Doubling paper strength with nanofibrils; a nanocellulose story

A June 3, 2014 Cerealus news release on PR Newswire announces a successful commercial trial for a new nanoscale process making paper stronger,

Cerealus, working with the University of Maine Process Development Center continues to be a leader in innovative technologies for Paper and Forestry research. Utilizing Cerealus’ unique starch encapsulation technology and UMaine’s proprietary developments, the collaborative effort enabled a novel bio-based cellulose nanofibrils (CNF) process to be used in paper and paperboard manufacturing at significantly higher levels than previously possible to develop high strength, lightweight and lower cost paper and paperboard.

The latest commercial trial doubled cellulose Nanofibril utilization in paper with the patent pending starch encapsulation technology, marketed as Cerenano™. This project confirms the promise of nanotechnology to deliver dramatic improvement in sheet density, porosity, surface quality and Z-direction strength (internal bond). Paper mills can expect:

  •     Tighter sheet
  •     More uniform surface
  •     Better printability
  •     Reduced opacity
  •     Reduced energy requirements

The collaborative private/public partnership has significantly improved the economic prospects for deploying nanotechnology in paper, wood and forestry products. A recent report estimates the current addressable market for nano cellulose at $500 million for North America.

Mike Bilodeau, Director of the UMaine Process Development Center underscored the commercial scalability of this project by saying, “This technology represents a significant break-through in the ability to leverage the unique properties of cellulose nanofibrils in paper and paperboard products.”

Tony Jabar, CEO and founder of Cerealus goes on to say, “Cerealus takes great pride in taking a lead role to create cutting edge nanocellulose technology. Successful paper makers appreciate innovation as a key to sustained profitability in the challenging paper making sector of our economy. This new development is our third generation technology and demonstrates the value of our collaboration with the University of Maine Process Development Center.”

Cerenano™ is a high performance additive that enables efficient loading of high levels of starch thus creating strong internal bond strength. The successful commercial trial demonstrated positive economic benefits and commercial scalability. The likely next phase in product development will be size press applications.

The University of Maine is working with several private companies and federal agencies to accelerate the commercialization of cellulose nanofibrils. This effort has significant implications to the health of National Forests and private timberland, as well as strategic and economic impacts to the domestic Forest Products Industry.

You can find Cerealus here and Cerenano™ page here where there’s a link to a 50 pp. presentation on Cerenano. From the presentation,

Using Renewable Nanotechnology (and Other Novel Approaches) to Improve Base Paper Performance
AWA Conferences & Events
AWA Silicone Technology Seminar 2014
March 19, 2014
Park Plaza Hotel Amsterdam Airport
Amsterdam, Netherlands
Robert Hamilton
President
Stirling Consulting, Inc.

I was particularly interested to see this (from p. 3 of the presentation),

Cellulose Nanofibrils (CNF)
The Renewable Nanomaterial

• CNF can be made from any plant matter.
# Process uses a series of mechanical refining steps.
# Resulting material is FDA compliant and compatible with any aqueous system. CNF is cellulose.

• Not to be confused with Cellulose NanoCrystals (CNC)
# Produced using more expensive strong acid hydrolysis process.

It’s the first time I’ve stumbled across a comparison of any kind between CNC (also known as NCC, nanocrystalline cellulose) and CNF and I find it quite instructive.

Leave a Reply

Your email address will not be published. Required fields are marked *