Atlantic Canada’s Lamda Guard signs deal to test nanocomposite windshield film with Airbus

This story comes from Nova Scotia although you wouldn’t know it if you’d only read the June 5, 2014 news item on Azonano,

Lamda Guard, a company based in Atlantic Canada, has signed an agreement with leading aircraft manufacturer Airbus to test a breakthrough innovation designed to deflect unwanted bright light or laser sources from impacting jetliner flight paths, and causing pilot disorientation or injury.

A June 4, 2014 news release (either from Lamda Guard.com or MTI [metamaterial.com]; Note: More about the multiple webspaces later] and there’s a PDF version here), which originated the news item, provides a little more information about the technology and the perspectives from various stakeholders

Lamda Guard’s innovative thin films utilize metamaterial technology on cockpit windscreens to selectively block and control light coming from any angle even at the highest power levels. “Today marks a milestone in optical applications of nano-composites,” said George Palikaras, President and CEO of Lamda Guard. “Through our collaboration with Airbus we are working to introduce our metamaterial technology, for the first time, as a solution to laser interference in the aviation industry.” The announcement today comes within weeks of the release of an FBI [US Federal Bureau of Investigation] report citing 3,960 aircraft laser strikes in the US in 2013 according to the Federal Aviation Authority (FAA).

Senior Vice President of Innovation Yann Barbaux stated: “At Airbus, we are always on the lookout for new ideas coming from innovative SMEs [small to medium enterprises], such as Lamda Guard. We are very pleased to explore together the potential application of this solution to our aircraft, for the benefit of our customers.”

Over the past year Lamda Guard has been working with the research community at the University of Moncton and the University of New Brunswick, as well as stakeholders, investors and funders to highlight the benefits of nano-composites. The Atlantic Canada Opportunities Agency (ACOA) in particular has played an important role in Lamda Guard’s research and development efforts. In 2012, ACOA assisted Lamda Guard with technology commercialization and recently upgraded its contribution to $500,000 to further assist the company in developing and manufacturing its products for the aviation industry.

The Lamda Guard Airbus partnership marks the first time an optical metamaterial nano-composite has been applied on a large-scale surface.

I tried to find more information about the technology and tracked down this tiny bit, from the What are MetaMaterials? webpage on the MTI website,

A metamaterial typically consists of a multitude of structured unit cells that are comprised of multiple individual elements, which are referred to as meta-atoms. The individual elements are assembled from conventional microscopic materials such as metals and/or plastics, which are arranged in periodic patterns.

MTI’s precisely designed structures are developed with proprietary algorithms, producing a new generation of optical products that are built in state-of-the-art thin film nano-fabrication labs. MTI’s proprietary software accurately predicts the desired design pattern to generate a unique material that meets customer specifications. MTI’s sleek designs mean manufacturers can reduce their cost of materials significantly while increasing performance, e.g. by increasing the light output of an LED bulb or increasing the absorption of light in a solar panel.

Multiple webspaces and presences

While Lamda Guard has a .com presence, you will find yourself on the metamaterial.com website in the Lamda Guard webspace (I suppose you could also call it a subsite) once you start clicking for more information.  In fact, MTI owns three Lamda companies as per this description from the Our Company webpage on the MTI (metamaterial.com) website (Note: Links have been removed),

MTI is an advanced materials and systems engineering company developing and commercializing innovative optical solutions. The company’s core team has over 200 years of combined experience at the forefront of the design and implementation of metamaterials, making MTI a pioneer in bridging the gap between the theoretical and the possible.

MTI specializes in metamaterials, nanotechnology, theoretical and computational electromagnetics. The company’s in-house expertise enables the rapid development of a wide array of metamaterial applications, covering a diverse range of markets.

MTI’s technologies are adaptable and can be custom-designed to suit an industry manufacturer’s specifications allowing for scalability and rapid prototyping with minimum overheads. MTI provides access to world class nano-composite research and development, including specialty, as well as customized, products and licensing of its proprietary solutions to customers ranging from government to private companies.

MTI has three wholly owned subsidiaries:

Lamda Guard Inc. which develops advanced filters to block out selected parts of the light spectrum, protecting the eyes from lasers or other sources of hazardous light.

Lamda Solar Inc. products increase the efficiency of solar panel cells by absorbing more light.

Lamda Lux Inc. technology increases the delivered lumens and reduces the cost of thermal management of LED lighting.

Interestingly, the Lamda Guard Management team‘s (in the Lamda Guard webspace) Chief Science Officer, Dr. Themos Kallos, and Chief Intellectual Property Officer, Dr. Quinton Fivelman, both appear to reside in the UK (assuming I looked at the correct LinkedIn profiles).  Coincidentally, MTI’s contact page lists the company’s headquarters as being in Nova Scotia but Sales, Research and Development would seem to be located in the UK.

Presumably, this company is maximizing its access to government grants and tax incentives in both the UK and Canada. The deal with the Airbus suggests that this has been a successful strategy possibly leading to commercialized technology and, hopefully, jobs.

Leave a Reply

Your email address will not be published. Required fields are marked *