunity, a property that the injected vaccine is lacking,” Xing says.

Currently authorized COVID vaccines are all injected.   

“We wanted, first and foremost, to design a vaccine that would work well against any variant,” explains the study’s co-lead author Matthew Miller, an associate professor at McMaster’s Michael G. DeGroote Institute for Infectious Disease Research.

The McMaster COVID vaccine represents one of only a handful developed in Canada. The urgent work is a critical mission of Canada’s Global Nexus for Pandemics and Biological Threats, which is based at McMaster.

Researchers compared two types of adenovirus platforms for the vaccine. The viruses serve as vectors that can deliver vaccine directly to the lungs without causing illness themselves.

“We can remain ahead of the virus with our vaccine strategy,” says Miller. “Current vaccines are limited because they will need to be updated and will always be chasing the virus.”

Both types of the new McMaster vaccine are effective against highly transmissible variants because they are designed to target three parts of the virus, including two that are highly conserved among coronaviruses and do not mutate as quickly as spike. All COVID vaccines currently approved in Canada target only the spike protein, which has shown a remarkable ability to mutate.

“This vaccine might also provide pre-emptive protection against a future pandemic, and that’s really important because as we’ve seen during this pandemic – and as we saw in 2009 with the swine flu – even when we are able to rapidly make a vaccine for a pandemic virus, it’s already way too late. Millions of people died, even though we were able to make a vaccine in record time,” says Miller.

“We have revealed in our report that besides neutralizing antibodies and T cell immunity, the vaccine delivered into the lungs stimulates a unique form of immunity known as trained innate immunity, which is able to provide very broad protection against many lung pathogens besides SARS-CoV-2,” Xing adds. 

In additional to being needle and pain-free, an inhaled vaccine is so efficient at targeting the lungs and upper airways that it can achieve maximum protection with a small fraction of the dose of current vaccines – possibly as little as 1 per cent – meaning a single batch of vaccine could go 100 times further, the researchers say.

“This pandemic has shown us that vaccine supply can be a huge challenge.  Demonstrating that this alternative delivery method can significantly extend vaccine supply could be a game changer, particularly in a pandemic setting,” says Brian Lichty, an associate professor in the Department of Medicine who co-led the preclinical study along with Miller, Xing and the senior trainees Sam Afkhami and Michael D’Agostino, who are the joint first authors of the study.

Here’s a link to and a citation for the paper,

Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2 by Sam Afkhami, Michael R. D’Agostino, Ali Zhang, Hannah D. Stacey, Art Marzok, Alisha Kang, Ramandeep Singh, Jegarubee Bavananthasivam, Gluke Ye, Xiangqian Luo, Fuan Wang, Jann C. Ang, Anna Zganiacz, Uma Sankar, Natallia Kazhdan, Joshua F.E. Koenig, Allyssa Phelps, Steven F. Gameiro, Shangguo Tang, Manel Jordana, Yonghong Wan, Karen L. Mossman, Mangalakumari Jeyanathan, Amy Gillgrass, Maria Fe C. Medina, Fiona Smaill, Brian D. Lichty, Matthew S. Miller, Zhou Xing. Cell, 2022; DOI: 10.1016/j.cell.2022.02.005

This is a ‘pre-proof’ journal paper. It is open access. However, from the PDF of the article, there is this statement from the journal publishers,

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2022 The Author(s). Published by Elsevier Inc.

In short, reader beware!

2D materials for a computer’s artificial brain synapses

A January 28, 2022 news item on Nanowerk describes for some of the latest work on hardware that could enable neuromorphic (brainlike) computing. Note: A link has been removed,

Researchers from KTH Royal Institute of Technology [Sweden] and Stanford University [US] have fabricated a material for computer components that enable the commercial viability of computers that mimic the human brain (Advanced Functional Materials, “High-Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene”).

A January 31, 2022 KTH Royal Institute of Technology press release (also on EurekAlert but published January 28, 2022), which originated the news item, delves further into the research,

Electrochemical random access (ECRAM) memory components made with 2D titanium carbide showed outstanding potential for complementing classical transistor technology, and contributing toward commercialization of powerful computers that are modeled after the brain’s neural network. Such neuromorphic computers can be thousands times more energy efficient than today’s computers.

These advances in computing are possible because of some fundamental differences from the classic computing architecture in use today, and the ECRAM, a component that acts as a sort of synaptic cell in an artificial neural network, says KTH Associate Professor Max Hamedi.

“Instead of transistors that are either on or off, and the need for information to be carried back and forth between the processor and memory—these new computers rely on components that can have multiple states, and perform in-memory computation,” Hamedi says.

The scientists at KTH and Stanford have focused on testing better materials for building an ECRAM, a component in which switching occurs by inserting ions into an oxidation channel, in a sense similar to our brain which also works with ions. What has been needed to make these chips commercially viable are materials that overcome the slow kinetics of metal oxides and the poor temperature stability of plastics.                   

The key material in the ECRAM units that the researchers fabricated is referred to as MXene—a two-dimensional (2D) compound, barely a few atoms thick, consisting of titanium carbide (Ti3C2Tx). The MXene combines the high speed of organic chemistry with the integration compatibility of inorganic materials in a single device operating at the nexus of electrochemistry and electronics, Hamedi says.

Co-author Professor Alberto Salleo at Stanford University, says that MXene ECRAMs combine the speed, linearity, write noise, switching energy, and endurance metrics essential for parallel acceleration of artificial neural networks.

“MXenes are an exciting materials family for this particular application as they combine the temperature stability needed for integration with conventional electronics with the availability of a vast composition space to optimize performance, Salleo says”

While there are many other barriers to overcome before consumers can buy their own neuromorphic computers, Hamedi says the 2D ECRAMs represent a breakthrough at least in the area of neuromorphic materials, potentially leading to artificial intelligence that can adapt to confusing input and nuance, the way the brain does with thousands time smaller energy consumption. This can also enable portable devices capable of much heavier computing tasks without having to rely on the cloud.

Here’s a link to and a citation for the paper,

High-Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene by
Armantas Melianas, Min-A Kang, Armin VahidMohammadi, Tyler James Quill, Weiqian Tian, Yury Gogotsi, Alberto Salleo, Mahiar Max Hamedi. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202109970 First published: 21 November 2021

This paper is open access.