Tag Archives: A tiered-testing strategy for nanomaterial hazard assessment

Reducing animal testing for nanotoxicity—PETA (People for the Ethical Treatment of Animals) presentation at NanoTox 2014

Writing about nanotechnology can lead you in many different directions such as the news about PETA (People for the Ethical Treatment of Animals) and its poster presentation at the NanoTox 2014 conference being held in Antalya, Turkey from April 23 – 26, 2014. From the April 22, 2014 PETA news release on EurekAlert,

PETA International Science Consortium Ltd.’s nanotechnology expert will present a poster titled “A tiered-testing strategy for nanomaterial hazard assessment” at the 7th International Nanotoxicology Congress [NanoTox 2014] to be held April 23-26, 2014, in Antalya, Turkey.

Dr. Monita Sharma will outline a strategy consistent with the 2007 report from the US National Academy of Sciences, “Toxicity Testing in the 21st Century: A Vision and a Strategy,” which recommends use of non-animal methods involving human cells and cell lines for mechanistic pathway–based toxicity studies.

Based on the current literature, the proposed strategy includes thorough characterization of nanomaterials as manufactured, as intended for use, and as present in the final biological system; assessment using multiple in silico and in vitro model systems, including high-throughput screening (HTS) assays and 3D systems; and data sharing among researchers from government, academia, and industry through web-based tools, such as the Nanomaterial Registry and NanoHUB

Implementation of the proposed strategy will generate meaningful information on nanomaterial properties and their interaction with biological systems. It is cost-effective, reduces animal use, and can be applied for assessing risk and making intelligent regulatory decisions regarding the use and disposal of nanomaterials.

PETA’s International Science Consortium has recently launched a nanotechnology webpage which provides a good overview of the basics and, as one would expect from PETA, a discussion of relevant strategies that eliminate the use of animals in nanotoxicity assessment,

What is nano?

The concept of fabricating materials at an atomic scale was introduced in 1959 by physicist Richard Feynman in his talk entitled “There’s Plenty of Room at the Bottom.” The term “nano” originates from the Greek word for “dwarf,” which represents the very essence of nanomaterials. In the International System of Units, the prefix “nano” means one-billionth, or 10-9; therefore, one nanometer is one-billionth of a meter, which is smaller than the thickness of a sheet of paper or a strand of hair.  …

Are there different kinds of nano?

The possibility of controling biological processes using custom-synthesized materials at the nanoscale has intrigued researchers from different scientific fields. With the ever increasing sophistication of nanomaterial synthesis, there has been an exponential increase in the number and type of nanomaterials available or that can be custom synthesized. Table 1 lists some of the nanomaterials that are currently available.

….

Oddly, given the question ‘Are there different kinds of nano?’, there’s no mention of nanobots.  Still it’s understandable that they’d focus on nanomaterials which are, as far as I know, the only ‘nano’ anything tested for toxicity. On that note, PETA’s Nanotechnology page offers this revelatory listing (scroll down about 3/4 of the way),

The following are some of the web-based tools being used by nanotoxicologists and material scientists:

Getting back to the NanoTox conference being held now in Antalya, I noticed a couple of familiar names on the list of keynote speakers (scroll down about 15% of the way), Kostas Kostarelos (last mentioned in a Feb. 28, 2014 posting about scientific publishing and impact factors’ scroll down about 1/2 way) and Mark Wiesner (last mentioned in a Nov. 13, 2013 posting about a major grant for one of his projects).