Abracadabra! A new material!

A Nov. 3, 2011 news release from the US Dept. of Energy (DOE) announced the Materials Project,

Researchers from the Department of Energy’s (DOE’s) Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT) jointly launched today a groundbreaking new online tool called the Materials Project, which operates like a “Google” of material properties, enabling scientists and engineers from universities, national laboratories and private industry to accelerate the development of new materials, including critical materials.

Discovering new materials and strengthening the properties of existing materials are key to improving just about everything humans use – from buildings and highways to modern necessities. For example, advances in a group of materials called “critical materials” are more important to America’s competitiveness than ever before – particularly in the clean energy field.  Cell phones, wind turbines, solar panels and a variety of military technologies depend on these roughly fourteen elements (including nine “rare earth” elements).  With about 90 percent coming from China, there are growing concerns about potential supply shortages and disruptions.

The Dec. 20, 2011 news item on Nanowerk provides more detail,

The project is a direct outgrowth of MIT’s Materials Genome Project, initiated in 2006 by Gerbrand Ceder, the Richard P. Simmons (1953) Professor of Materials Science and Engineering. The idea, he says, is that the site “would become the Google of material properties,” making available data previously scattered in many different places, most of them not even searchable.

For example, it used to require months of work — consulting tables of data, performing calculations and carrying out precise lab tests — to create a single phase diagram showing when compounds incorporating several different elements would be solid, liquid or gas. Now, such a diagram can be generated in a matter of minutes, Ceder says.

The new tool could revolutionize product development in fields from energy to electronics to biochemistry, its developers say, much as search engines have transformed the ability to search for arcane bits of knowledge.

Already, more than 500 researchers from universities, research labs and companies have used the new system to seek new materials for lithium-ion batteries, photovoltaic cells and new lightweight alloys for use in cars, trucks and airplanes. The Materials Project is available for use by anyone, although users must register (free of charge) in order to spend more than a few minutes, or to use the most advanced features.

Interestingly, the Materials Project could have an impact on education too,

The tools could also make a big difference in education, Ceder says: When professors set up experiments to help students learn specific principles, “it used to be that we had to pick easy examples” with known outcomes, he says. Now, it’s possible to set much more challenging exercises.

I wasn’t expecting to find a quote from a Canadian academic but here goes,

Mark Obrovac, an associate professor of chemistry and physics at Dalhousie University in Nova Scotia, says, “The Materials Project has made complex computational techniques available to materials researchers at a click of a mouse. This is a major innovation in materials science, enabling researchers to rapidly predict the structure and properties of materials before they make them, and even of materials that cannot be made. This can significantly accelerate materials development in many important areas, including advanced batteries, microelectronics and telecommunications.”

You can find the Materials Project here.

Leave a Reply

Your email address will not be published. Required fields are marked *