Thermal control of windows with artificial vasculature

Ben Hatton, a professor of Engineering at the University of Toronto, and his colleagues at Harvard University are proposing a ‘bio-inspired’ alternative to commonly proposed techniques for gaining  thermal control over windows. From an Aug. 2, 2013 news item on ScienceDaily (Note: A link has been removed),

In a recent article in Solar Energy Materials & Solar Cells, Hatton and colleagues at Harvard University describe a novel process to cut down on heat loss during the winter and keep buildings cool during the summer. Their “bio-inspired approach to thermal control for cooling (or heating) building window surfaces” calls for attaching optically clear, flexible elastomer sheets, bonded to regular glass window panes.

The elastomer sheets, made from polydimethylsiloxane (PDMS) have channels running through them through which room temperature water flows. The technique has resulted in 7 to 9 degrees of cooling in laboratory experiments and is effective both at small and large scales, Hatton and his colleagues said.

“Our results show that an artificial vascular network within a transparent layer, composed of channels on the micrometer to millimeter scale, and extending over the surface of a window, offers an additional and novel cooling mechanism for building windows and a new thermal control tool for building design,” he said.

Here’s a link to and a citation for the research paper,

An artificial vasculature for adaptive thermal control of windows by Benjamin D. Hatton, Ian Wheeldon, Matthew J. Hancock, Mathias Kolle, Joanna Aizenberg, and Donald E. Ingber. Solar Energy Materials and Solar Cells, 2013; 117: 429 DOI: 10.1016/j.solmat.2013.06.027; Volume 117, October 2013, Pages 429–436.

I have written about thermal control of windows before as per this Sept. 4, 2012 posting which features an excerpt of an article discussing thermochromic, electrochromic, and gasochromic windows.

Leave a Reply

Your email address will not be published. Required fields are marked *