Mechano-photonic artificial synapse is bio-inspired

The word ‘memristor’ usually pops up when there’s research into artificial synapses but not in this new piece of research. I didn’t see any mention of the memristor in the paper’s references either but I did find James Gimzewski from the University of California at Los Angeles (UCLA) whose research into brainlike computing (neuromorphic computing) is running parallel but separately to the memristor research.

Dr. Thamarasee Jeewandara has written a March 25, 2021 article for about the latest neuromorphic computing research (Note: Links have been removed)

Multifunctional and diverse artificial neural systems can incorporate multimodal plasticity, memory and supervised learning functions to assist neuromorphic computation. In a new report, Jinran Yu and a research team in nanoenergy, nanoscience and materials science in China and the US., presented a bioinspired mechano-photonic artificial synapse with synergistic mechanical and optical plasticity. The team used an optoelectronic transistor made of graphene/molybdenum disulphide (MoS2) heterostructure and an integrated triboelectric nanogenerator to compose the artificial synapse. They controlled the charge transfer/exchange in the heterostructure with triboelectric potential and modulated the optoelectronic synapse behaviors readily, including postsynaptic photocurrents, photosensitivity and photoconductivity. The mechano-photonic artificial synapse is a promising implementation to mimic the complex biological nervous system and promote the development of interactive artificial intelligence. The work is now published on Science Advances.

The human brain can integrate cognition, learning and memory tasks via auditory, visual, olfactory and somatosensory interactions. This process is difficult to be mimicked using conventional von Neumann architectures that require additional sophisticated functions. Brain-inspired neural networks are made of various synaptic devices to transmit information and process using the synaptic weight. Emerging photonic synapse combine the optical and electric neuromorphic modulation and computation to offer a favorable option with high bandwidth, fast speed and low cross-talk to significantly reduce power consumption. Biomechanical motions including touch, eye blinking and arm waving are other ubiquitous triggers or interactive signals to operate electronics during artificial synapse plasticization. In this work, Yu et al. presented a mechano-photonic artificial synapse with synergistic mechanical and optical plasticity. The device contained an optoelectronic transistor and an integrated triboelectric nanogenerator (TENG) in contact-separation mode. The mechano-optical artificial synapses have huge functional potential as interactive optoelectronic interfaces, synthetic retinas and intelligent robots. [emphasis mine]

As you can see Jeewandara has written quite a technical summary of the work. Here’s an image from the Science Advances paper,

Fig. 1 Biological tactile/visual neurons and mechano-photonic artificial synapse. (A) Schematic illustrations of biological tactile/visual sensory system. (B) Schematic diagram of the mechano-photonic artificial synapse based on graphene/MoS2 (Gr/MoS2) heterostructure. (i) Top-view scanning electron microscope (SEM) image of the optoelectronic transistor; scale bar, 5 μm. The cyan area indicates the MoS2 flake, while the white strip is graphene. (ii) Illustration of charge transfer/exchange for Gr/MoS2 heterostructure. (iii) Output mechano-photonic signals from the artificial synapse for image recognition.

You can find the paper here,

Bioinspired mechano-photonic artificial synapse based on graphene/MoS2 heterostructure by Jinran Yu, Xixi Yang, Guoyun Gao, Yao Xiong, Yifei Wang, Jing Han, Youhui Chen, Huai Zhang, Qijun Sun and Zhong Lin Wang. Science Advances 17 Mar 2021: Vol. 7, no. 12, eabd9117 DOI: 10.1126/sciadv.abd9117

This appears to be open access.

Leave a Reply

Your email address will not be published. Required fields are marked *