Tag Archives: Agriculture and Agri-Food Canada

June 4, 2018 talk in Vancouver (Canada): Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

ARPICO (Society of Italian Researchers and Professionals in Western Canada) is hosting a talk on the topic of genetically modified food. Here’s more from their May 20, 2018 announcement (received via email),

Our third speaking event of the year has been scheduled for Monday, June 4th, 2018 at the Italian Cultural Centre – Museum & Art Gallery. Marie-Claude Fortin’s talk will discuss food systems derived from biotechnology (often referred to as GMO) and their comparison with traditional farming processes, both technical and ethical. You can read a summary of Marie-Claude Fortin’s lecture as well as her short professional biography at the bottom of this message.

Ahead of the speaking event, ARPICO will be holding its 2018 Annual General Meeting in the same location. We encourage everyone to participate in the AGM, have their say on ARPICO’s matters and possibly volunteer for the Board of Directors.

We look forward to seeing everyone there.

Please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

The evening agenda is as follows:

6:00pm to 6:45pm – Annual General Meeting
7:00 pm – Lecture by Marie-Claude Fortin
~8:00 pm – Q & A Period
Mingling & Refreshments until about 9:45 pm

If you have not yet RSVP’d, please do so on our EventBrite page.

Further details are also available at arpico.ca, our facebook page, and Eventbrite.

Genetically-Engineered Food: Facts, Ethical Considerations and World Hunger

In this lecture we will explore a part of our food system, which has received much press, but which consumers still misunderstand: food derived from biotechnology often referred to as genetically modified organisms. We will be learning about the types of plants and animals which are genetically engineered and part of our everyday food system and the reasons for which they have been transformed genetically. We will be looking at the issue from several different angles. You are encouraged to approach the topic with an open mind, and learn how the technology is being used. We will start by understanding the differences between traditional plant breeding, conventional plant breeding, transgenic technology and genome editing. The latter two processes are considered genetic engineering technologies but all of them constitute a continuum of techniques employed to improve domestic plants and animals. We will then go over the ethical paradigms related to genetically engineered food represented by the European and North American points of view. Finally, we will discuss the strengths and weaknesses associated with genetic engineering as a tool to solve world hunger.

Marie-Claude Fortin is a former Research Scientist with Agriculture and Agri-Food Canada, Associate Editor with Crop Science Society of America, Board Member of the Soil and Water Conservation Society and Adjunct Professor at the University of British Columbia (UBC) and currently responsible for the shared research infrastructure portfolio at the UBC Vice-President Research & Innovation Office. Her main areas of research expertise are crop and soil sciences with special interests in measuring and modeling crop development and various processes on agricultural land: water and nitrogen fertilizer flow through the soil profile, emissions of greenhouse gases and soil physical properties. Her research shows that sustainable crop management practices result in soil environments, which are conducive to resilient crop production and organic matter buildup, which is the process of storing carbon in soils, a most important process in this era of climate change. For the past 18 years, Marie-Claude has been teaching food systems courses at UBC [University of British Columbia], emphasizing impacts of decisions made at the corporate, national and local levels on the economic, environmental and social sustainability of the food system, including impacts of organic and industrial agriculture and adoption of genetically engineered crops and animals, on farmers and consumers.

WHEN (AGM): Monday, June 4th, 2018 at 6:00pm (doors open at 5:50pm)

WHEN (EVENT): Monday, June 4th, 2018 at 7:00pm (doors open at 6:45pm)

WHERE: Italian Cultural Centre – Museum & Art Gallery – 3075 Slocan St, Vancouver, BC, V5M 3E4

RSVP: Please RSVP at EventBrite (https://gmofoods.eventbrite.ca/) or email info@arpico.ca

Tickets are Needed

Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.

All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.

FAQs

Where can I contact the organizer with any questions? info@arpico.ca

Do I have to bring my printed ticket to the event? No, you do not. Your name will be on our Registration List at the Check-in Desk.

Is my registration/ticket transferrable? If you are unable to attend, another person may use your ticket. Please send us an email at info@arpico.ca of this substitution to correct our audience Registration List and to prepare guest name tags.

Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca

I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.

We look forward to seeing you there.
www.arpico.ca

I wonder if they’re going to be discussing AquAdvantage salmon, which was first mentioned here in a Dec. 4, 2015 post (scroll down about 40% of the way), again, in a May 20, 2016 posting (AquAdvantage salmon (genetically modified) approved for consumption in Canada), and, most recently, in a Sept. 13, 2017 posting where I was critiquing a couple of books (scroll down to the ‘Fish’ subtitle). Allegedly the fish were allegedly sold in the Canadian market,

Since the 2016 approval, AquAdvantage salmon, 4.5M tonnes has been sold in Canada according to an Aug. 8, 2017 article by Sima Shakeri for Huffington Post (Note: Links have been removed),

After decades of trying to get approval by in North America, genetically modified Atlantic salmon has been sold to consumers in Canada.

AquaBounty Technologies, an American company that produces the Atlantic salmon, confirmed it had sold 4.5 tonnes of the modified fish on August 4 [2017], the Scientific American reported.

The fish have been engineered with a growth hormone gene from Chinook salmon to grow faster than regular salmon and require less food. They take about 18 months to reach market size, which is much quicker than the 30 months or so for conventional salmon.

The Washington Post wrote AquaBounty’s salmon also contains a gene from the ocean pout that makes the salmon produce the growth hormone gene all-year-round.

The company produces the eggs in a facility in P.E.I., which is currently being expanded, and then they’re shipped to Panama where the fish are raised.

Health Canada assessed the AquAdvantage salmon and concluded it “did not pose a greater risk to human health than salmon currently available on the Canadian market,” and that it would have no impact on allergies nor a difference in nutritional value compared to other farmed salmon.

Because of that, the AquAdvantage product is not required to be specially labelled as genetically modified, and is up to the discretion of retailers.

As for gene editing, I don’t follow everything in that area of endeavour but I have (more or less) kept track of CRISPR ((clustered regularly interspaced short palindromic repeat). Just use CRISPR as the search term for the blog search function to find what’s here.

This looks to be a very interesting talk and good for ARPICO for tackling a ‘difficult’ topic. I hope they have a lively, convivial, and open discussion.

Saskatchewan’s Blue Goose Biorefineries and cellulose at the nanoscale and microscale

Thank you to the reader who put me onto this Saskatchewan-based company that claims to produce nanoscale (sometimes called nanocrystalline cellulose [NCC] or nanocellulose crystals [CNC]) and microscale cellulose in an environmentally friendly fashion. From the Blue Goose Biorefineries’ home page,

BLUE GOOSE BIOREFINERIES INC. TM

Blue Goose Biorefineries Inc. introduces the R3TM (Renewable Residual Refining) technology and process to the Canadian marketplace.  R3TM is the world’s most advanced process and technology for the conversion of  carbon-based biomass into high-value, in-demand market commodities

 Economical, Sustainable, Efficient, Benign

 The Patent-Pending technology and process, together with closely held trade secrets, have created an entirely new, efficient and economically viable perspective on the treatment of biomass for the production of high value-added, sustainable and renewable commodities and energy sources.

 Microcrystalline Cellulose, Nanocrystalline Cellulose, Green Platform Chemicals

 Blue Goose Biorefineries Inc. is a Canadian innovation leader resolving environmental issues and generating economic opportunities through innovative, green, and renewable materials manufactured by our unique process and technology.

There doesn’t seem to be any information about the company’s management team, its products, or its technologies on its website. As well, the Blue Goose website does not host any press releases relating to company developments and/or business deals but there is a July 20, 2012 notice on the Advanced Foods and Materials (AFM) Canada website about a joint project,

Advanced Foods and Materials (AFM) Canada and Blue Goose Biorefineries Inc. (BGB) are pleased to announce they have been awarded a $500,000 grant from Agriculture and Agri-Food Canada’s Agricultural Innovation Program. The project will focus on the pre-commercialization and development of biorefining methods for flax and hemp straw in order to produce high value cellulose products, lignin, and green platform chemicals in Saskatchewan. BGB’s core technology is a “green chemistry” based, nano-catalytic biorefining process, Renewable Residuals RefiningTM (R3TM).  The R3TM process fractionates and breaks down the major components in lignocellulosic biomass: lignin, hemicellulose and cellulose. This green technology offers many process advantages over existing biorefining methods including cost, yield, environmental impact, and flexibility. Specifically, the technology offers a very strong industry transforming potential for the production of high value microcrystalline cellulose (MCC), nanocrystalline cellulose (NCC), lignin and green platform chemicals from flax and hemp straw.

The process has been proven at the lab bench scale for flax and hemp straw. Through this project, Advanced Foods and Materials Canada will manage institutional research activities and the pilot plant scale-up of the biorefining process. The production of larger quantities of bioproducts for testing, process development and lock-down including design parameters, engineering costs and tuning, will facilitate the development of a demonstration plant for Blue Goose Biorefineries. The impact of this project’s activities will add-value to Canadian hemp, flax and other cereal crops by creating a more efficient and economical source of high-quality MCC, NCC, lignin, and green platform chemicals for food, pharmaceutical, and industrial applications across North America.

Agriculture and Agri-Food Canada’s July 18, 2012 news release can be read here.

There is one other piece of information, Dr. Bernard Laarveld of the University of Saskatchewan lists Blue Goose Biorefineries as a current employer on his LinkedIn profile.

http://www.afmcanada.ca/event/BGBAIP

Canada’s barley crop needs a little help to adapt to climate change

“Building better barley” is the title for a Dec. 12, 2012 news release from the University of Alberta (by Bev Betkowski) on EurekAlert. They might have wanted to add the phrase “in the face of climate change” but that ruins the alliteration. From the news release,

As one of the top 10 barley producers in the world, Canada faces a problem of adapting to the ‘new normal’ of a warmer, drier climate.

The 2012 growing season was considered an average year on the Canadian Prairies, “but we still had a summer water deficit, and it is that type of condition we are trying to work with,” said Scott Chang, a professor of soil science in the University of Alberta’s Department of Renewable Resources in Edmonton, Canada.

The Dec. 5, 2012 article (which originated the news release) by Betkowski for the Faculty of Agricultural, Life and Environmental Sciences at the University of Alberta provides more detail about the why and the how,

Chang began teaming up with fellow crop scientist Anthony Anyia of Alberta Innovates – Technology Futures in 2006, following a severe drought in 2002 that dropped average crop yield in Alberta by about half. They are exploring the genetic makeup of barley and how the grain crop—a Canadian staple used for beer malt and animal feed—can be made more efficient in its water use and more productive. One of their latest studies, published in the journal Theoretical and Applied Genetics, explores how to increase yield in barley crops while using less water.

…The latest study was led by lead author Jing Chen, a former PhD student in Chang and Anyia’s lab. The group planted and harvested two common types of barley plants in test plots around Alberta, then analyzed the plants for genetic traits and other factors such as height, days to maturity and yield.

By studying the carbon isotope compositions of barley plants and their relationship with water-use efficiency, the researchers developed tools that plant breeders can use to improve selection efficiency for more water-efficient varieties. The latest findings stem from an ongoing collaboration that is ultimately aimed at bringing farmers a more stable breed of the plant that has less reliance on water and is less vulnerable to climate change.

Coincidentally (or not), the Canadian federal government in the person of Agriculture Minister Gerry Ritz, within a week of the story and news release by Betkowski, congratulates itself for previous funding and new programs in two separate news releases.

The Harper Government Supports Canadian Barley Industry news release of Dec. 7, 2012 had this comment for the Alberta Barley Commission’s annual general meeting in Banff,

“As the one-year anniversary of the adoption of the Marketing Freedom for Grain Farmers Act approaches, western Canadian grain farmers are already enjoying the economic potential of an open market,” said Minister Ritz. “I would like to thank the Alberta Barley Commission for its long-standing leadership in support of marketing freedom, innovation and a strong future for barley producers.”

Canadian barley, known around the world for its high quality and superior characteristics, generated over $270 million in exports last year—a figure expected to continue to grow with the new marketing freedom options. The Marketing Freedom for Grain Farmers Act, which received Royal Assent on December 15, 2011, allows anyone to buy and sell wheat and barley. By unleashing the sector’s economic potential and entrepreneurial energy, the open grain market continues to usher in a new era of innovation and growth for Western Canada’s grain industry, helping attract investment, encourage innovation, create value-added jobs and build a stronger economy.

Additionally, the Harper government recently announced an AgriMarketing investment of more than $525,000 to enable the Canadian Malting Barley Technical Centre, the Malting Industry Association of Canada, and the Brewing and Malting Barley Research Institute to increase their competitiveness in new and existing markets through innovative marketing and communications and through the development of a Canadian Malt Barley Brand. [emphasis mine] Product testing and evaluations will also be done on new malting barley varieties, the current year’s harvest and cargo shipments to highlight the attributes of the current Canadian crop for international customers.

The Harper government’s long-term strategy to strengthen and modernize the barley industry includes renewing the mandate of the Crop Logistics Working Group, to improve the performance of the supply chain for barley and all crops, and to ensure that the agricultural sector can reap the rewards of a dynamic and growing global marketplace.

On the same day in Calgary, the Harper Government Announces Federal Growing Forward 2 Programs news release of Dec. 7, 2012 proclaims new programs and, presumably, there will be additional funding at some point,

Agriculture Minister Gerry Ritz today unveiled three new federal programs under Canada’s new agricultural policy framework Growing Forward 2 that will streamline investments in the agriculture and agri-food sector. The new programs will focus on strategic initiatives in innovation, competitiveness and market development to further strengthen the sector’s capacity to grow and prosper.

“These new Growing Forward 2 programs will build on the success of existing programs to provide more streamlined support to the sector to help it remain a world leader in agricultural innovation and trade,” said Minister Ritz. “We are making sure farmers and the entire sector have the tools and resources they need to stay ahead of the ever-changing demands of consumers.”

Three new federal programs will come into effect on April 1, 2013:

  • The AgriInnovation Program will focus on investments to expand the sector’s capacity to develop and commercialize new products and technologies.
  • The AgriMarketing Program will help industry improve its capacity to adopt assurance systems, such as food safety and traceability, to meet consumer and market demands. It will also support industry in maintaining and seizing new markets for their products through branding and promotional activities.
  • The AgriCompetitiveness Program will target investments to help strengthen the agriculture and agri-food industry’s capacity to adapt and be profitable in domestic and global markets.

Agriculture and Agri-Food Canada is proactively providing information to farmers and the industry so that they are familiar with the kind of support that will be available and so they may plan their applications well in advance. The AgriInnovation Program will begin accepting applications immediately, while AgriMarketing and AgriCompetitiveness will begin accepting applications early in the new year.

Growing Forward 2 represents a $3 billion investment over five years in strategic initiatives for innovation, competitiveness and market development, in addition to a full and comprehensive suite of business risk management programs that will continue to help farmers withstand severe market volatility and disasters. Investments in the three priority areas are critical to facilitating the sector’s expansion and leveraging of provincial-territorial and industry investments to increase productivity, growth and jobs.

Canadian Prime Minister Stephen Harper, for those who do not know, is from the province of Alberta.

This is an interesting example, whether the announcements are coincidental or not, of the relationship between research taking place in the universities, government and its programmes, and the international marketplace. For those interested in Chang’s research, here’s the citation for the paper from his webpage,

Chen, J., Chang, S.X. and Anya, A.O. 2012. Quantitative trait loci for water-use efficiency in barley (Hordeum vulgare L.) measured by carbon isotope discrimination under rain-fed conditions on the Canadian Prairies, Theoretical and Applied Genetics 125: 71–90.

Springer, publisher for the journal Theoretical and Applied Genetics, is offering a free preview during the month of December 2012 so you can view the article or any other one in the journal ’til Dec. 31, 2012.