Foldable glass (well, there’s some plastic too)

Michael Berger has written a fascinating Aug. 11, 2015 Nanowerk Spotlight article on folding glass,

Have you ever heard about foldable glass?

Exactly.

Glass is notorious for its brittleness. Although industry has developed ultra-thin (∼0.1 mm), flexible glass (like Corning’s Willow® Glass) that can be bent for applications liked curved TV and smartphone displays, fully foldable glass had not been demonstrated. Until now.

Khang [Dahl-Young Khang, an Associate Professor in the Department of Materials Science and Engineering at Yonsei University] and his group have now demonstrated substrate platforms of glass and plastics, which can be reversibly and repeatedly foldable at pre designed location(s) without any mechanical failure or deterioration in device performances.

“We have engineered the substrates to have thinned parts on which the folding deformation should occur,” Moon Jong Han, first author of the paper a graduate student in Khang’s lab, says. “This localizes the deformation strain on those thinned parts only.”

He adds that this approach to engineering substrates has another advantage regarding device materials: “There is no need to adopt any novel materials such as nanowires, carbon nanotubes, graphene, etc. Rather, all the conventional materials that have been used for high-performance devices can be directly applied on our engineered substrates.”

Intriguingly, even ITO (indium tin oxide), a very brittle transparent conducting oxide, can be used as electrode on this novel foldable glass platform.

What makes the approach especially intriguing is the ability to reverse the fold and that it doesn’t require special nanomaterials, such as carbon nanotubes, etc. From Berger’s Aug. 11, 2015 article,

The width of the thinned parts, the gap width, plays the key role in implementing dual foldability. The other key element is the asymmetric design of the gap width for the second folding.

The researchers achieved foldability, in part, by copying a technique used for folding mats and oriental hinge-less screens which have thinned areas to allow folding.

Here’s a link to and a citation for the paper,

Glass and Plastics Platforms for Foldable Electronics and Displays by Moon Jung Han and Dahl-Young Khang. Advanced Materials DOI: 10.1002/adma.201501060 First published: 21 July 2015

This paper is behind a paywall.

Berger’s article is not only fascinating, it is also illustrated with some images provided by the researchers.

Leave a Reply

Your email address will not be published. Required fields are marked *