Heat and light signifying much from a new nanoparticle at the University of Toronto

Paraphrasing from Shakespeare’s play MacBeth for this piece is a stretch but I can’t resist. The title comes from the speech MacBeth gives on hearing of his wife’s death (from The Tragedy of MacBeth webpage on the MIT website),

… Out, out, brief candle!
Life’s but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more: it is a tale
Told by an idiot, full of sound and fury,
Signifying nothing. [emphasis mine]

Enough of the digression. Scientists at the Princess Margaret Hospital and the University of Toronto, have engineered a nanoparticle that uses light and heat to destroy tumours and light and sound to find and image tumours. From the March 20, 2011 news release on the University of Toronto website,

“In the lab, we combined two naturally occurring molecules (chlorophyll and lipid) to create a unique nanoparticle that shows promise for numerous diverse light-based (biophotonic) applications,” Professor [Gang] Zheng said. “The structure of the nanoparticle, which is like a miniature and colourful water balloon, means it can also be filled with drugs to treat the tumor it is targeting.”

It works this way, explains first author Jonathan Lovell, a doctoral student at IBBME [Institute of Biomaterials & Biomedical Engineering] and OCI [Ontario Cancer Institute]: “Photothermal therapy uses light and heat to destroy tumors. With the nanoparticle’s ability to absorb so much light and accumulate in tumors, a laser can rapidly heat the tumor to a temperature of 60 degrees and destroy it. The nanoparticle can also be used for photoacoustic imaging, which combines light and sound to produce a very high-resolution image that can be used to find and target tumors.”

Here’s what makes this such a breakthrough,

This nanomaterial is also non-toxic, explained Professor Warren Chan of IBBME, another author of the paper. “Jon Lovell and Gang Zheng created a material that doesn’t have metals, [which] means no toxins, but with similar tunable properties to its metal nanostructure brother,” he said. This is the first reported organic nanostructure with such a unique feature, he noted, and so provides a significant opportunity to explore unique designs of organic nanostructures for biomedical applications without concerns regarding toxicity.

I recently mentioned Professor Zheng’s work in the context of a recent funding announcement from the Canadian Space Agency and the Canadian Institutes of Health Research in my March 17, 2011 posting.

If I recall rightly and this is a pretty simple explanation, organic chemistry includes the element of carbon while inorganic excludes it.

Leave a Reply

Your email address will not be published. Required fields are marked *