Tag Archives: airplanes

Hedy Lamarr documentary

It was the tech community which brought Hedy Lamarr’s scientific and technical accomplishments to light in the 1990s. The movie actress was better known for other aspects of her work and life.

She was the first actress to portray an orgasm on screen, the movie was Ecstasy (in English), the year was 1933; and, Hedy Lamarr was 18 years-old. Shortly after the film was released, Lamarr, of Jewish descent, married Friedrich Mandl, a wealthy Austrian with ties to fascist regimes led by Adolph Hitler and Benito Mussolini. A controlling and jealous man, she eventually escaped Mandl in the middle of the night with all the jewels she could pack on her person.

That’s just the prelude for a documentary celebrating the extraordinary Lamarr. ‘Bombshell: The Hedy Lamarr Story’ (directed and written by Alexandra Dean) has been making its way around the festival circuit for the last several months. I saw it at the Vancouver International Film Festival (VIFF) in October 2017 and the house was packed.

(If you missed it on the festival circuit, don’t worry. It’s being broadcast by most, if not all PBS stations, on May 18, 2018 as part of the American Masters series.)

*ETA video clips May 18, 2018 at 0945 hours PDT*

Over the last few decades there’s been a major reevaluation of Lamarr’s place in history. She was dangerous not just for her beauty (bombshell) but also in the way that people who aren’t easily categorized are always dangerous.

Before she did her ground-breaking work as an inventor and after her dramatic middle-of-the-night escape, Lamarr made her way to London* where she sought out Louis B. Mayer in 1937 and turned down his offer of a contract at MGM. Not enough money. Instead, she booked passage n a ship bound for New York City which was also carrying Louis B. Mayer and his wife. By the time they landed, Lamarr had gotten a contract that she was happy with and a brand-new name. Hedwig Eva Maria Kiesler effectively became Hedy Lamarr for the rest of her life.

Lamarr’s famous quote: “Any girl can be glamorous. All you have to do is stand still and look stupid,” provides an interesting juxtaposition with her role (along with avant-garde musician and composer George Antheil) in developing a technology that laid the basis for secure Wi-Fi, GPS (global positioning system), and Bluetooth. Or as some of us think of it, life in the 21st century.

She claimed to have advised Howard Hughes on the design for the of his airplanes; she was inspired by the wings on birds and fins on fish. She created a tablet that when reconstituted with water became a carbonated drink (according to Lamarr, it was not very tasty). There was also her influence in the field of plastic surgery. Those incisions that are in hard-to-see places? That was at Hedy Lamarr’s suggestion.

Her inventions spanned electrical engineering (telecommunications), bio-inspired engineering and physics (airplane wings), chemistry (the drink tablets), and plastic surgery. That’s an extraordinary range and there’s more. She created her own movie production company in 1945/46* (it was a failure) and was instrumental in designing a resort (she was never fairly recompensed for that).

She suffered throughout her life in various ways.The US government shafted her and George Antheil by politely refusing their invention in 1942. To be fair, it would have been difficult to use with the technology available at the time but somebody must have recognized its potential. At some point in the 1950s the US Navy developed the technology (without informing either inventor or compensating them as had been their deal).

There was more, her achievements were ignored or, worse, attributed to anyone except her the better part of her life; the Hollywood factory is not kind to older actresses, especially those of Lamarr’s generation; and she made serious mistakes.

Ironically, one of those mistakes involved plastic surgery. It’s hard to know what the effect will be on television but in the movie house, there was a big gasp when some footage from her last years was shown. She’s not monstrous but after an hour or more of footage from her ‘glamorous’ years, it’s a bit of a shock. If you can see past the effects of some ‘bad’ plastic surgery, you’ll find a woman who despite everything kept on. She never gave up and there’s a kind of beauty in that act which is indelible in a way that her physical beauty could never hope to be.

The documentary is fascinating not only for what it includes but for what it doesn’t. You’d think she’d never had a woman friend in her life but according to J. E. Smyth’s 2018 book ‘Nobody’s Girl Friday; The Women Who Ran Hollywood’, she and Bette Davis were good friends. There’s also mention of her poverty but none of her late life litigiousness and the $3M estate she left when she died in 2000.*** At a guess, having learned from the debacle with the US Navy (she could have sued but didn’t realize she had the right), she litigated her way into some financial health. As for the ‘Time’s Up’ and ‘Me Too’ movements which have formed since the Hollywood sex scandals of 2017 – ????, one can only imagine what Lamarr’s stories might have been.

If you have the time, see the documentary. Lamarr was a helluva dame.

*’Paris’ corrected to ‘London’ and ‘1945’ changed to 1945/46′ on on May 21, 2018 after watching the PBS broadcast of the documentary on May 18, 2018.

.***ETA May 21, 2018: See the Hedy Lamarr Wikipedia entry for more about her estate and other details of her life.***

Morphing airplane wing

Long a science fiction trope, ‘morphing’, in this case, an airplane wing, is closer to reality with this work from the Massachusetts Institute of Technology (MIT). From a Nov. 3, 2016 MIT news release (also on EurekAlert),

When the Wright brothers accomplished their first powered flight more than a century ago, they controlled the motion of their Flyer 1 aircraft using wires and pulleys that bent and twisted the wood-and-canvas wings. This system was quite different than the separate, hinged flaps and ailerons that have performed those functions on most aircraft ever since. But now, thanks to some high-tech wizardry developed by engineers at MIT and NASA, some aircraft may be returning to their roots, with a new kind of bendable, “morphing” wing.

The new wing architecture, which could greatly simplify the manufacturing process and reduce fuel consumption by improving the wing’s aerodynamics, as well as improving its agility, is based on a system of tiny, lightweight subunits that could be assembled by a team of small specialized robots, and ultimately could be used to build the entire airframe. The wing would be covered by a “skin” made of overlapping pieces that might resemble scales or feathers.

The new concept is described in the journal Soft Robotics, in a paper by Neil Gershenfeld, director of MIT’s Center for Bits and Atoms (CBA); Benjamin Jenett, a CBA graduate student; Kenneth Cheung PhD ’12, a CBA alumnus and NASA research scientist; and four others.

Researchers have been trying for many years to achieve a reliable way of deforming wings as a substitute for the conventional, separate, moving surfaces, but all those efforts “have had little practical impact,” Gershenfeld says. The biggest problem was that most of these attempts relied on deforming the wing through the use of mechanical control structures within the wing, but these structures tended to be so heavy that they canceled out any efficiency advantages produced by the smoother aerodynamic surfaces. They also added complexity and reliability issues.

By contrast, Gershenfeld says, “We make the whole wing the mechanism. It’s not something we put into the wing.” In the team’s new approach, the whole shape of the wing can be changed, and twisted uniformly along its length, by activating two small motors that apply a twisting pressure to each wingtip.

Like building with blocks

The basic principle behind the new concept is the use of an array of tiny, lightweight structural pieces, which Gershenfeld calls “digital materials,” that can be assembled into a virtually infinite variety of shapes, much like assembling a structure from Lego blocks. The assembly, performed by hand for this initial experiment, could be done by simple miniature robots that would crawl along or inside the structure as it took shape. The team has already developed prototypes of such robots.

The individual pieces are strong and stiff, but the exact choice of the dimensions and materials used for the pieces, and the geometry of how they are assembled, allow for a precise tuning of the flexibility of the final shape. For the initial test structure, the goal was to allow the wing to twist in a precise way that would substitute for the motion of separate structural pieces (such as the small ailerons at the trailing edges of conventional wings), while providing a single, smooth aerodynamic surface.

Building up a large and complex structure from an array of small, identical building blocks, which have an exceptional combination of strength, light weight, and flexibility, greatly simplifies the manufacturing process, Gershenfeld explains. While the construction of light composite wings for today’s aircraft requires large, specialized equipment for layering and hardening the material, the new modular structures could be rapidly manufactured in mass quantities and then assembled robotically in place.

Gershenfeld and his team have been pursuing this approach to building complex structures for years, with many potential applications for robotic devices of various kinds. For example, this method could lead to robotic arms and legs whose shapes could bend continuously along their entire length, rather than just having a fixed number of joints.

This research, says Cheung, “presents a general strategy for increasing the performance of highly compliant — that is, ‘soft’ — robots and mechanisms,” by replacing conventional flexible materials with new cellular materials “that are much lower weight, more tunable, and can be made to dissipate energy at much lower rates” while having equivalent stiffness.

Saving fuel, cutting emissions

While exploring possible applications of this nascent technology, Gershenfeld and his team consulted with NASA engineers and others seeking ways to improve the efficiency of aircraft manufacturing and flight. They learned that “the idea that you could continuously deform a wing shape to do pure lift and roll has been a holy grail in the field, for both efficiency and agility,” he says. Given the importance of fuel costs in both the economics of the airline industry and that sector’s contribution to greenhouse gas emissions, even small improvements in fuel efficiency could have a significant impact.

Wind-tunnel tests of this structure showed that it at least matches the aerodynamic properties of a conventional wing, at about one-tenth the weight.

The “skin” of the wing also enhances the structure’s performance. It’s made from overlapping strips of flexible material, layered somewhat like feathers or fish scales, allowing for the pieces to move across each other as the wing flexes, while still providing a smooth outer surface.

The modular structure also provides greater ease of both assembly and disassembly: One of this system’s big advantages, in principle, Gershenfeld says, is that when it’s no longer needed, the whole structure can be taken apart into its component parts, which can then be reassembled into something completely different. Similarly, repairs could be made by simply replacing an area of damaged subunits.

“An inspection robot could just find where the broken part is and replace it, and keep the aircraft 100 percent healthy at all times,” says Jenett.

Following up on the successful wind tunnel tests, the team is now extending the work to tests of a flyable unpiloted aircraft, and initial tests have shown great promise, Jenett says. “The first tests were done by a certified test pilot, and he found it so responsive that he decided to do some aerobatics.”

Some of the first uses of the technology may be to make small, robotic aircraft — “super-efficient long-range drones,” Gershenfeld says, that could be used in developing countries as a way of delivering medicines to remote areas.

Here’s a link to and a citation for the paper,

Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures by Benjamin Jenett, Sam Calisch, Daniel Cellucci, Nick Cramer, Neil Gershenfeld, Sean Swei, and Kenneth C. Cheung. Soft Robotics. October 2016, ahead of print. doi:10.1089/soro.2016.0032. Published online: Oct. 26, 2016

This paper is open access.

A coating for airplane windshields that mitigates laser intensity

Whether it’s done accidentally or with malice, blinding airplane pilots with lasers pointed at the windows of cockpits has become a serious problem. From the Lasers and aviation safety Wikipedia entry,

Pointing a laser at an aircraft can be hazardous to pilots[1] and has resulted in arrests, trials and jail sentences. It also results in calls to license or ban laser pointers.

A June 3, 2015 news item on Nanowerk describes a Lewis University technology that could help minimize this problem. (Lewis University is a private university located in the state of Illinois, US; Note: A link has been removed),

A recently published Journal of Aviation Technology and Engineering article (“Measuring the Effectiveness of Photoresponsive Nanocomposite Coatings on Aircraft Windshields to Mitigate Laser Intensity”) shows Lewis University researchers have created a coating for aircraft that reduces pilot distraction from laser attacks.

In [sic] 2013 study, Lewis University proved these laser attacks, which average around 3,750 incidents a year, can be a distraction to pilots and a potential safety hazard during critical phases of flight. As part of continued research on the matter, Lewis University recently developed a practical and economical solution through the use of photoresponsive nanocomposite coatings on aircraft windscreens.

The most recent study determined the application of the engineered films resulted in a reduction in laser intensity from 36-88 percent.

A June 2, 2015 Lewis University news release, which originated the news item, provides a bit more detail about the research (Note: Links have been removed),

The study was completed through collaboration of the Aviation, Physics and Chemistry departments at Lewis University. The Chemistry Department developed the photoselective coatings, and the Physics Department developed the apparatus to efficiently test the coatings while allowing safe viewings of laser illumination. The coatings were bench-tested in a laboratory prior to conducting field tests at the 200- and 500-foot distances.

I was unfamiliar with Lewis University so was happy to see the news release fill in a few blanks (Note: Links have been removed),

This research was sponsored, in part, by a grant from the Colonel Stephan S. and Lyla Doherty Center for Aviation and Health Research. The Doherty Center funds research and scholarly initiatives and provides opportunities for research experiences for students with faculty mentors. Investigators supported by the Doherty Center have focused on several areas, such as cardiac therapy, wound management, flight deck laser illumination, the environment, diabetes, MRSA, and alternative fuels for aviation.

Since 1932, Lewis University has led the field of aviation education by preparing students from around the world to succeed in the aviation industries. An on-site airport, experienced and industry-leading faculty, personalized learning, degree programs that provide you with specialized experience and a well-rounded business, management and liberal arts education have made Lewis University’s aviation program one of the most respected in Illinois.

Lewis University is a Catholic university in the Lasallian tradition offering distinctive undergraduate and graduate programs to more than 6,700 traditional and adult students. Lewis offers multiple campus locations, online degree programs, and a variety of formats that provide accessibility and convenience to a growing student population. Sponsored by the De La Salle Christian Brothers, Lewis prepares intellectually engaged, ethically grounded, globally connected, and socially responsible graduates. The seventh largest private not-for-profit university in Illinois, Lewis has been nationally recognized by The Princeton Review and U.S. News & World Report. Visit www.lewisu.edu for further information.

Here’s a link to and a citation for the paper,

Measuring the Effectiveness of Photoresponsive Nanocompsite Coatings on Aircraft Windshields to Mitigate Laser Intensity by Ryan S. Phillips, Hubert K. Bilan, Zachary X. Widel, Randal J. DeMik, Samantha J. Brain, Matthew Moy, Charles Crowder, Stanley L. Harriman, James T. O’Malley III, Joseph E. Burlas, Steven F. Emmert, & Jason J. Keleher. Journal of Aviation Technology and Engineering (2015): Vol. 4: Iss. 2, Article 5. http://dx.doi.org/10.7771/2159-6670.1105

This paper is open access.

Taking the baking out of aircraft manufacture

It seems that ovens are an essential piece of equipment when manufacturing aircraft parts but that may change if research from MIT (Massachusetts Institute of Technology) proves successful. An April 14, 2015 news item on ScienceDaily describes the current process and the MIT research,

Composite materials used in aircraft wings and fuselages are typically manufactured in large, industrial-sized ovens: Multiple polymer layers are blasted with temperatures up to 750 degrees Fahrenheit, and solidified to form a solid, resilient material. Using this approach, considerable energy is required first to heat the oven, then the gas around it, and finally the actual composite.

Aerospace engineers at MIT have now developed a carbon nanotube (CNT) film that can heat and solidify a composite without the need for massive ovens. When connected to an electrical power source, and wrapped over a multilayer polymer composite, the heated film stimulates the polymer to solidify.

The group tested the film on a common carbon-fiber material used in aircraft components, and found that the film created a composite as strong as that manufactured in conventional ovens — while using only 1 percent of the energy.

The new “out-of-oven” approach may offer a more direct, energy-saving method for manufacturing virtually any industrial composite, says Brian L. Wardle, an associate professor of aeronautics and astronautics at MIT.

“Typically, if you’re going to cook a fuselage for an Airbus A350 or Boeing 787, you’ve got about a four-story oven that’s tens of millions of dollars in infrastructure that you don’t need,” Wardle says. “Our technique puts the heat where it is needed, in direct contact with the part being assembled. Think of it as a self-heating pizza. … Instead of an oven, you just plug the pizza into the wall and it cooks itself.”

Wardle says the carbon nanotube film is also incredibly lightweight: After it has fused the underlying polymer layers, the film itself — a fraction of a human hair’s diameter — meshes with the composite, adding negligible weight.

An April 14, 2015 MIT news release, which originated the news item, describes the origins of the team’s latest research, the findings, and the implications,

Carbon nanotube deicers

Wardle and his colleagues have experimented with CNT films in recent years, mainly for deicing airplane wings. The team recognized that in addition to their negligible weight, carbon nanotubes heat efficiently when exposed to an electric current.

The group first developed a technique to create a film of aligned carbon nanotubes composed of tiny tubes of crystalline carbon, standing upright like trees in a forest. The researchers used a rod to roll the “forest” flat, creating a dense film of aligned carbon nanotubes.

In experiments, Wardle and his team integrated the film into airplane wings via conventional, oven-based curing methods, showing that when voltage was applied, the film generated heat, preventing ice from forming.

The deicing tests inspired a question: If the CNT film could generate heat, why not use it to make the composite itself?

How hot can you go?

In initial experiments, the researchers investigated the film’s potential to fuse two types of aerospace-grade composite typically used in aircraft wings and fuselages. Normally the material, composed of about 16 layers, is solidified, or cross-linked, in a high-temperature industrial oven.

The researchers manufactured a CNT film about the size of a Post-It note, and placed the film over a square of Cycom 5320-1. They connected electrodes to the film, then applied a current to heat both the film and the underlying polymer in the Cycom composite layers.

The team measured the energy required to solidify, or cross-link, the polymer and carbon fiber layers, finding that the CNT film used one-hundredth the electricity required for traditional oven-based methods to cure the composite. Both methods generated composites with similar properties, such as cross-linking density.

Wardle says the results pushed the group to test the CNT film further: As different composites require different temperatures in order to fuse, the researchers looked to see whether the CNT film could, quite literally, take the heat.

“At some point, heaters fry out,” Wardle says. “They oxidize, or have different ways in which they fail. What we wanted to see was how hot could this material go.”

To do this, the group tested the film’s ability to generate higher and higher temperatures, and found it topped out at over 1,000 F. In comparison, some of the highest-temperature aerospace polymers require temperatures up to 750 F in order to solidify.

“We can process at those temperatures, which means there’s no composite we can’t process,” Wardle says. “This really opens up all polymeric materials to this technology.”

The team is working with industrial partners to find ways to scale up the technology to manufacture composites large enough to make airplane fuselages and wings.

“There needs to be some thought given to electroding, and how you’re going to actually make the electrical contact efficiently over very large areas,” Wardle says. “You’d need much less power than you are currently putting into your oven. I don’t think it’s a challenge, but it has to be done.”

Gregory Odegard, a professor of computational mechanics at Michigan Technological University, says the group’s carbon nanotube film may go toward improving the quality and efficiency of fabrication processes for large composites, such as wings on commercial aircraft. The new technique may also open the door to smaller firms that lack access to large industrial ovens.

“Smaller companies that want to fabricate composite parts may be able to do so without investing in large ovens or outsourcing,” says Odegard, who was not involved in the research. “This could lead to more innovation in the composites sector, and perhaps improvements in the performance and usage of composite materials.”

It can be interesting to find out who funds the research (from the news release),

This research was funded in part by Airbus Group, Boeing, Embraer, Lockheed Martin, Saab AB, TohoTenax, ANSYS Inc., the Air Force Research Laboratory at Wright-Patterson Air Force Base, and the U.S. Army Research Office.

Here’s a link to and citation for the research paper,

Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks by Jeonyoon Lee, Itai Y. Stein, Mackenzie E. Devoe, Diana J. Lewis, Noa Lachman, Seth S. Kessler, Samuel T. Buschhorn, and Brian L. Wardle. Appl. Phys. Lett. 106, 053110 (2015); http://dx.doi.org/10.1063/1.4907608

This paper is behind a paywall.

Atlantic Canada’s Lamda Guard signs deal to test nanocomposite windshield film with Airbus

This story comes from Nova Scotia although you wouldn’t know it if you’d only read the June 5, 2014 news item on Azonano,

Lamda Guard, a company based in Atlantic Canada, has signed an agreement with leading aircraft manufacturer Airbus to test a breakthrough innovation designed to deflect unwanted bright light or laser sources from impacting jetliner flight paths, and causing pilot disorientation or injury.

A June 4, 2014 news release (either from Lamda Guard.com or MTI [metamaterial.com]; Note: More about the multiple webspaces later] and there’s a PDF version here), which originated the news item, provides a little more information about the technology and the perspectives from various stakeholders

Lamda Guard’s innovative thin films utilize metamaterial technology on cockpit windscreens to selectively block and control light coming from any angle even at the highest power levels. “Today marks a milestone in optical applications of nano-composites,” said George Palikaras, President and CEO of Lamda Guard. “Through our collaboration with Airbus we are working to introduce our metamaterial technology, for the first time, as a solution to laser interference in the aviation industry.” The announcement today comes within weeks of the release of an FBI [US Federal Bureau of Investigation] report citing 3,960 aircraft laser strikes in the US in 2013 according to the Federal Aviation Authority (FAA).

Senior Vice President of Innovation Yann Barbaux stated: “At Airbus, we are always on the lookout for new ideas coming from innovative SMEs [small to medium enterprises], such as Lamda Guard. We are very pleased to explore together the potential application of this solution to our aircraft, for the benefit of our customers.”

Over the past year Lamda Guard has been working with the research community at the University of Moncton and the University of New Brunswick, as well as stakeholders, investors and funders to highlight the benefits of nano-composites. The Atlantic Canada Opportunities Agency (ACOA) in particular has played an important role in Lamda Guard’s research and development efforts. In 2012, ACOA assisted Lamda Guard with technology commercialization and recently upgraded its contribution to $500,000 to further assist the company in developing and manufacturing its products for the aviation industry.

The Lamda Guard Airbus partnership marks the first time an optical metamaterial nano-composite has been applied on a large-scale surface.

I tried to find more information about the technology and tracked down this tiny bit, from the What are MetaMaterials? webpage on the MTI website,

A metamaterial typically consists of a multitude of structured unit cells that are comprised of multiple individual elements, which are referred to as meta-atoms. The individual elements are assembled from conventional microscopic materials such as metals and/or plastics, which are arranged in periodic patterns.

MTI’s precisely designed structures are developed with proprietary algorithms, producing a new generation of optical products that are built in state-of-the-art thin film nano-fabrication labs. MTI’s proprietary software accurately predicts the desired design pattern to generate a unique material that meets customer specifications. MTI’s sleek designs mean manufacturers can reduce their cost of materials significantly while increasing performance, e.g. by increasing the light output of an LED bulb or increasing the absorption of light in a solar panel.

Multiple webspaces and presences

While Lamda Guard has a .com presence, you will find yourself on the metamaterial.com website in the Lamda Guard webspace (I suppose you could also call it a subsite) once you start clicking for more information.  In fact, MTI owns three Lamda companies as per this description from the Our Company webpage on the MTI (metamaterial.com) website (Note: Links have been removed),

MTI is an advanced materials and systems engineering company developing and commercializing innovative optical solutions. The company’s core team has over 200 years of combined experience at the forefront of the design and implementation of metamaterials, making MTI a pioneer in bridging the gap between the theoretical and the possible.

MTI specializes in metamaterials, nanotechnology, theoretical and computational electromagnetics. The company’s in-house expertise enables the rapid development of a wide array of metamaterial applications, covering a diverse range of markets.

MTI’s technologies are adaptable and can be custom-designed to suit an industry manufacturer’s specifications allowing for scalability and rapid prototyping with minimum overheads. MTI provides access to world class nano-composite research and development, including specialty, as well as customized, products and licensing of its proprietary solutions to customers ranging from government to private companies.

MTI has three wholly owned subsidiaries:

Lamda Guard Inc. which develops advanced filters to block out selected parts of the light spectrum, protecting the eyes from lasers or other sources of hazardous light.

Lamda Solar Inc. products increase the efficiency of solar panel cells by absorbing more light.

Lamda Lux Inc. technology increases the delivered lumens and reduces the cost of thermal management of LED lighting.

Interestingly, the Lamda Guard Management team‘s (in the Lamda Guard webspace) Chief Science Officer, Dr. Themos Kallos, and Chief Intellectual Property Officer, Dr. Quinton Fivelman, both appear to reside in the UK (assuming I looked at the correct LinkedIn profiles).  Coincidentally, MTI’s contact page lists the company’s headquarters as being in Nova Scotia but Sales, Research and Development would seem to be located in the UK.

Presumably, this company is maximizing its access to government grants and tax incentives in both the UK and Canada. The deal with the Airbus suggests that this has been a successful strategy possibly leading to commercialized technology and, hopefully, jobs.

Life-cycle assessment for electric vehicle lithium-ion batteries and nanotechnology is a risk analysis

A May 29, 2013 news item on Azonano features a new study for the US Environmental Protection Agency (EPA) on nanoscale technology and lithium-ion (li-ion) batteries for electric vehicles,

Lithium (Li-ion) batteries used to power plug-in hybrid and electric vehicles show overall promise to “fuel” these vehicles and reduce greenhouse gas emissions, but there are areas for improvement to reduce possible environmental and public health impacts, according to a “cradle to grave” study of advanced Li-ion batteries recently completed by Abt Associates for the U.S. Environmental Protection Agency (EPA).

“While Li-ion batteries for electric vehicles are definitely a step in the right direction from traditional gasoline-fueled vehicles and nickel metal-hydride automotive batteries, some of the materials and methods used to manufacture them could be improved,” said Jay Smith, an Abt senior analyst and co-lead of the life-cycle assessment.

Smith said, for example, the study showed that the batteries that use cathodes with nickel and cobalt, as well as solvent-based electrode processing, show the highest potential for certain environmental and human health impacts. The environmental impacts, Smith explained, include resource depletion, global warming, and ecological toxicity—primarily resulting from the production, processing and use of cobalt and nickel metal compounds, which can cause adverse respiratory, pulmonary and neurological effects in those exposed.

There are viable ways to reduce these impacts, he said, including cathode material substitution, solvent-less electrode processing and recycling of metals from the batteries.

The May 28, 2013 Abt Associates news release, which originated the news item, describes some of the findings,

Among other findings, Shanika Amarakoon, an Abt associate who co-led the life-cycle assessment with Smith, said global warming and other environmental and health impacts were shown to be influenced by the electricity grids used to charge the batteries when driving the vehicles.
“These impacts are sensitive to local and regional grid mixes,” Amarakoon said.  “If the batteries in use are drawing power from the grids in the Midwest or South, much of the electricity will be coming from coal-fired plants.  If it’s in New England or California, the grids rely more on renewables and natural gas, which emit less greenhouse gases and other toxic pollutants.” However,” she added, “impacts from the processing and manufacture of these batteries should not be overlooked.”
In terms of battery performance, Smith said that “the nanotechnology applications that Abt assessed were single-walled carbon nanotubes (SWCNTs), which are currently being researched for use as anodes as they show promise for improving the energy density and ultimate performance of the Li-ion batteries in vehicles.  What we found, however, is that the energy needed to produce the SWCNT anodes in these early stages of development is prohibitive. Over time, if researchers focus on reducing the energy intensity of the manufacturing process before commercialization, the environmental profile of the technology has the potential to improve dramatically.”

Abt’s Application of Life-Cycle Assessment to Nanoscale Technology: Lithium-ion Batteries for Electric Vehicles can be found here, all 126 pp.

This assessment was performed under the auspices of an interesting assortment of agencies (from the news release),

The research for the life-cycle assessment was undertaken through the Lithium-ion Batteries and Nanotechnology for Electric Vehicles Partnership, which was led by EPA’s Design for the Environment Program in the Office of Chemical Safety and Pollution Prevention and Toxics, and EPA’s National Risk Management Research Laboratory in the Office of Research and Development.  [emphasis mine] The Partnership also included industry partners (i.e., battery manufacturers, recyclers, and suppliers, and other industry groups), the Department of Energy’s Argonne National Lab, Arizona State University, and the Rochester Institute of Technology

I highlighted the National Risk Management Research Laboratory as it reminded me of the lithium-ion battery fires in airplanes reported in January 2013. I realize that cars and planes are not the same thing but lithium-ion batteries have some well defined problems especially since the summer of 2006 when there was a series of li-ion battery laptop fires. From Tracy V. Wilson’s What causes laptop batteries to overheat? article for How stuff works.com (Note: A link has been removed),

In conjunction with the United States Consumer Product Safety Commission (CPSC), Dell and Apple Computer announced large recalls of laptop batteries in the summer of 2006, followed by Toshiba and Lenovo. Sony manufactured all of the recalled batteries, and in October 2006, the company announced its own large-scale recall. Under the right circumstances, these batteries could overheat, potentially causing burns, an explosion or a fire.

Larry Greenemeier in a Jan. 17, 2013 article for Scientific American offers some details about the lithium-ion battery fires in airplanes and elsewhere,

Boeing’s Dreamliner has likely become a nightmare for the company, its airline customers and regulators worldwide. An inflight lithium-ion battery fire broke out Wednesday [Jan. 16, 2013] on an All Nippon Airways 787 over Japan, forcing an emergency landing. And another battery fire occurred last week aboard a Japan Airlines 787 at Boston’s Logan International Airport. Both battery failures resulted in release of flammable electrolytes, heat damage and smoke on the aircraft, according to the U.S. Federal Aviation Administration (FAA).

Lithium-ion batteries—used to power mobile phones, laptops and electric vehicles—have summoned plenty of controversy during their relatively brief existence. Introduced commercially in 1991, by the mid 2000s they had become infamous for causing fires in laptop computers.

More recently, the plug-in hybrid electric Chevy Volt’s lithium-ion battery packs burst into flames following several National Highway Traffic Safety Administration (NHTSA) tests to measure the vehicle’s ability to protect occupants from injury in a side collision. The NHTSA investigated and concluded in January 2012 that Chevy Volts and other electric vehicles do not pose a greater risk of fire than gasoline-powered vehicles.

Philip E. Ross in his Jan. 18, 2013 article about the airplane fires for IEEE’s (Institute of Electrical and Electronics Engineers) Spectrum provides some insight into the fires,

It seems that the batteries heated up in a self-accelerating pattern called thermal runaway. Heat from the production of electricity speeds up the production of electricity, and… you’re off. This sort of things happens in a variety of reactions, not just in batteries, let alone the Li-ion kind. But thermal runaway is particularly grave in Li-ion batteries because they pack a lot more power than the tried-and-true metal-hydride ones, not to speak of Ye Olde lead-acid.

It’s because of this very quality that Li-ion batteries found their first application in small mobile devices, where power is critical and fires won’t cost anyone his life. It’s also why it took so long for the new tech to find its way into electric and hybrid-electric cars.

Perhaps it would have been wiser of Boeing to go for the safest possible Li-ion design, even if it didn’t have quite as much oomph as possible. That’s what today’s main-line electric-drive cars do, as our colleague, John Voelcker, points out.

“The cells in the 787 [Dreamliner], from Japanese company GS Yuasa, use a cobalt oxide (CoO2) chemistry, just as mobile-phone and laptop batteries do,” he writes in greencarreports.com. “That chemistry has the highest energy content, but it is also the most susceptible to overheating that can produce “thermal events” (which is to say, fires). Only one electric car has been built in volume using CoO2 cells, and that’s the Tesla Roadster. Only 2,500 of those cars will ever exist.” Most of today’s electric cars, Voelcker adds, use chemistries that trade some energy density for safety.

The Dreamliner (Boeing 787) is designed to be the lightest of airplanes and using a more energy dense but safer lithium-ion battery seems not to have been an acceptable trade-off.  Interestingly, Boeing according to Ross still had a backlog of orders after the fires.

I find that some of the discussion about risk and nanotechnology-enabled products oddly disconnected. There are the concerns about what happens at the nanoscale (environmental implications, etc.) but that discussion is divorced from some macroscale issues such as battery fires. Taken to absurd lengths, technology at the nanoscale could be considered safe while macroscale issues are completely ignored. It’s as if our institutions are not yet capable of managing multiple scales at once.

For more about an emphasis on scale and other minutiae (pun intended), there’s my May 28, 2013 posting about Steffen Foss Hansen’s plea to revise current European Union legislation to create more categories for nanotechnology regulation, amongst other things.

For more about airplanes and their efforts to get more energy efficient, there’s my May 27, 2013 posting about a biofuel study in Australia.

Biofuels could be competitive with fossil fuels according to Australians

The University of Queensland’s Australian Institute for Bioengineering & Nanotechnology released a three-year study on biofuels and aviation fuel at a Weds., May 22, 2013 aviation environmental summit hosted by Boeing, according to a May 24, 2013 article by Steve Creedy for The Australian.com.au,

AVIATION biofuels produced in Australia using widely touted feedstocks and existing technology would be competitive only if crude oil was almost three times its present price, a three-year study by universities and industry has found.

The cheapest of three feedstocks studied, sugar cane, would be competitive if crude oil was at $US301 a barrel.

This increased to $US374 for oil-producing seeds from the pongamia tree and a huge $US1343 with microalgae. Brent crude is trading at about $US105 a barrel.

But technological improvements in key areas could significantly lower the price to $US168 for sugarcane, $US255 for pongamia seeds and $US385 for algae.

Peter Hannam’s May 22, 2013 article about the presentation for the Newcastle Herald provides some context for the airlines’ interest in biofuels,

… Nations and carriers continue to wrangle over rules to curb emissions. The European Union earlier this year suspended plans to impose emission permits for any flight arriving or leaving European airspace. The EU backed down after threats of non-compliance or retaliation from China, India and the US, although discussions continue for global restrictions to come into force from 2020.

As Creedy notes in his article, ” … technological improvements in key areas could significantly lower the cost …” and this would require funds. There isn’t any mention in either Creedy’s or Hannam’s article about increased funding.

You can find out more about the Queensland Sustainable Aviation Fuel Initiative here and this is where the group’s latest research study can be found,

Technoeconomic analysis of renewable aviation fuel from microalgae, Pongamia pinnata, and sugarcane by Daniel Klein-Marcuschamer, Christopher Turner, Mark Allen, Peter Gray, Ralf G Dietzgen, Peter M Gresshoff, Ben Hankamer, Kirsten Heimann, Paul T Scott, Evan Stephens, Robert Speight, and Lars K Nielsen.  Biofuels, Bioprod. Bioref.. doi: 10.1002/bbb.1404 Article First published online: 25 APR 2013

This study is behind a paywall.