Tag Archives: Alexandra Daisy Ginsberg

Your garden as a ‘living artwork’ for insects

Pollinator Pathmaker Eden Project Edition. Photo Royston Hunt. Courtesy Alexandra Daisy Ginsberg Ltd

I suppose you could call this a kind of citizen science as well as an art project. A September 11, 2024 news item on phys.org describes a new scientific art project designed for insects,

Gardens can become “living artworks” to help prevent the disastrous decline of pollinating insects, according to researchers working on a new project.

Pollinator Pathmaker is an artwork by Dr. Alexandra Daisy Ginsberg that uses an algorithm to generate unique planting designs that prioritize pollinators’ needs over human aesthetic tastes.

A September 11, 2024 University of Exeter press release (also on EurekAlert), which originated the news item, provides more detail about the research project,

Originally commissioned by the Eden Project in Cornwall in 2021, the general public can access the artist’s online tool (www.pollinator.art) to design and plant their own living artwork for local pollinators.

While pollinators – including bees, butterflies, moths, wasps, ants and beetles – are the main audience, the results may also be appealing to humans.

Pollinator Pathmaker allows users to input the specific details of their garden, including size of plot, location conditions, soil type, and play with how the algorithm will “solve” the planting to optimise it for pollinator diversity, rather than how it looks to humans.

The new research project – led by the universities of Exeter and Edinburgh – has received funding from UK Research and Innovation as part of a new cross research council responsive mode scheme to support exciting interdisciplinary research.

The project aims to demonstrate how an artwork can help to drive innovative ecological conservation, by asking residents in the village of Constantine in Cornwall to plant a network of Pollinator Pathmaker living artworks in their gardens. These will become part of the multidisciplinary study.

“Pollinators are declining rapidly worldwide and – with urban and agricultural areas often hostile to them – gardens are increasingly vital refuges,” said Dr Christopher Kaiser-Bunbury, of the Centre for Ecology and Conservation on Exeter’s Penryn Campus in Cornwall.

“Our research project brings together art, ecology, social science and philosophy to reimagine what gardens are, and what they’re for.

“By reflecting on fundamental questions like these, we will empower people to rethink the way they see gardens.

 “We hope Pollinator Pathmaker will help to create connected networks of pollinator-friendly gardens across towns and cities.”

Good luck with the pollinators!

Synthetic Aesthetics update and an informal Canadian synthetic biology roundup

Amanda Ruggeri has written a very good introduction to synthetic biology for nonexperts in her May 20, 2015 Globe and Mail article about ‘Designing for the Sixth Extinction’, an exhibit showcasing designs and thought experiments focused on synthetic biology ,

In a corner of Istanbul’s Design Biennial late last year [2014], photographs of bizarre creatures sat alongside more conventional displays of product design and typefaces. Diaphanous globes, like transparent balloons, clung to the mossy trunk of an oak tree. Rust-coloured patterns ran across green leaves, as if the foliage had been decorated with henna. On the forest floor, a slug-like creature slithered, its back dotted with gold markings; in another photograph, what looked like a porcupine without a head crawled over the dirt, its quills tipped blood-red.

But as strange as the creatures looked, what they actually are is even stranger. Not quite living things, not quite machines, these imagined prototypes inhabit a dystopic, future world – a world in which they had been created to solve the problems of the living. The porcupine, for example, is an Autonomous Seed Disperser, described as a device that would collect and disperse seeds to increase biodiversity. The slug would be programmed to seek out acidic soils and neutralize them by dispersing an alkali hygroscopic fluid.

They are the designs – and thought experiments – of London-based Alexandra Daisy Ginsberg, designer, artist and lead author of the book Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature. In her project Designing for the Sixth Extinction, which after Istanbul is now on display at the Design Museum in London, Ginsberg imagines what a synthetic biology-designed world would look like – and whether it’s desirable. “

I have a couple of comments. First, the ‘Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature’ book launch last year was covered here in a May 5, 2014 post. where you’ll notice a number of the academics included in Ruggeri’s article are contributors to the book (but not mentioned as such). Second, I cannot find ‘Design for the Sixth Extinction’ listed as an exhibition on London’s Design Museum website.

Getting back to the matter at hand, not all of the projects mentioned in Ruggeri’s article are ‘art’ projects, there is also this rather practical and controversial initiative,

Designing even more complex organisms is the inevitable, and controversial, next step. And those designs have already begun. The British company Oxitec has designed a sterile male mosquito. When the bugs are released into nature and mate, no offspring result, reducing the population or eliminating it altogether. This could be a solution to dengue fever, a mosquito-carried disease that infects more than 50 million people each year: In field trials in Cayman, Panama and Brazil, the wild population of the dengue-carrying mosquito species was reduced by 90 per cent. Yet, as a genetically engineered solution, it also makes some skittish. The consequences of such manipulations remain unforeseen, they say. Proponents counter that the solution is more elegant, and safer, than the current practice of spraying chemicals.

Even so, the engineered mosquito leads to overarching questions: What are the dangers of tinkering with life? Could this cause a slide toward eugenics? Currently, the field doesn’t have an established ethics oversight process, something some critics are pushing to change.

It’s a surprising piece for the Globe and Mail newspaper to run since it doesn’t have a Canadian angle to it and the Globe and Mail doesn’t specialize in science (not withstanding Ivan Semeniuk’s science articles) or art/science or synthetic biology writing, for that matter. Perhaps it bodes an interest and more pieces on emerging science and technology and on art/science projects?

In any event, it seems like a good time to review some of the synthetic biology work or the centres of activity in Canada.  I believe the last time I tackled this particular topic was in a May 24, 2010 post titled, Canada and synthetic biology in the wake of the first ‘synthetic’ bacteria.

After a brief search, I found three centres for research:

Concordia [University] Centre for Applied Synthetic Biology (CASB)

[University of Toronto] The Synthetic Biology and Cellular Control Lab

[University of British Columbia] Centre for High-Throughput Biology (CHiBi)

Following an Oct. 27 – 28, 2014 UK-Canada Synthetic Biology Workshop held at Concordia University, Rémi Quirion, Vincent Martin, Pierre Meulien and Marc LePage co-wrote a Nov. 4, 2014 Concordia University post titled, How Canada is poised to revolutionize synthetic biology,

Rémi Quirion is the Chief Scientist of Québec, Fonds de recherche du Québec. Vincent Martin is Canada Research Chair in Microbial Genomics and Engineering and a professor in the Department of Biology at Concordia University in Montreal. Pierre Meulien is President and CEO of Genome Canada. Marc LePage is the President and CEO of Génome Québec.

Canada’s research and business communities have an opportunity to become world leaders in a burgeoning field that is fast shaping how we deal with everything from climate change to global food security and the production of lifesaving medications. The science of synthetic biology has the transformative capacity to equip us with novel technology tools and products to build a more sustainable society, while creating new business and employment opportunities for the economy of tomorrow.

We can now decipher the code of life for any organism faster and less expensively than ever before. Canadian scientists are producing anti-malarial drugs from organic materials that increase the availability and decrease the cost of lifesaving medicines. They are also developing energy efficient biofuels to dramatically reduce environmental and manufacturing costs, helping Canadian industry to thrive in the global marketplace.

The groundwork has also been laid for a Canadian revolution in the field. Canada’s scientific community is internationally recognized for its leadership in genomics research and strong partnerships with key industries. Since 2000, Genome Canada and partners have invested more than $2.3 billion in deciphering the genomes of economically important plants, animals and microbes in order to understand how they function. A significant proportion of these funds has been invested in building the technological toolkits that can be applied to synthetic biology.

But science cannot do it alone. Innovation on this scale requires multiple forms of expertise in order to be successful. Research in law, business, social sciences and humanities is vital to addressing questions of ethics, supply chain management, social innovation and cultural adaptation to new technologies. Industry knowledge and investments, as well as the capacity to incentivize entrepreneurship, are key to devising business models that will enable new products to thrive. Governments and funding agencies also need to do their part by supporting multidisciplinary research, training and infrastructure.

It’s a bit ‘hype happy’ for my taste but it does provide some fascinating insight in what seems to be a male activity in Canada.

Counterbalancing that impression is an Oct. 6, 2013 article by Ivan Semeniuk for the Globe and Mail about a University of Lethbridge team winning the top prize in a synthetic biology contest,

If you want to succeed in the scientific revolution of the future, it helps to think about life as a computer program.

That strategy helped University of Lethbridge students walk away with the top prize in a synthetic biology competition Sunday. Often touted as the genetic equivalent of the personal computer revolution, synthetic biology involves thinking about cells as programmable machines that can be designed and built to suit a particular need – whether it’s mass producing a vaccine or breaking down a hazardous chemical in the environment.

The five member Lethbridge team came up with a way to modify how cells translate genetic information into proteins. Rather than one bit of DNA carrying the information to make one protein – the usual way cells go about their business – the method involves inserting a genetic command that jiggles a cell’s translational machinery while it’s in mid-operation, coaxing it to produce two proteins out of the same DNA input.

“We started off with a computer analogy – kind of like zipping your files together – so you’d zip two protein sequences together and therefore save space,” said Jenna Friedt, a graduate student in biochemistry at Lethbridge. [emphasis mine]

There are concerns other than gender issues, chief amongst them, ethics. The Canadian Biotechnology Action Network maintains an information page on Synthetic Biology which boasts this as its latest update,

October 2014: In a unanimous decision of 194 countries, the United Nation’s Convention on Biological Diversity formally urged countries to regulate synthetic biology, a new extreme form of genetic engineering. The landmark decision follows ten days of hard-fought negotiations between developing countries and a small group of wealthy biotech-friendly economies. Until now, synthetic organisms have been developed and commercialized without international regulations. …

Finally, there’s a June 2014 synthetic biology timeline from the University of Ottawa’s Institute for Science, Society, and Policy (ISSP) which contextualizes Canadian research, policy and regulation with Australia, the European Union, the UK, and the US.

(On a closely related note, there’s my May 14, 2015 post about genetic engineering and newly raised concerns.)

Synthetic Aesthetics: a book and an event (UK’s Victoria & Albert Museum) about synthetic biology and design

Sadly, I found out about the event after it took place (April 25, 2014) but I’m including it here as I think it serves a primer on putting together an imaginative art/science (art/sci) event, as well, synthetic biology is a topic I’ve covered here many times.

First, the book. Happily, it’s not too late to publicize it and, after all, that was at least one of the goals for the event. Here’s more about the book, from the UK’s Engineering and Physical Sciences Research Council April 25, 2014 news release (also on EurekAlert),

The emerging field of synthetic biology crosses the boundary between science and design, in order to design and manufacture biologically based parts, devices and systems that do not exist in the natural world, as well as the redesign of existing, natural biological systems.

This new technology has the potential to create new organisms for a variety of applications from materials to machines. What role can artists and designers play in our biological future?

This Friday [April 25, 2014], the Victoria & Albert Museum’s Friday Late turns the V&A into a living laboratory, bringing science and design together for one night of events, workshops and installations.

It will also feature the official launch of a new EPSRC-funded book ‘Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature’.

The book, by Alexandra Daisy Ginsberg, Jane Calvert, Pablo Schyfter, Alistair Elfick and Drew Endy, emerged from a research project ‘Sandpit: Synthetic aesthetics: connecting synthetic biology and creative design’ which was funded by the UK’s Engineering and Physical Sciences Research Council (EPSRC) and the National Science Foundation in the US.

Kedar Pandya, EPSRC’s Head of Engineering, said: “This event and the Synthetic Aesthetics book will act as a catalyst to spark informed debates and future research into how we develop and apply synthetic biology. Engineers and scientists are not divorced from the rest of society; ethical, moral and artistic questions need to be considered as we explore new science and technologies.”

The EPSRC project aimed to:

  • bring together scientists and engineers working in synthetic biology with artists and designers working in the creative industries, to develop long-lasting relationships which could help to improve their work
  • ensure aesthetic concerns and questions are reflected in the lifecycle of research projects and implementation of products, and enable inclusive and responsive technology development
  • produce new social scientific research that analyses and reflects on these interactions
  • initiate a new and expanded curriculum across both engineering and design disciplines to lead to new forms of engineering and new schools of art
  • improve synthetic biological projects, products and thus the world
  • engage and enable the full diversity of civilization’s creative resources to work with the synthetic biology community as full partners in creating and stewarding a beautifully integrated natural and engineered living world

Weirdly, the news release offered no link to the book.  Here’s the Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature page on the MIT Press website,

In this book, synthetic biologists, artists, designers, and social scientists investigate synthetic biology and design. After chapters that introduce the science and set the terms of the discussion, the book follows six boundary-crossing collaborations between artists and designers and synthetic biologists from around the world, helping us understand what it might mean to ‘design nature.’ These collaborations have resulted in biological computers that calculate form; speculative packaging that builds its own contents; algae that feeds on circuit boards; and a sampling of human cheeses. They raise intriguing questions about the scientific process, the delegation of creativity, our relationship to designed matter, and, the importance of critical engagement. Should these projects be considered art, design, synthetic biology, or something else altogether?

Synthetic biology is driven by its potential; some of these projects are fictions, beyond the current capabilities of the technology. Yet even as fictions, they help illuminate, question, and even shape the future of the field.

About the Authors

Alexandra Daisy Ginsberg is a London-based artist, designer, and writer.

Jane Calvert is a social scientist based in Science, Technology and Innovation Studies at the University of Edinburgh.

Pablo Schyfter is a social scientist based in Science, Technology and Innovation Studies at the University of Edinburgh.

Alistair Elfick is Codirector of the SynthSys Centre at the University of Edinburgh.

Drew Endy is a bioengineer at Stanford University and President of the BioBrick

Now for the event description from the Victoria and Albert Museum’s Friday Late series, the April 25,2014  event Synthetic Aesthetics webpage,

Synthetic Aesthetics

Friday 25 April, 18.30-22.00

Can we design life itself? The emerging field of synthetic biology crosses the boundary between science and design to manipulate the stuff of life. These new designers use life as a programmable material, creating new organisms with radical applications from materials to machines. Friday Late turns the V&A into a living laboratory, bringing science and design together for one night of events, workshops and installations, each exploring our biological future.

The evening will feature the book launch of Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature (MIT Press). The book marks an important point in the development of the emerging discipline of synthetic biology, sitting at the intersection between design and science. The book is a result of research funded by the UK’s Engineering and Physical Sciences Research Council and the National Science Foundation in the US.

All events are free and places are designated on a first come, first served basis, unless stated otherwise. Filming and photography will be taking place at this event.

Please note, if the Museum reaches capacity we will allow access on a one-in-one-out basis.

#FridayLate

ALL EVENING (18.30 – 21.30)

Live Lab

Spotlight Space, Grand Entrance
A functioning synthetic biology lab in the grand entrance places this experimental field front and centre within the historic home of the V&A. Conducting experiments and answering questions from visitors, the lab will be run by synthetic biologists from Imperial College London’s EPSRC National Centre for Synthetic Biology & Innovation and SynbiCITE UK Innovation and Knowledge Centre for Synthetic Biology.

No Straight Line, No True Circle

Medieval & Renaissance, Room 50a
Young artists from the Royal College of Art’s Visual Communication course explore synthetic biology through projections on the walls of the galleries. Each one takes its inspiration from the sculptures around it in a series of site-specific installations.

Xylinum Cones

Lunchroom (access via staircase L, follow signs)
What would it mean for our daily lives if we could grow our objects? Xylinum Cones presents an experimental production line that uses bacteria to grow geometric forms. Meet designers Jannis Huelsen and Stefan Schwabe and learn how they are developing a renewable cellulose composite for future industrial uses.

Selfmade

Poynter Room, Café
This film tells the story of how biologist Christina Agapakis and smell provocateur Sissel Tolaas produce human cheese. Using swabs from hands, feet, noses and armpits as starter cultures, they produce unique smelling fresh cheeses as unusual portraits of our biological lives.

Grow Your Own Ink

Lunchroom (access via staircase L, follow signs)
A workshop led by scientist Thomas Landrain and designer Marie-Sarah Adenis showing how to ‘grow your own ink’. Try out some of the steps, from the culturing of bacteria to the extraction and purification of biological pigments. Discover the marvellous properties of this one-of-a-kind ink.

Bio Logic

Architecture Landing, Room 127 (access via staircase P, follow signs)
Take a trip into the Petri dish, where microchips meet microbes, cells become computers and all is not quite as it seems. Bio Computation, a short film by David Benjamin and Hy-Fi by The Living demonstrate revolutionary design using new composite building materials at the intersection of synthetic biology, architecture, and computation.

Zero Park

Bottom of NAL staircase (staircase L) Where is the line between the natural and the artificial? Somewhere in the midst of Zero Park. Sascha Pohflepp’s installation leads you through a synthetic landscape, which poses questions about human agency in natural ecosystems.

Faber Futures: The Rhizosphere Pigment Lab

Tapestries, Room 94 (access via staircase L)
Bacteria are no longer the bane, but the birth of tapestries! Natsai Audrey Chieza creates a gallery of futurist scarves for which bacteria are the sole agent of colour transformation. In collaboration with John Ward, professor of Structural Molecular Biology, University College London.

Living Things

Fashion, Room 40
Breathing, living, ‘second skins’ change their shape and appearance as you approach. Silicon-like smart-fabrics show movement and moving patterns. The Cyborg project – led by Carlos Olguin, with Autodesk Research – explores possibilities of new software to create materials with their own ‘life’.

The Opera of Prehistoric Creatures

Raphael Gallery, Room 48a
‘Lucy’, the extinct hominid Autralopithecus Afarensis, performs an opera just for you. Marguerite Humeau recreates her vocal tract and cords to bring you the lost voice of this prehistoric creature.

Electro Magnetic Signals from Bacterial DNA

Cast Courts, Room 46a
Can we imagine what it sounds like inside the molecular structure of a DNA helix? This composition is inspired by theoretical speculation on bacteria’s ability to transmit EMF signals, played amongst the V&A’s cast collection.

Living Among Living Things

The Edwin and Susan Davies Galleries, Room 87 (access via staircase L, follow signs)
Will Carey explores how living things will replace the products and foods we use today: from packaging that produces its own drink to skincare products secreted from bespoke microbial cultures. This series of images show exotic commodities that could be normal to future generations.

Neo-Nature

Lunchroom (access via staircase L, follow signs)
Join this workshop to create your own synthetic corals and contribute to the V&A’s very own coral reef. Michail Vanis invites you to bring seemingly impossible scenarios to life and discuss their scientific and ethical implications.

Synthetic Aesthetics on Film

The Lydia and Manfred Gorvey Lecture Theatre (access via staircase L, follow signs)
18.30 – 19.00 & 20.00 – 21.45
DNA replication, Bjork, swallowable perfume… these eight films demonstrate a myriad of cultural crossovers; synthetic biology at its aesthetic finest.
Dunne & Raby – Future Foragers (2009)
Tobias Revell – New Mumbai (2012)
Lucy McRae – Swallowable Parfum (2013)
UCSD – Biopixels (2011)
Zeitguised – Comme des Organismes (2014)
Drew Berry for Bjork – Hollow (2011)
Alexandra Daisy Ginsberg and James King – E. chromi (2009)
Neri Oxman – Silk Pavilion (2013)

FROM 19.00

Synthetic Aesthetics Authors’ Panel Discussion and Book Signing

The Lydia and Manfred Gorvey Lecture Theatre (access via staircase L, follow signs)
19.00 – 20.00 (followed by book signing)
The authors of Synthetic Aesthetics pry open the circuitry of a new biology, exposing the motherboard of nature. A presentation by designer Alexandra Daisy Ginsberg will be followed by a panel discussion with members of the team behind Synthetic Aesthetics Drew Endy, Jane Calvert, Pablo Schyfter and Alistair Elfick. Chaired by The Economist’s Oliver Morton.

Blueprints for the Unknown

Learning Centre: Seminar Room 3(access via staircase L, follow signs)
19.00. 19.30, 20.00 & 20.30
What happens when science leaves the lab? Recent advances in synthetic biology mean scientists will be the architects of life, creating blueprints for living systems and organisms. Blueprints for the Unknown investigates what might happen as engineering biology meets the complex world we live in. Speakers include Koby Barhad, David Benqué, Raphael Kim and Superflux.
Blueprints for the Unknown is a project by Design Interactions Research at the Royal College of Art as part of the Studiolab research project.

DNA Extraction

Learning Centre: Art Studio(access via staircase L, follow signs)
19.00, 20.00 & 21.00
Extract your own DNA in the V&A’s popup Wetlab and chat with synthetic biologists from Imperial College London. Synthetic biology designs life at the scale of DNA, and tonight you can take the raw materials of life home with you. With thanks to Imperial College London’s EPSRC National Centre for Synthetic Biology & Innovation and SynbiCITE UK Innovation and Knowledge Centre for Synthetic Biology.

Music of the Spheres

John Madejski Garden
19.30 & 20.30 (20 minutes)
Your computer’s hard drive is nothing compared to nature’s awesome capacity to record information. Artist Charlotte Jarvis explores how DNA can be used to record things apart from genetics – such as music – in the centuries to come. With scientist Nick Goldman and composer Mira Calix, Music of the Spheres encodes music into the structure of DNA suspended in soap solution. An immersive, surprising performance introduced by Jarvis, Calix and Goldman as they release musical bubbles in the garden. This is a work in progress.

FROM 20.00

Synbio Tarot Cards

Medieval & Renaissance, Room 50b
20.00 – 20.45
Synbio tarot card readings reveal possible outcomes, both desirable and disastrous, to which science might lead us. Exploring the social, economic and political implications of synthetic biology in the cards, from dream world to dystopia.

Synthetic Aesthetics Book Contributors Talks

National Art Library (access via staircase L)
20.30 – 21.30
The new book Synthetic Aesthetics: Investigating Synthetic Biology’s Designs on Nature marks a development in the emerging discipline of synthetic biology. For the book launch, designers, artists and scientists explain how their work bridges the gap between design and science. Drop in and hear Christina Agapakis, Sascha Pohflepp, David Benjamin and Will Carey over the course of the evening with social scientists Jane Calvert and Pablo Schyfter.
(Please note coats and bags are not permitted in the Library. Please leave these items in the cloakroom on the ground floor).

This event had a specially designed programme cover,

Souvenir programme wrap designed by London-based graphic design consultancy Kellenberger–White. kellenberger-white.com

Souvenir programme wrap designed by London-based graphic design consultancy Kellenberger–White.
kellenberger-white.com

 


Having observed how very deeply concerned scientists still are over the GMO (genetically modified organisms, sometimes also called ‘Frankenfoods’) panic that occurred in the early 2000s (I think), I suspect that efforts like this are meant (at least in part) to allay fears. In any event, the powers-that-be have taken a very engaging approach to their synthetic biology efforts. As for whether or not the event lived up to expectations, I have not been able to find any reviews or commentaries about it.