Tag Archives: Alexander Star

‘Zero-dimensional’ carbon nanotubes

They never say (at least not in the news releases I read) but I get the impression that the carbon nanotube researchers are pretty competitive with the graphene researchers since graphene has largely replaced carbon nanotubes as the basis for magic materials that will transform electronics and make everything thinner, lighter, and stronger. I exaggerate the claims but not by much. At any rate, members of the carbon nanotube research community from the University of Pittsburgh have announced the smallest, thinnest carbon nanotubes yet in a Dec. 9, 2013 University of Pittsburgh news release (also on EurekAlert but dated Dec. 10, 2013),

Synthetic, man-made cells and ultrathin electronics built from a new form of “zero-dimensional” carbon nanotube may be possible through research at the University of Pittsburgh Swanson School of Engineering. The research, ““Zero-Dimensional” Single-Walled Carbon Nanotubes,” was published in the journal Angewandte Chemie.

“Since its discovery, carbon nanotubes have held the promise to revolutionize the field of electronics, material science and even medicine,” says Dr. Little [Steven R. Little, PhD, associate professor]. “Zero-dimensional carbon nanotubes present the possibility to build ultrathin, superfast electronic devices, far superior to the best existing ones and it could be possible to build strong and ultralight cars, bridges, and airplanes.”

One of the most difficult hurdles is processing the carbon nanotubes into smaller forms. However, previous research at Pitt has managed to cut the carbon nanotubes into the smallest dimensions ever to overcome this problem.

“We have confirmed that these shorter nanotubes are more dispersible and potentially easier to process for industrial as well as biomedical application, and could even constitute the building blocks for the creation of synthetic cells,” says Dr. Gottardi.

The organization of the atoms within nanotubes makes them particularly interesting materials to work with. However, they are barely soluble, making industrial processing difficult. One aspect of the team’s research will focus on creating more soluble and therefore more usable carbon nanotubes. These shorter nanotubes have the same dimensions as many proteins that compose the basic machinery of living cells, presenting the potential for cell or protein-level biomedical imaging, protein or nucleic acid vaccination carriers, drug delivery vehicles, or even components of synthetic cells.

Overall, the project is aimed at developing and working with these more dispersible carbon nanotubes with the aim of making them easier to process. The creation of the smaller nanotubes is the first step toward reaching this goal.

For the curious, here’s a link to and a citation for the paper,

“Zero-Dimensional” Single-Walled Carbon Nanotubes by Dr. Kaladhar Kamalasanan, Dr. Riccardo Gottard, Dr. Susheng Tan, Dr. Yanan Chen, Dr. Bhaskar Godugu, Dr. Sam Rothstein, Dr. Anna C. Balazs, Dr. Alexander Star, Dr. Steven R. Little. Angewandte Chemie Volume 125, Issue 43, pages 11518–11522, October 18, 2013 Article first published online: 5 SEP 2013 DOI: 10.1002/ange.201305526

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.