Carbon nanotubes one way: gas The other way: flexible sensors*

A Sept. 24, 2013 Technische Universitaet Muenchen (TUM) press release (also on EurekAlert) promises that flexible sensors are on the horizon,

Carbon nanotube-based gas sensors created at TUM offer a unique combination of characteristics that can’t be matched by any of the alternative technologies. They rapidly detect and continuously respond to extremely small changes in the concentrations of gases including ammonia, carbon dioxide, and nitrogen oxide. They operate at room temperature and consume very little power. Furthermore, as the TUM researchers report in their latest papers, such devices can be fabricated on flexible backing materials through large-area, low-cost processes.

Thus it becomes realistic to envision plastic food wrap that incorporates flexible, disposable gas sensors, providing a more meaningful indicator of food freshness than the sell-by date. Measuring carbon dioxide, for example, can help predict the shelf life of meat. “Smart packaging” – assuming consumers find it acceptable and the devices’ non-toxic nature can be demonstrated – could enhance food safety and might also vastly reduce the amount of food that is wasted. Used in a different setting, the same sort of gas sensor could make it less expensive and more practical to monitor indoor air quality in real time.

Dexter Johnson in a Sept. 26, 2013 posting on Nanoclast (an IEEE [Institute of Electrical and Electronics Engineers] blog) warns (Note: Links have been removed),

While this sounds great, the obstacle preventing this from becoming a reality has always been cost. Thin-film sensory packaging may make sense for a high-cost item, but for an inexpensive grocery store product, it’s hard to justify an additional cost that may be as much as the product itself. I made this point nearly a decade ago in report I authored titled, “The Future of Nanotechnology in Printing and Packaging”.

This doesn’t even take into account the often biased opinion people have about nanotechnology in relation to food.

Dexter recommends the researchers focus their commercialization efforts on robotic skins and other high ticket applications.

In reading the description of how the researchers created these flexible sensors, Dexter’s concerns are brought int high relief,

The most basic building block for this technology is a single cylindrical molecule, a rolled-up sheet of carbon atoms that are linked in a honeycomb pattern. This so-called carbon nanotube could be likened to an unimaginably long garden hose: a hollow tube just a nanometer or so in diameter but perhaps millions of times as long as it is wide. Individual carbon nanotubes exhibit amazing and useful properties, but in this case the researchers are more interested in what can be done with them en masse.

Laid down in thin films, randomly oriented carbon nanotubes form conductive networks that can serve as electrodes; patterned and layered films can function as sensors or transistors. “In fact,” Prof. Lugli [Prof. Paolo Lugli, director of TUM’s Nanoelectronics Institute] explains, “the electrical resistivity of such films can be modulated by either an applied voltage (to provide a transistor action) or by the adsorption of gas molecules, which in turn is a signature of the gas concentration for sensor applications.” And as a basis for gas sensors in particular, carbon nanotubes combine advantages (and avoid shortcomings) of more established materials, such as polymer-based organic electronics and solid-state metal-oxide semiconductors. What has been lacking until now is a reliable, reproducible, low-cost fabrication method.

Spray deposition, supplemented if necessary by transfer printing, meets that need. An aqueous solution of carbon nanotubes looks like a bottle of black ink and can be handled in similar ways. Thus devices can be sprayed – from a computer-controlled robotic nozzle – onto virtually any kind of substrate, including large-area sheets of flexible plastic. There is no need for expensive clean-room facilities.

“To us it was important to develop an easily scalable technology platform for manufacturing large-area printed and flexible electronics based on organic semiconductors and nanomaterials,” Abdellah says. “To that end, spray deposition forms the core of our processing technology.”

Remaining technical challenges arise largely from application-specific requirements, such as the need for gas sensors to be selective as well as sensitive.

Here are citations for and links to three of the researchers’ papers,

Fabrication of carbon nanotube thin films on flexible substrates by spray deposition and transfer printing. Ahmed Abdelhalim, Alaa Abdellah, Giuseppe Scarpa, Paolo Lugli. Carbon, Vol. 61, September 2013, 72-79. DOI: 10.1016/j.carbon.2013.04.069

Flexible carbon nanotube-based gas sensors fabricated by large-scale spray deposition.
Alaa Abdellah, Zubair Ahmad, Philipp Köhler, Florin Loghin, Alexander Weise, Giuseppe Scarpa, Paolo Lugli. IEEE Sensors Journal, Vol. 13 Issue 10, October 2013, 4014-4021. DOI: 10.1109/JSEN.2013.2265775

Scalable spray deposition process for high performance carbon nanotube gas sensors. Alaa Abdellah, Ahmed Abdelhalim, Markus Horn, Giuseppe Scarpa, and Paolo Lugli. IEEE Transactions on Nanotechnology 12, 174-181, 2013. DOI: 10.1109/TNANO.2013.2238248

All three papers are behind paywalls.

In one of those coincidences that take place from time to time, I wrote about an upcoming event taking place in the Guardian’s London offices, a panel discussion on nanotechnology and food,in a Sept.  26, 2013 posting.

* In the interest of some clarity the head was changed on March 13, 2015.

1 thought on “Carbon nanotubes one way: gas The other way: flexible sensors*

  1. Pingback: Carbon nanotubes a second way: Cedric, the carbon nanotube computer « FrogHeart

Leave a Reply

Your email address will not be published. Required fields are marked *