Monthly Archives: July 2024

Super-black wood from the University of British Columbia (UBC)

The researchers have developed prototype watches and jewelry using the new super-black wood. Photo credit: UBC Forestry/Ally Penders

Generally stories about very black materials will mention carbon nanotubes but not this time. A July 30, 2024 University of British Columbia (UBC) news release (also on EurekAlert and received via email) announces the discovery of a technique for making super-black wood,

Thanks to an accidental discovery, researchers at the University of British Columbia have created a new super-black material that absorbs almost all light, opening potential applications in fine jewelry, solar cells and precision optical devices. 

Professor Philip Evans and PhD student Kenny Cheng were experimenting with high-energy plasma to make wood more water-repellent. However, when they applied the technique to the cut ends of wood cells, the surfaces turned extremely black. 

Measurements by Texas A&M University’s department of physics and astronomy confirmed that the material reflected less than one per cent of visible light, absorbing almost all the light that struck it. 

Instead of discarding this accidental finding, the team decided to shift their focus to designing super-black materials, contributing a new approach to the search for the darkest materials on Earth.

“Ultra-black or super-black material can absorb more than 99 per cent of the light that strikes it – significantly more so than normal black paint, which absorbs about 97.5 per cent of light,” explained Dr. Evans, a professor in the faculty of forestry and BC Leadership Chair in Advanced Forest Products Manufacturing Technology.

Super-black materials are increasingly sought after in astronomy, where ultra-black coatings on devices help reduce stray light and improve image clarity. Super-black coatings can enhance the efficiency of solar cells. They are also used in making art pieces and luxury consumer items like watches.

The researchers have developed prototype commercial products using their super-black wood, initially focusing on watches and jewelry, with plans to explore other commercial applications in the future.

Wonder wood

The team named and trademarked their discovery Nxylon (niks-uh-lon), after Nyx, the Greek goddess of the night, and xylon, the Greek word for wood. 

Most surprisingly, Nxylon remains black even when coated with an alloy, such as the gold coating applied to the wood to make it electrically conductive enough to be viewed and studied using an electron microscope. This is because Nxylon’s structure inherently prevents light from escaping rather than depending on black pigments.

The UBC team have demonstrated that Nxylon can replace expensive and rare black woods like ebony and rosewood for watch faces, and it can be used in jewelry to replace the black gemstone onyx.

“Nxylon’s composition combines the benefits of natural materials with unique structural features, making it lightweight, stiff and easy to cut into intricate shapes,” said Dr. Evans.

Made from basswood, a tree widely found in North America and valued for hand carving, boxes, shutters and musical instruments, Nxylon can also use other types of wood such as European lime wood.

Breathing new life into forestry

Dr. Evans and his colleagues plan to launch a startup, Nxylon Corporation of Canada, to scale up applications of Nxylon in collaboration with jewellers, artists and tech product designers. They also plan to develop a commercial-scale plasma reactor to produce larger super-black wood samples suitable for non-reflective ceiling and wall tiles. 

“Nxylon can be made from sustainable and renewable materials widely found in North America and Europe, leading to new applications for wood. The wood industry in B.C. is often seen as a sunset industry focused on commodity products—our research demonstrates its great untapped potential,” said Dr. Evans.

Other researchers who contributed to this work include Vickie Ma, Dengcheng Feng and Sara Xu (all from UBC’s faculty of forestry); Luke Schmidt (Texas A&M); and Mick Turner (The Australian National University).

Here’s a link to and a citation for the paper (and hat’s off to the writers for an accessible introduction),

Super-Black Material Created by Plasma Etching Wood by Kenneth J. Cheng, Dengcheng Feng, Luke M. Schmidt, Michael Turner, Philip D. Evans. Advanced Sustainable Systems DOI: https://doi.org/10.1002/adsu.202400184 First published: 16 June 2024

This paper is open access.

I can’t resist; this is such a good introduction, keeping in mind it’s written for an academic journal, from Super-Black Material Created by Plasma Etching Wood.

Super-black materials have very low reflectivity due to structural absorption of light.[1] They are attracting considerable scientific and industrial attention because of their important applications in many fields: astronomy,[2, 3] photovoltaics,[4, 5] and optical science,[6] among others. In these applications, super-black materials minimize unwanted reflection of light enabling devices to operate more accurately or efficiently.[6] In other fields, for example art and design, the attraction of super-black materials lies in their ability to create bizarre visual effects because of huge contrast between black and adjacent colored objects or surfaces.[7] This artistic application of super-black materials is analogous to the juxtaposition of super-black and brightly colored courtship display patches in birds and peacock spiders.[8, 9] In birds, super-black patches have been defined as those having less than 2% directional reflectance at normal incidence.[8] Reflectance values of super-black patches in 32 bird species ranged from 0.045 to 1.97% with an average of 0.94% (300–700 nm).[8] Other studies have associated super-blackness with reflectance values of 1%[10] or 0.5%.[3] Far lower reflectance values have been achieved with materials containing aligned carbon nanotubes (CNT), for example a low-density CNT array (0.045%),[11] the coating Vantablack (0.035%)[7] and a CNT-metal foil (0.005%).[12] The current holder of the “record” for a low reflectivity material (<0.0002%) is an ion-track micro-textured polymer with anti-backscatter matrix.[13]

The low reflectivity of materials such as Vantablack is due to the high absorption of light by graphene and the ability of vertical arrays of CNT to lower surface reflection.[6, 7] In the case of a low-density CNT array, its low reflectivity was ascribed to its random surface profile and presence of a loose network of entangled nanotubes, in addition to vertically oriented nanotubes.[11] Other structures can also be used to reduce reflectivity of synthetic materials including nanopores, and microcavities.[6] Even more diverse structures are found in natural super-black materials, including complex barbule microstructures in birds,[1] cuticular micro-lens arrays in peacock spiders,[9] and polydisperse honeycomb configurations in the wings of butterflies.[14] The structural features of butterfly wings have been used as biomimetic models to create super-black polymer films.[4, 10] This biomimetic route to creating super-black materials has the advantages that “the films are thinner than known alternatives and can be fabricated at lower temperatures via plasma-enhanced chemical vapor deposition, instead of being grown from CNT.”[4, 14]

Biomimicry of nature’s structural material par excellence, wood, is being used to create lightweight stiff and tough composites,[15, 16] but wood is not a model for the creation of super-black materials because even the darkest woods such as ebony (Diospyros spp.) or African blackwood (Dalbergia melanoxylon Guill. & Perr.) lack structural features that reduce reflectivity. Nevertheless, there is interest in using wood in applications where blackness is advantageous such as solar steam generation and desalination of water,[17-20] because wood is widely available, inexpensive, sustainable and can be fabricated into panels and objects. In these applications, wood is carbonized and retains its porous microstructure creating a black material with reflectivity of 3%.[18] The creation of additional porosity by micro-drilling the wood prior to carbonization further reduced reflectivity to 2%.[18] We serendipitously created a super-black wood during undirected investigations into the use of plasma etching to “machine” novel microstructures at basswood (Tilia americana L.) surfaces. We called this material Nxylon, a neologism created from Nyx (Greek goddess of the night) and xylon (Greek for wood materials). One of us published the reflectivity data for Nxylon in 2020.[21] Here we report on the structural features responsible for the super-blackness of Nxylon, describe how it is made and discuss its possible practical uses. During the preparation of this manuscript, we became aware of a novel approach to creating super-black wood involving high temperature carbonization of delignified balsa wood (Ochroma pyramidale (Cav. ex Lam.) Urb.).[22] This material is produced using “mature processing technologies” and can be used to create solid wood products with complex geometries. The surface plasma process we describe is liquid free, generates little waste and is more suited for the creation of super-black veneer which can be used on a small scale to manufacture luxury consumer products. Therein lies the novelty and significance of our work.

The most comprehensive piece I’ve published on the topic of the ‘really, really black’ is in a December 4, 2019 posting, “More of the ‘blackest black’.” At that point, some new work on creating the blackest black (up to 99.99% and 99.995% light absorption, respectively) had come from the US National Institute of Standards and Technology (NIST) and the Massachusetts Institute of Technology (MIT). I also included the latest about an artistic feud over Vantablack (mentioned in the paper’s introduction) and its 99.8% light absorption and provided a link back to my earliest stories on Vantablack.

BC-based company (Aluula) partners with MaxSpace to make expandable habitats for astronauts to live on the moon in 2026

The media advisory/news release about Aluula and its role in NASA’s (US National Aeronautics and Space Agency) proposed moon habitat was received via email back in June 2024. I’m glad I waited as I found a very detailed story by Devin Coldeway about the proposed moon habitat that wasn’t published until late July.2024.

First, some early news about Aluula and NASA, from an April 22, 2024 article by Nelson Bennett for Business in Vancouver,

A Victoria [British Columbia, Canada] composite materials company that developed a super-strong, lightweight polyethylene material used in a range out outdoor recreation equipment could soon be used by astronauts in space in inflatable space habitats.

Max Space, an American company that is developing expandable space habitats, is now incorporating composite materials made by Aluula Composites (TSX-V:AUUA).

Aluula’s innovation was developing a heat fusion process for working with ultra-high-molecular-weight polyethylene (UHMWPE) to make a super-tough lightweight material.

It is being used as part of a custom laminate that adds strength and durability to structural elements to the Max Space habitat, “making it possible to create a large living and working area at a fraction of the weight and transport costs of traditional crew modules,” Aluula said in a press release.

Here’s more about the NASA mission from a January 3, 2024 NASA news release,

NASA announced Tuesday [January 2, 2024] updates to its Artemis campaign that will establish the foundation for long-term scientific exploration at the Moon, land the first woman and first person of color on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. To safely carry out these missions, agency leaders are adjusting the schedules for Artemis II and Artemis III to allow teams to work through challenges associated with first-time developments, operations, and integration.

With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.

The June 20, 2024 Aluula media advisory/news release (received via email) describes the company’s involvement this way,

A small company on Canada’s west coast is playing a big role to help astronauts return to the moon in 2026.

ALUULA Composites recently signed an agreement with Max Space, an American company, to use its innovative composite material to build space habitats on the moon. The company’s ultra-high-molecular-weight polyethylene (UHMWPE) laminate will be used to create a large living and working area for NASA’s astronauts when they return to the moon in September 2026. 

The innovative material was selected because it has eight times the strength-to-weight ratio of steel and is extremely durable, which is ideal for space travel.

The first Max Space inflatable space habitat is slated to launch with SpaceX in 2026. The Max Space inflatables can be delivered into space in very small packages and then unfolded and expanded to create a much larger work space.

Emily Mertz’s July 16, 2024 article for Global TV news provides a few more details, Note: Links have been removed,

A small West Coast company is helping astronauts return to the moon in 2026. ALUULA Composites has signed on to provide its durable, lightweight fabric to build space habitats.

The Max Space inflatables can be transported in very small packages and then expanded to create a much larger workspace.

“It [Aluula’s ultra-high-molecular-weight polyethylene (UHMWPE) laminate] was actually originated by a bunch of engineers, chemists and wind sport enthusiasts. When you’re on the water, using a kite or a wing, you need something that’s very durable and very light and it was developed in that context.” [said ALUULA president and CEO Sage Berryman]

The B.C. company, which is fairly young — it started in 2020 — is also committed to sustainability.

“It’s the first material that’s been done as a composite not using glues, so that also allows it to be recycled at the end of its useful life, which is pretty different in a material that’s polyethylene — plastic-based,” Berryman said.

“Our goal is to make products that are able to be fully circular and that’s an exciting thing as well.”

“Having these opportunities to have these unique materials in unique applications is really exciting. And when you start talking about a project that’s not a huge project for us, but it’s huge in its meaningfulness, when you’re working with Max Space that’s working with NASA that’s going up on SpaceX, it is exciting,” she said.

Mertz’s July 16, 2024 article contains some news videos and about the project and related space information.

Space habitat details

Devin Coldeway’s July 27, 2024 article for TechCrunch and republished yahoo! news tells a fascinating story about space habitats with a special emphasis on the one being developed for NASA’s Artemis campaign, Note: Links have been removed,

Max Space reinvents expandable habitats with a 17th-century twist, launching in 2026

Working and even living in space has shifted from far-off fantasy to seemingly inevitable reality, but the question remains: what exactly will the next generation of space habitation look like? For Max Space, the answer is clear, and has been for decades — centuries, even. A new generation of expandable habitats could offer both safety and enough room to stretch your legs, and the first one is going up in 2026.

The startup is led by Aaron Kemmer, formerly of Made in Space, and Maxim de Jong, an engineer who has studiously avoided the limelight despite being the co-creator of expandable habitats like the one currently attached to the International Space Station.

They believe that the breakout moment for this type of in-space structure is due to arrive any year now. By positioning themselves as a successor to — and fundamental improvement on — the decades-old designs being pursued by others, they can capture what may eventually be a multi-billion-dollar market.

Expandable habitats go back a long ways, but their first real use was in the TransHab project at NASA in the 1990s, where the fundamental approach was developed.

Contrary to their appearance, expandables aren’t just big balloons. The visible outer layer is, like with many spacecraft, just a thin one to reflect light and dissipate heat. The structure and strength lie inside, and since Transhab the established convention has been the “basket weave” technique.

In this method, straps of kevlar and other high-strength materials are lined up in alternating directions and manually stitched together, and upon expansion form a surface like a woven basket, with the internal pressure distributed evenly across all the thousands of intersections.

Or at least, that’s the theory.

De Jong, through his company Thin Red Line Aerospace, worked successfully with Bigelow Aerospace to develop and launch this basket-weave structure, but he had his doubts from the start about the predictability of so many stitches, overlaps, and interactions. A tiny irregularity could lead to a cascading failure even well below safety thresholds.

“I looked at all these straps, and as a field guy I was thinking, this is a cluster. As soon as you’re over or under pressure, you don’t know what percentage of the load is going to be transferred in one direction or another,” he said. “I never found a solution for it.”

He was quick to add that the people working on basket-weave designs today (primarily at Sierra Nevada and Lockheed Martin) are extremely competent and have clearly advanced the tech far beyond what it was in the early 2000s, when Bigelow’s pioneering expandable habitats were built and launched. (Genesis I and II are still in orbit today after 17 years, and the BEAM habitat has been attached to the ISS since 2016.)

But mitigation isn’t a solution. Although basket-weave, with its flight heritage and extensive testing, has remained unchallenged as the method of choice for expandables, the presence of a sub-optimal design somewhere in the world haunted De Jong [sic], in the way such things always haunt engineers. Surely there was a way to do this that was strong, simple, and safe.

Mylar and Bernoulli

As he [de Jong] balefully contemplated the helium-filled Mylar, something about it struck him: “Every volume that you can put something in has load in two directions. A kid’s Mylar balloon, though… there are two discs and all these wrinkles — all the stress is on one axis. This is a mathematical anomaly!”

The shape taken by the balloon essentially redirects the forces acting on it so that pressure really only pulls in one direction: away from where the two halves connect. Could this principle be applicable at a larger scale? De Jong [sic] rushed to the literature to look up the phenomenon, only to find this structure had indeed been documented — 330 years ago, by the French mathematician James Bernoulli.

This was both gratifying and perhaps a little humiliating, even if Bernoulli had not intended this interesting anomaly for orbital habitation.

“Humility will get you so far. Physicists and mathematicians knew all this, from the 17th century. I mean, Bernoulli didn’t have access to this computer — just ink on parchment!” he told me. “I’m reasonably bright, but nobody works in fabrics; in the land of the blind, the one eyed man is king. You have to be honest, you have to look at what other people are doing, and you have to dig, dig, dig.”

By forming Bernoulli’s shape (called an isotensoid) out of cords, or “tendons,” every problem with expandables more or less solves itself, De Jong [sic] explains.

“It’s structurally determinant. That means if I just take a cord of a certain length, that will define all the geometry: the diameter, the height, the shape — and once you have those, the pressure is the PSI at the equator, divided by the number of cords. And one cord doesn’t affect the others, you know exactly how strong one cord needs to be; everything is predictable,” he said.

It’s stupidly simple to make.”

All the important forces are simply tension on these cords (96 of them in the prototypes, each rated to 17,000 pounds), pulling on anchors at either end of the shape. And as you might guess from suspension bridges and other high-tension structures, we know how to make this type of connection very, very strong. Gaps for docking rings, windows, and other features are simple to add.

The way the tendons deform can also be adjusted to different shapes, like cylinders or even the uneven interiors of a Moon cave. (De Jong [sic] was very excited about that news — an inflatable is a highly suitable solution for a lunar interior habitat.)

With the pressurized structure so reliable, it can be skinned with flight-tested materials already used to insulate, block radiation and micrometeoroids, and so on; since they aren’t load bearing, that part of the design is similarly simple. Yet the whole thing compresses to a pancake only a few inches thin, which can be folded up or wrapped around another payload like a blanket.

The biggest inflatables anyone has made, and we did with a team of five people in six months,” De Jong [sic] said — though he added that “the challenges of its correct implementation are surprisingly complex” and credited that team’s expertise.

What De Jong [sic] had done is discover, or perhaps rediscover, a method for making an enclosure in space that had comparable structural strength to machined metal, but using only a tiny fraction of the mass and volume. And he lost no time getting to work on it. But who would fly it?

Thin Red Line has seen plenty of its creations go to orbit. But this new expandable faced a long, uphill battle. For spaceflight, established methods and technologies are strongly favored, leading to a catch-22: you need to go to space to get flight heritage, and you need flight heritage to go to space.

Falling launch costs and game investors have helped break this loop in recent years, but it’s still no simple thing to get manifested on a launch vehicle.

… Max Space, a startup built specifically to commercialize the new approach — the name is both a reference to having more space in space, and a tribute to (Maxim) De Jong, whom Kemmer [Aaron Kemmer, cp-founder] thought deserved a bit more recognition after working for decades in relative anonymity (“which suits me just fine,” he noted).

Their first mission will launch in 2026 aboard a SpaceX rideshare vehicle, and act as a proof of concept so they can get flight heritage, which is one advantage extant expandables have over isotensoids.

If you have the time and the interest, Coldeway’s July 27, 2024 article is a good read with a lot of informative images such as this one

Caption: The 20-cubic-meter habitat deflated to a 2-cubic-meter pancake, or “planar configuration.” Credit: Max Space? [downloaded from https://ca.news.yahoo.com/max-space-reinvents-expandable-habitats-150000556.html]

Aluula can be found here.

One last thing, it looks like the deal was originally announced with Thin Red Line Aerospace in a December 12, 2022 Aluula news release,

We are excited to announce that ALUULA Composites is supporting Thin Red Line Aerospace in the development of leading-edge application hardware for future NASA lunar and Mars missions. 

“Their unique range of technical attributes combined with impressive strength to weight ratio specifications, make ALUULA Composite materials very well suited to the demanding requirements of technology in space.” Stated Thin Red Line Aerospace President, Maxim de Jong. 

“We continue to find new and exciting ways in which our process enables and enhances composite materials to satisfy very specific technical objectives, and our work with Thin Red Line is another great example of what is possible with our materials and unique expertise.” Said ALUULA Composites COO, John Zimmerman. 

Air & Cosmos International Announcement: https://aircosmosinternational.com/article/aluula-composites-selected-for-future-nasa-lunar-and-mars-missions-3364

JEC Composites Announcement: https://www.jeccomposites.com/news/aluula-composites-selected-for-future-nasa-mars-missions/ 

I guess they needed one more player, i.e., Max Space, to get ready for the launch.

Peptide-based hydrogels for faster healing from research team at the University of Ottawa

While this research team was heavily dominated by researchers from the University of Ottawa, there were two members associated with the University of Talca (Universidad de Talca; located in Chile), two members associated with the University of Montreal (Université de Montréal), and one member with McGill University (located in Montréal).

Now for these special hydrogels, from a May 13, 2024 University of Ottawa news release (also on EurekAlert) by David McFadden, Note: Links have been removed,

Combining biomedical finesse and nature-inspired engineering, a uOttawa-led team of scientists have created a jelly-like material that shows great potential for on-the-spot repair to a remarkable range of damaged organs and tissues in the human body.

Cutting-edge research co-led by uOttawa Faculty of Medicine  Associate Professor Dr. Emilio I. Alarcón could eventually impact millions of lives with peptide-based hydrogels that will close skin wounds, deliver therapeutics to damaged heart muscle, as well as reshape and heal injured corneas.

“We are using peptides to fabricate therapeutic solutions. The team is drawing inspiration from nature to develop simple solutions for wound closure and tissue repair,” says Dr. Alarcón, a scientist and director at the BioEngineering and Therapeutic Solutions (BEaTS) group at the University of Ottawa Heart Institutek whose innovative research work is focused on developing new materials with capabilities for tissue regeneration.

Peptides are molecules in living organisms and hydrogels are a water-based material with a gelatinous texture that have proven useful in therapeutics.

The approach used in the study –  just published in Advanced Functional Materials and co-led by Dr. Erik Suuronen & Dr. Marc Ruel – is unique. Most hydrogels explored in tissue engineering are animal-derived and protein-based materials, but the biomaterial created by the collaborative team is supercharged by engineered peptides. This makes it more clinically translatable.

Dr. Ruel, a full professor in the uOttawa Faculty of Medicine’s Department of Cellular and Molecular Medicine and the endowed chair of research in the Division of Cardiac Surgery at the University of Ottawa Heart Institute, says the study’s insights could be a game changer.

“Despite millennia of evolution, the human response to wound healing still remains imperfect,” Dr. Ruel says. “We see maladapted scarring in everything from skin incisions to eye injuries, to heart repair after a myocardial infarction. Drs. Alarcón, Suuronen, and the rest of our team have focused on this problem for almost two decades. The publication by Dr. Alarcón in Advanced Functional Materials reveals a novel way to make wound healing, organ healing, and even basic scarring after surgery much more therapeutically modulatable and, therefore, optimizable for human health.”

Indeed, the ability to modulate the peptide-based biomaterial is key. The uOttawa-led team’s hydrogels are designed to be customizable, making the durable material adaptable for use in a surprising range of tissues. Essentially, the two-component recipe could be adjusted to ramp up adhesivity or dial down other components depending on the part of the body needing repair.

“We were in fact very surprised by the range of applications our materials can achieve,” says Dr. Alarcón. “Our technology offers an integrated solution that is customizable depending on the targeted tissue.”

Dr. Alarcón says that not only does the study’s data suggest that the therapeutic action of the biomimetic hydrogels are highly effective, but its application is far simpler and cost-effective than other regenerative approaches.

The materials are engineered in a low-cost and scalable manner – hugely important qualities for any number of major biomedical applications. The team also devised a rapid-screening system that allowed them to significantly slash the design costs and testing timespans.

“This significant reduction in cost and time not only makes our material more economically viable but also accelerates its potential for clinical use,” Dr. Alarcón says.

What are next steps for the talent-rich research team? They will conduct large animal tests in preparation for tests in human subjects. So far, heart and skin tests were conducted with rodents, and the cornea work was done ex vivo.

Part of the work for this study was funded by the uOttawa Faculty of Medicine’s  “Path to Patenting & Pre-Commercialization” (3P),  an innovation-focused approach to provide our community’s top-flight researchers with the assistance needed to bring their most promising breakthroughs to the wider world.

Here’s a link to and a citation for the paper,

Multipurpose On-the-Spot Peptide-Based Hydrogels for Skin, Cornea, and Heart Repair by Alex Ross, Xixi Guo, German A. Mercado Salazar, Sergio David Garcia Schejtman, Jinane El-Hage, Maxime Comtois-Bona, Aidan Macadam, Irene Guzman-Soto, Hiroki Takaya, Kevin Hu, Bryan Liu, Ryan Tu, Bilal Siddiqi, Erica Anderson, Marcelo Muñoz, Patricio Briones-Rebolledo, Tianqin Ning, May Griffith, Benjamin Rotsein, Horacio Poblete, Jianyu Li, Marc Ruel, Erik J. Suuronen, Emilio I. Alarcon. Advanced Functional Materials DOI: https://doi.org/10.1002/adfm.202402564 First published: 23 April 2024

This paper is open access.

Highlights from Simon Fraser University’s (SFU) July 2024 Metacreation Lab newsletter

There’s some exciting news for people interested in Ars Electronica (see more below the newsletter excerpt) and for people who’d like to explore some of the same work from the Metacreation Lab in a locale that may be closer to their homes, there’s an exhibition on Saltspring Island, British Columbia. Here are details from SFU’s Metacreation Lab newsletter, which hit my mailbox on July 22, 2024,

Metacreation Lab at Ars Electronica 2024

We are delighted to announce that the Metacreation Lab for Creative AI will be part of the prestigious Ars Electronica Festival. This year’s festival, titled “HOPE – who will turn the tide,” will take place in Linz [Austria’ from September 4 to 8.[2024]

Representing the School of Interactive Arts and Technology (SIAT), we will showcase four innovative artworks. “Longing + Forgetting” by Philippe Pasquier, Matt Gingold, and Thecla Schiphorst explores pathfinding algorithms as metaphors for our personal and collective searches for solutions. “Autolume Mzton” by Jonas Kraasch and Philippe Pasquier examines the concept of birth through audio-reactive generative visuals. “Dreamscape” [emphasis mine] by Erica Lapadat-Janzen and Philippe Pasquier utilizes the Autolume system to train AI models with the artist’s own works, creating unique stills and video loops. “Ensemble” by Arshia Sobhan and Philippe Pasquier melds traditional Persian calligraphy with AI to create dynamic calligraphic forms.

We look forward to seeing you there!

More Information

MMM4Live Official Release; Generative MIDI in Ableton Live

We are ecstatic to release our Ableton plugin for computer-assisted music composition! Meet MMM4Live, our flexible and generic multi-track music AI generator. MMM4Live embeds our state-of-the-art music transformer model that allows generating fitting original musical patterns in any style! When generating, the AI model considers the request parameters, your instrument choice, and the existing musical MIDI content within your Ableton Live project to deliver relevant material. With this infilling approach, your music is the prompt!

We, at the Metacreation Lab for Creative AI at Simon Fraser University (SFU), are excited about democratizing and pushing the boundaries of musical creativity through academic research and serving diverse communities of creatives.

For additional inquiries, please do not hesitate to reach out to pasquier@sfu.ca

Try it out!

“Dreamscape” at the Provocation Exhibition

We are excited to announce that “Dreamscape,” a collaboration between Erica Lapadat-Janzen and Philippe Pasquier, will be exhibited at the Provocation exhibition from July 6th to August 10th, 2024.

In response to AI-generated art based on big data, the Metacreation Lab developed Autolume, a no-coding environment that allows artists to train AI models using their chosen works. For “Dreamscape,” the Metacreation Lab collaborated with Vancouver-based visual artist Erica Lapadat-Janzen. Using Autolume, they hand-picked and treated 12 stills and 9 video loops, capturing her unique aesthetic. Lapadat-Janzen’s media artworks, performances, and installations draw viewers into a world of equilibrium, where moments punctuate daily events to clarify our existence and find poetic meaning.

Provocation exhibition brings artists and audiences together to celebrate and provoke conversations about contemporary living. The exhibition is at 215 Baker Rd, Salt Spring Island, BC, and is open to the public (free admission) every Saturday and Sunday from 12-4 pm.

More Information

Ars Electronica

It is both an institute and a festival, from the Ars Electronica Wikipedia entry, Note: Links have been removed,

Ars Electronica Linz GmbH is an Austrian cultural, educational and scientific institute active in the field of new media art, founded in Linz in 1979. It is based at the Ars Electronica Center (AEC), which houses the Museum of the Future, in the city of Linz. Ars Electronica’s activities focus on the interlinkages between art, technology and society. It runs an annual festival, and manages a multidisciplinary media arts R&D facility known as the Futurelab. It also confers the Prix Ars Electronica awards.

Ars Electronica began with its first festival in September 1979. …

The 2024 festival, as noted earlier, has the theme of ‘Hope’, from the Ars Electronica 2024 festival theme page,

HOPE

Optimism is not the belief that things will somehow work out, but rather the confidence in our ability to influence and bring about improvement. And that perhaps best describes the essence of the principle of hope, not as a passive position, but as an active force that motivates us to keep going despite adversity.

But don’t worry, this year’s festival will not be an examination of the psychological or even evolutionary foundations of the principle of hope, nor will it be a reflection on our unsteady fluctuation between hope and pessimism.

“HOPE” as a festival theme is not a resigned statement that all we can do is hope that someone or something will solve our problems, but rather a manifestation that there are actually many reasons for hope. This is expressed in the subtitle “who will turn the tide”, which does not claim to know how the turnaround can be achieved, but rather focuses on who the driving forces behind this turnabout are.

The festival’s goal is to spotlight as many people as possible who have already set out on their journey and whose activities—no matter how big or small—are a very concrete reason to have hope.

Believing in the possibility of change is the prerequisite for bringing about positive change, especially when all signs point to the fact that the paths we are currently taking are often dead ends.

But belief alone will not be enough; it requires a combination of belief, vision, cooperation, and a willingness to take concrete action. A willingness that we need, even if we are not yet sure how we will turn the tide, how we will solve the problems, and how we will deal with the effects of the problems that we are (no longer) able to solve.

Earlier, I highlighted ‘Dreamscape’ which can be seen at Ars Electronica 2024 or at the “Provocation” exhibition on Salt Spring Island. Hopefully, you have an opportunity to visit one of the locations. As for the Metacreation Lab for Creative AI, you can find out more here.

Sound-suppressing silk

I keep telling a friend that noise will be the ‘new smoking’; i.e., there will be more rules and people will demand enforcement. She doesn’t agree, vociferously so. With the mounting research into the effects that noise has on health and on longevity, it doesn’t matter if I win the ‘argument’, I’m just happy to see research dedicated to mitigating noise levels. From a May 7, 2024 news item on ScienceDaily,

We are living in a very noisy world. From the hum of traffic outside your window to the next-door neighbor’s blaring TV to sounds from a co-worker’s cubicle, unwanted noise remains a resounding problem. [nice bit of wordplay]

Caption: The fabric can suppress sound by generating sound waves that interfere with an unwanted noise to cancel it out (as seen in figure C) or by being held still to suppress vibrations that are key to the transmission of sound (as seen in figure D). Credit: Courtesy of Yoel Fink and Grace (Noel) Yang and Massachusetts Institute of Technology (MIT)

A May 7, 2024 Massachusetts Institute of Technology (MIT) news release (also on EurekAlert), which originated the news item, describes how a surprising material, silk, can be used for suppressing sound, Note: Links have been removed,

To cut through the din, an interdisciplinary collaboration of researchers from MIT and elsewhere developed a sound-suppressing silk fabric that could be used to create quiet spaces. 

The fabric, which is barely thicker than a human hair, contains a special fiber that vibrates when a voltage is applied to it. The researchers leveraged those vibrations to suppress sound in two different ways.

In one, the vibrating fabric generates sound waves that interfere with an unwanted noise to cancel it out, similar to noise-canceling headphones, which work well in a small space like your ears but do not work in large enclosures like rooms or planes. 

In the other, more surprising technique, the fabric is held still to suppress vibrations that are key to the transmission of sound. This prevents noise from being transmitted through the fabric and quiets the volume beyond. This second approach allows for noise reduction in much larger spaces like rooms or cars.

By using common materials like silk, canvas, and muslin, the researchers created noise-suppressing fabrics which would be practical to implement in real-world spaces. For instance, one could use such a fabric to make dividers in open workspaces or thin fabric walls that prevent sound from getting through. 

“Noise is a lot easier to create than quiet. In fact, to keep noise out we dedicate a lot of space to thick walls. [First author] Grace’s work provides a new mechanism for creating quiet spaces with a thin sheet of fabric,” says Yoel Fink, a professor in the departments of Materials Science and Engineering and Electrical Engineering and Computer Science, a Research Laboratory of Electronics principal investigator, and senior author of a paper on the fabric.

The study’s lead author is Grace (Noel) Yang SM ’21, PhD ’24. Co-authors include MIT graduate students Taigyu Joo, Hyunhee Lee, Henry Cheung, and Yongyi Zhao; Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering at MIT; graduate student Guanchun Rui and professor Lei Zhu of Case Western [Reserve] University; graduate student Jinuan Lin and Assistant Professor Chu Ma of the University of Wisconsin at Madison; and Latika Balachander, a graduate student at the Rhode Island School of Design. The an open-access paper about the research appeared recently in Advanced Materials.

Silky silence

The sound-suppressing silk builds off the group’s prior work to create fabric microphones.

In that research, they sewed a single strand of piezoelectric fiber into fabric. Piezoelectric materials produce an electrical signal when squeezed or bent. When a nearby noise causes the fabric to vibrate, the piezoelectric fiber converts those vibrations into an electrical signal, which can capture the sound. 

In the new work, the researchers flipped that idea to create a fabric loudspeaker that can be used to cancel out soundwaves. 

“While we can use fabric to create sound, there is already so much noise in our world. We thought creating silence could be even more valuable,” Yang says.

Applying an electrical signal to the piezoelectric fiber causes it to vibrate, which generates sound. The researchers demonstrated this by playing Bach’s “Air” using a 130-micrometer sheet of silk mounted on a circular frame.

To enable direct sound suppression, the researchers use a silk fabric loudspeaker to emit sound waves that destructively interfere with unwanted sound waves. They control the vibrations of the piezoelectric fiber so that sound waves emitted by the fabric are opposite of unwanted sound waves that strike the fabric, which can cancel out the noise.

However, this technique is only effective over a small area. So, the researchers built off this idea to develop a technique that uses fabric vibrations to suppress sound in much larger areas, like a bedroom.

Let’s say your next-door neighbors are playing foosball in the middle of the night. You hear noise in your bedroom because the sound in their apartment causes your shared wall to vibrate, which forms sound waves on your side.

To suppress that sound, the researchers could place the silk fabric onto your side of the shared wall, controlling the vibrations in the fiber to force the fabric to remain still. This vibration-mediated suppression prevents sound from being transmitted through the fabric.

“If we can control those vibrations and stop them from happening, we can stop the noise that is generated, as well,” Yang says.

A mirror for sound

Surprisingly, the researchers found that holding the fabric still causes sound to be reflected by the fabric, resulting in a thin piece of silk that reflects sound like a mirror does with light. 

Their experiments also revealed that both the mechanical properties of a fabric and the size of its pores affect the efficiency of sound generation. While silk and muslin have similar mechanical properties, the smaller pore sizes of silk make it a better fabric loudspeaker. 

But the effective pore size also depends on the frequency of sound waves. If the frequency is low enough, even a fabric with relatively large pores could function effectively, Yang says.

When they tested the silk fabric in direct suppression mode, the researchers found that it could significantly reduce the volume of sounds up to 65 decibels (about as loud as enthusiastic human conversation). In vibration-mediated suppression mode, the fabric could reduce sound transmission up to 75 percent.

These results were only possible due to a robust group of collaborators, Fink says. Graduate students at the Rhode Island School of Design helped the researchers understand the details of constructing fabrics; scientists at the University of Wisconsin at Madison conducted simulations; researchers at Case Western Reserve University characterized materials; and chemical engineers in the Smith Group at MIT used their expertise in gas membrane separation to measure airflow through the fabric.

Moving forward, the researchers want to explore the use of their fabric to block sound of multiple frequencies. This would likely require complex signal processing and additional electronics. 

In addition, they want to further study the architecture of the fabric to see how changing things like the number of piezoelectric fibers, the direction in which they are sewn, or the applied voltages could improve performance.

“There are a lot of knobs we can turn to make this sound-suppressing fabric really effective. We want to get people thinking about controlling structural vibrations to suppress sound. This is just the beginning,” says Yang.

This work is funded, in part, by the National Science Foundation (NSF), the Army Research Office (ARO), the Defense Threat Reduction Agency (DTRA), and the Wisconsin Alumni Research Foundation.

Here’s a link to and a citation for the paper,

Single Layer Silk and Cotton Woven Fabrics for Acoustic Emission and Active Sound Suppression by Grace H. Yang, Jinuan Lin, Henry Cheung, Guanchun Rui, Yongyi Zhao, Latika Balachander, Taigyu Joo, Hyunhee Lee, Zachary P. Smith, Lei Zhu, Chu Ma, Yoel Fink. Advanced Materials DOI: https://doi.org/10.1002/adma.202313328 First published: 01 April 2024

This paper is open access.

11th century Arab-Muslim optical scientist laid groundwork for modern-day physics

An April 15, 2024 news item on phys.org announces research into how an Arab scientist’s studies into optics established the basis for modern day physics,

Scientists from the University of Sharjah [United Arab Emirates] and the Warburg Institute [University of London, UK] are poring over the writings of an 11th-century Arab-Muslim polymath to demonstrate their impact on the development of optical sciences and how they have fundamentally transformed the history of physics from the Middle Ages up to modern times in Europe.

Caption: Ibn al-Haytham (“Alhasen”) on the left pedestal of reason [while Galileo is on the right pedestal of the senses] as shown on the frontispiece of the Selenographia (Science of the Moon; 1647) of Johannes HeveliusIbn al-Haytham (“Alhasen”) on the left pedestal of reason [while Galileo is on the right pedestal of the senses] as shown on the frontispiece of the Selenographia (Science of the Moon; 1647) of Johannes Hevelius Credit: Public domain provided by the author

A May 6, 2024 University of Sharjah press release on EurekAlert, which originated the news item, delves further into the topic, Note 1: Why there’s such a large discrepancy in the publication dates for the press release is a mystery to me; Note 2: Links have been removed,

Their research focuses on the legacy of al-Ḥasan Ibn al-Haytham known in Latin as “Alhazen” and particularly his most influential work titled Book of Optics, reputed in Arabic as Kitab al-Manazir and first circulated in Europe via its Latin translation dubbed ‘Perspectiva’. Ibn al-Haytham was born in the southern Iraqi city of Basra in 965 during the Abbasid Caliphate.

The divisions IV-V of this authoritative book have been recently translated into English from Arabic and published by the Warburg Institute under the title “The Optics of Ibn al-Haytham, Books IV–V: On Reflection and Images Seen by Reflection”. Having already rendered divisions I-III into English, the Warburg Institute is bringing together a wide-ranging network of scientists “for a collaborative humanities-science investigation of [Ibn] al-Haytham and the questions his work provokes.“

The role of Alhazen [Ibn al-Haytham] in these processes is simultaneously well-known, but limited; only half of his scientific works have English translation and a quarter are not yet edited.”

Introducing the new translation, the Warburg Institute describes Ibn al-Haytham as “perhaps the greatest mathematician and physicist of the medieval Arabic/Islamic world. His reputation is based not only on the vast amount of material he was able to process, but also on his rigorous scientific methodology.

“He (Ibn al-Haytham) deals with both the mathematics of rays of light and the physical aspects of the eye in seven comprehensive books. His reinstatement of the entire science of optics sets the scene for the whole of the subsequent development of the subject … influencing figures such as William of Ockham, [Johannes] Kepler, [René] Descartes, and Christaan Huygens.”

Professor Nader El-Bizri of Sharjah University’s College of Arts, Humanities, and Social Sciences has just published an academic review of the Warburg Institute’s translation of Ibn al-Haytham. The article, printed in the International Journal of the Classical Tradition, highlights the strong influence the Arab-Muslim optical scientist has exerted over the ages up to the present day.

Ibn al-Haytham’s Book of Optics, Prof. El-Bizri writes, “constituted a monumental foundational opus in the history of science and the visual arts from the Middle Ages to the early modern period in the European milieu and the Islamicate context … The reception of Ibn al-Haytham’s Optics in the European milieu took place from the High Middle Ages via Gerard of Cremona’s Toledo circle in terms of its Latinate translations, and subsequent influence on Franciscan, Dominican, and Jesuit opticians across Europe.“

It influenced François d’Aguilon’s Opticorum libri sex within the Antwerp Jesuit mathematical school and had a direct impact on Johannes Hevelius’s Selenographia. The Optics was also consulted by Girard Desargues, René Descartes, Johannes Kepler and Christaan Huygens.”

Prof. El-Bizri works closely with the Warburg Institute assisting its attempts to reintroduce Ibn al-Haytham to the west. “A remarkable thinker, not only did Ibn al-Haytham revolutionize optical thought by mathematising its study, [but] his thinking also went on to have similar revolutionary effects in medieval Europe.”

The Warburg Institute is investing in rendering the writings of Ibn al-Haytham on optics into English, which Prof. El-Bizri describes as “voluminous”. “Ibn al-Haytham’s Book of Optics indicates with evidence the impact of Arabic sciences and philosophy on the history of science and the architectural and visual arts in Europe, as well as demonstrating how science and the arts influence each other in the manner the studies of optics in their mathematized physics inspired the invention of projective geometric constructions of perspective as a novel Renaissance method of painting and architectural design.”

Prof. El-Bizri adds “The impact of this book is fundamental not only in the history of science from the High Middle Ages till the early-modern period in Europe, but it was also foundational for architecture and the visual arts in the Italian Renaissance and up till the late Baroque era. Moreover, it has further significance in modern conceptions of the mathematization of physics, the reliance on experimentation in science, and the philosophical analysis of perception.”

Asked about the importance of translating Ibn al-Haytham into English despite the lapse of nearly 1000 years, Prof. El-Bizri says the Arab-Muslim scientist’s theories and methodologies, specifically those dealing with optics are still considered “seminal” in the literature. Ibn al-Haytham has had a “foundational impact on the history of science and the arts in Europe.”

The influence of Ibn al-Haytham’s writings in the European milieu, according to Prof. El-Bizri, cannot be overlooked. The Arab-Muslim scientist had “a notable effect on Biagio Pelacani da Parma’s Questiones super perspectiva communi, Leon Battista Alberti’s De pictura, Lorenzo Ghiberti’s Commentarii, culminating in the first printed Latin version in the publication of Friedrich Risner’s Opticae thesaurus in the sixteenth century.“

Then, in the seventeenth century, it influenced François d’Aguilon’s Opticorum libri sex within the Antwerp Jesuit mathematical school and had a direct impact on Johannes Hevelius’s Selenographia.”.

In the Book of Optics, notes Prof. El-Bizri, Ibn al-Haytham establishes an “inventive and precise scientific experimental method (al-iʿtibār al-muḥarrar) with its controlled verificative repeated testing, as framed by isomorphic compositions between physics and mathematics.”

He adds that Ibn al-Haytham in his Optics “aims at elucidating the nature of visual perception through studies on the anatomy and physiology of the eyes, the optic nerves and the frontal part of the brain, along with cognitive psychology and the analysis of psychosomatic ocular motor kinaesthetic acts”

Here’s a link to and a citation for the paper, Note: This is one of the more unusual citation I have hrere,

The Optics of Ibn al-Haytham, Books IV–V: On Reflection and Image by N. El-Bizri. Seen by Reflection, translated from the Arabic by Abdelhamid I. Sabra and prepared for publication by Jan P. Hogendijk (Warburg Institute Studies and Texts, 8), London: University of London Press in association with the Warburg Institute, 2023, pp. xiv+343, ISBN 978-1908590589, £90. Int class trad 31, 116–119 (2024). https://doi.org/10.1007/s12138-024-00654-4 Published: 20 February 2024 Issue Date: March 2024

This paper is behind a paywall.

I was a little curious about the Warburg Institute and found out more on their About Us webpage,

The Warburg Institute is one of the world’s leading centres for the study of art and culture. Its collections, courses and programmes are dedicated to the study of global cultural history and the role of images in society. Founded in Hamburg at the turn of the twentieth century by historian Aby Warburg (1866-1929), the Institute was established to trace the roots of the Renaissance in ancient civilisations and ended up changing the way we see the world around us.

The Warburg Institute owes its mission—and its very existence—to the open movement of people, collections and ideas. Sent into exile when the Nazis came to power, the Institute was transferred to England in 1933 and became part of the University of London in 1944. It has served, during a turbulent century, as a creative crucible for scholars, curators, artists and all those whose work sits outside traditional academic structures.

The Warburg’s unique Library, Archive and Photographic Collection form a holistic, associative engine for exploring the histories of the arts and sciences—linking the textual and the visual, the intellectual and the social, the scientific and the magical. Following an extensive renovation of the Institute’s building in Bloomsbury, new spaces for exhibitions and events have restored the Institute’s original emphasis on discovery, display and debate and are bringing its holdings and programmes to new audiences.

Building on Aby Warburg’s belief that the memory of the past activates the present, the Warburg examines the movement of culture across barriers – of time, space and discipline -to inspire, inform and connect.

There you have it.

Improving implantable technology with borophene

Scientists can be just as competitive as anybody else, from a May 6, 2024 news item on phys.org,

Move over, graphene. There’s a new, improved two-dimensional material in the lab. Borophene, the atomically thin version of boron first synthesized in 2015, is more conductive, thinner, lighter, stronger and more flexible than graphene, the 2D version of carbon.

A May 3, 2024 Pennsylvania State University (Penn State) news release by Jamie Oberdick (also on EurekAlert but published May 7, 2024), which originated the news item, describes the research in more detail,

Now, researchers at Penn State have made the material potentially more useful by imparting chirality — or handedness — on it, which could make for advanced sensors and implantable medical devices. The chirality, induced via a method never before used on borophene, enables the material to interact in unique ways with different biological units such as cells and protein precursors.  

The team, led by Dipanjan Pan, Dorothy Foehr Huck & J. Lloyd Huck Chair Professor in Nanomedicine and professor of materials science and engineering and of nuclear engineering, published their work — the first of its kind, they said — in ACS Nano.  

“Borophene is a very interesting material, as it resembles carbon very closely including its atomic weight and electron structure but with more remarkable properties. Researchers are only starting to explore its applications,” Pan said. “To the best of our knowledge, this is the first study to understand the biological interactions of borophene and the first report of imparting chirality on borophene structures.” 

Chirality refers to similar but not identical physicality, like left and right hands. In molecules, chirality can make biological or chemical units exist in two versions that cannot be perfectly matched, as in a left and right mitten. They can mirror each other precisely, but a left mitten will never fit the right hand as well as it fits the left hand.  

Borophene is structurally polymorphic, which means its boron atoms can be arranged in different configurations to give it different shapes and properties, much like how the same set of Lego blocks can be built into different structures. This gives researchers the ability to “tune” borophene to give it various properties, including chirality.  

“Since this material has remarkable potential as a substrate for implantable sensors, we wanted to learn about their behavior when exposed to cells,” Pan said. “Our study, for the first time ever, showed that various polymorphic structures of borophene interact with cells differently and their cellular internalization pathways are uniquely dictated by their structures.” 

The researchers synthesized borophene platelets — similar to the cellular fragments found in blood — using solution state synthesis, which involves exposing a powdered version of the material in a liquid to one or more external factors, such as heat or pressure, until they combine into the desired product. 

“We made the borophene by subjecting the boron powders to high-energy sound waves and then mixed these platelets with different amino acids in a liquid to impart the chirality,” Pan said. “During this process, we noticed that the sulfur atoms in the amino acids preferred to stick to the borophene more than the amino acids’ nitrogen atoms did.”  

The researchers found that certain amino acids, like cysteine, would bind to borophene in distinct locations, depending on their chiral handedness. The researchers exposed the chiralized borophene platelets to mammalian cells in a dish and observed that their handedness changed how they interacted with cell membranes and entered cells.

According to Pan, this finding could inform future applications, such as development of higher-resolution medical imaging with contrast that could precisely track cell interactions or better drug delivery with pinpointed material-cell interactions. Critically, he said, understanding how the material interacts with cells — and controlling those interactions — could one day lead to safer, more effective implantable medical devices. 

“Borophene’s unique structure allows for effective magnetic and electronic control,” Pan said, noting the material could have additional applications in health care, sustainable energy and more. “This study was just the beginning. We have several projects underway to develop biosensors, drug delivery systems and imaging applications for borophene.” 

Along with Pan, other authors of the study include Teresa Aditya, postdoctoral researcher in nuclear engineering; Parikshit Moitra, research assistant professor of nuclear engineering at Penn State during the study and current assistant professor at the Indian Institutes of Science Education and Research; Maha Alafeef, research scientist at Penn State during the study and current assistant professor at Jordan University of Science and Technology; and David Skrodzki, graduate research assistant in materials science and engineering at Penn State.  

The Centers for Disease Control and Prevention, the U.S. National Science Foundation and the Department of Defense partially supported this research. 

Here’s a link to and a citation for the paper,

Chiral Induction in 2D Borophene Nanoplatelets through Stereoselective Boron–Sulfur Conjugation by Teresa Aditya, Parikshit Moitra, Maha Alafeef, David Skrodzki, and Dipanjan Pan. ACS Nano 2024, 18, 18, 11921–11932 DOOI: https://doi.org/10.1021/acsnano.4c01792 Publication Date:April 23, 2024 Copyright © 2024 American Chemical Society

This paper is behind a paywall.

Programmable living materials made with 3D printing methods and synthetic biology

There’s more than one ‘living’ material story here on this blog; it’s the plant cells that make this latest story different from the others. From a May 1, 2024 news item on phys.org, Note: A link has been removed,

Scientists are harnessing cells to make new types of materials that can grow, repair themselves and even respond to their environment. These solid “engineered living materials” are made by embedding cells in an inanimate matrix that’s formed in a desired shape. Now, researchers report in ACS Central Science that they have 3D printed a bioink containing plant cells that were then genetically modified, producing programmable materials. Applications could someday include biomanufacturing and sustainable construction.

Caption: After 24 days, the colors produced by plant cells in two different bioinks printed in this leaf-shaped engineered living material are clearly visible. Credit: Adapted from ACS Central Science 2024, DOI: 10.1021/acscentsci.4c00338

A May 1, 2024 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, explains what makes this living material different,

Recently, researchers have been developing engineered living materials, primarily relying on bacterial and fungal cells as the live component. But the unique features of plant cells have stirred enthusiasm for their use in engineered plant living materials (EPLMs). However, the plant cell-based materials created to date have had fairly simple structures and limited functionality. Ziyi Yu, Zhengao Di and colleagues wanted to change that by making intricately shaped EPLMs containing genetically engineered plant cells with customizable behaviors and capabilities.

The researchers mixed tobacco plant cells with gelatin and hydrogel microparticles that contained Agrobacterium tumefaciens, a bacterium commonly used to transfer DNA segments into plant genomes. This bioink mixture was then 3D printed on a flat plate or inside a container filled with another gel to form shapes such as grids, snowflakes, leaves and spirals. Next, the hydrogel in the printed materials was cured with blue light, hardening the structures. During the ensuing 48 hours, the bacteria in the EPLMs transferred DNA to the growing tobacco cells. The materials were then washed with antibiotics to kill the bacteria. In the following weeks, as the plant cells grew and replicated in the EPLMs, they began producing proteins dictated by the transferred DNA.

In this proof-of-concept study, the transferred DNA enabled the tobacco plant cells to produce green fluorescent proteins or betalains — red or yellow plant pigments that are valued as natural colorants and dietary supplements. By printing a leaf-shaped EPLM with two different bioinks — one that created red pigment along the veins and the other a yellow pigment in the rest of the leaf — the researchers showed that their technique could produce complex, spatially controlled and multifunctional structures. Such EPLMs, which combine the traits of living organisms with the stability and durability of non-living substances, could find use as cellular factories to churn out plant metabolites or pharmaceutical proteins, or even in sustainable construction applications, according to the researchers.

The authors acknowledge funding from National Key Research and Development Program of China, the National Natural Science Foundation of China, the Natural Science Foundation of Jiangsu Province, and the State Key Laboratory of Materials-Oriented Chemical Engineering.

Here’s a link to and a citation for the paper,

Advancing Engineered Plant Living Materials through Tobacco BY-2 Cell Growth and Transfection within Tailored Granular Hydrogel Scaffolds by Yujie Wang, Zhengao Di, Minglang Qin, Shenming Qu, Wenbo Zhong, Lingfeng Yuan, Jing Zhang, Julian M. Hibberd, and Ziyi Yu. ACS Cent. Sci. 2024, 10, 5, 1094–1104 DOI: https://doi.org/10.1021/acscentsci.4c00338 Publication Date:May 1, 2024 Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.

This paper is open access.

I think the last three years in particular have seen an upsurge of living materials stories (on this blog, at least). This one is a favourite of mine,

If you’re curious to see more, I suggest using the search term ‘living materials’.

Honey-containing nanoemulsion for topical delivery

This April 29, 2024 Xia & He Publishing press release is in fact the abstract for the paper,

Background and objectives

Honey is a viscous, hygroscopic liquid in nature. It has the ability to treat wounds, wrinkles, aging, and inflammation. This study’s objective was to create and characterize a nanoemulsion containing honey and evaluate its stability.

Methods

A pseudo-ternary phase diagram was retraced with several concentrations of the Smix, water, and liquid paraffin oil to formulate nanoemulsions containing honey. From the results of pre-formulation stability studies, formulation HNE-19, with a hydrophilic lipophilic balance value of 10, and a surfactant and oil ratio of 1:1, was selected as the most stable formulation. HNE-19 and base (B-19) were further subjected to thermodynamic studies of heating and cooling cycles and centrifugation. HNE-19 and its respective base B-19 were characterized for physical changes, droplet size analysis, pH measurements, turbidity, viscosity, and rheological parameters for a period of 90 days.

Results

Results showed that the nanoemulsion containing honey was clear and milky white. There was no evidence of phase separation in HNE-19 and B-19 after the thermodynamic study. The droplet size of fresh HNE-19 was 91.07 nm with a zeta potential of −38.5 mV. After three months, the droplet size and zeta potential were 197.06 nm and −32.5 mV respectively. The observed pH was between 5.8 and 6.7, which corresponds with the pH of the skin. HNE-19 showed non-Newtonian flow and pseudo-plastic behaviour.

Conclusions

A honey-loaded nanoemulsion (HNE-19) was successfully developed and characterized for stability. The nanoemulsion was thermodynamically stable. With the good rheology and stability of honey, the size of the nanodroplets was below 200 nm. Throughout the 90-day testing period, the nanoemulsion maintained normal pH values that corresponded to skin pH. The emulsion also showed non-Newtonian flow and pseudo-plastic behaviour, which are required for ideal topical formulation. In conclusion, stability studies and characterization showed that nanoemulsions containing honey are exceptional topical delivery formulations.

Here’s a link to and a citation for the paper,

Development and Characterization of Honey-containing Nanoemulsion for Topical Delivery by Muneer Ahmad, Atif Ali, and Hira Khan. Journal of Exploratory Research in Pharmacology 2024 DOI: 10.14218/JERP.2023.00012 Copyright © 2024 Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 License (CC BY-NC 4.0), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is open access.