Gold nanoparticle self-assembly visualization at the Argonne National Laboratory (US)

There’s a Mar. 13, 2013 news item on phys.org which seems to have been written by someone who’s very technical,

The self-assembly of gold nanoparticles (Au NPs) coated with specific organic ions in water was observed by Center for Nanoscale Materials staff in the Nanobio Interfaces, Electronic & Magnetic Materials & Devices, and Nanophotonics groups at the Argonne National Laboratory using in situ transmission electron microscopy (TEM) equipped with a liquid cell. The Au NPs formed one-dimensional chains within a few minutes.

The originating March 2013 article is on an Argonne National Laboratory’s Center for Nanoscale Materials page,

The self-assembly of NPs attracts intense attention for its potential application in the fabrication of hybrid systems with collective properties from different types of materials. The observations provided here clearly elucidate the complex mechanism of charged NP self-assembly processes. They also paint a cautionary tale on using TEM in situ cells to imitate self-assembly processes in actual solution environments. [emphasis mine]

The hydrated electrons formed in radiolysis of water decrease the overall positive charge of cetyltrimethylammonium (CTA)-coated Au NPs. The NPs also were coated with negative citrate ions. (With citrate alone, however, the Au NPs remained steady in the liquid cell regardless of electron-beam intensity). The anisotropic attractive interactions, including dipolar and Van der Waals interactions, overcome the repulsion among the NPs and induce the assembly of NPs. The spatial segregation of different sizes of NPs as a result of electric field gradients within the cell was observed as well.

I’m not sure why the observations paint a cautionary tale. Perhaps a reader could enlighten me?

The researchers also provided an image,

Cetyltrimethylammonium-ion-coated gold nanoparticles before (top) and after (bottom) 500 seconds of electron-beam exposure inside a TEM liquid cell at 200 kV. Scale bar: 100 nm. [downloaded from http://nano.anl.gov/news/highlights/2013_gold_nanoparticles.html]

Cetyltrimethylammonium-ion-coated gold nanoparticles before (top) and after (bottom) 500 seconds of electron-beam exposure inside a TEM liquid cell at 200 kV. Scale bar: 100 nm. [downloaded from http://nano.anl.gov/news/highlights/2013_gold_nanoparticles.html]

For anyone who can understand the technical explanations, here’s a citation and a link to the research paper,

In Situ Visualization of Self-Assembly of Charged Gold Nanoparticles by Yuzi Liu, Xiao-Min Lin, Yugang Sun, and Tijana Rajh. J. Am. Chem. Soc., 2013, 135 (10), pp 3764–3767 DOI: 10.1021/ja312620e Publication Date (Web): February 22, 2013

Copyright © 2013 American Chemical Society

The paper is behind a paywall.

 

Leave a Reply

Your email address will not be published. Required fields are marked *