Tag Archives: Algeria

Equality doesn’t necessarily lead to greater women’s STEM (science, technology, engineering, and mathematics) participation?

It seems counter-intuitive but societies where women have achieved greater equality see less participation by women in STEM (science, technology, engineering and mathematics) than countries where women are treated differently. This rather stunning research was released on February 14, 2018 (yes, Valentine’s Day).

Women, equality, STEM

Both universities involved in this research have made news/press releases available. First, there’s the February 14, 2018 Leeds Beckett University (UK) press release,

Countries with greater gender equality see a smaller proportion of women taking degrees in science, technology, engineering and mathematics (STEM), a new study by Leeds Beckett has found.

Dubbed the ‘gender equality paradox’, the research found that countries such as Albania and Algeria have a greater percentage of women amongst their STEM graduates than countries lauded for their high levels of gender equality, such as Finland, Norway or Sweden.

The researchers, from Leeds Beckett’s School of Social Sciences and the University of Missouri, believe this might be because countries with less gender equality often have little welfare support, making the choice of a relatively highly-paid STEM career more attractive.

The study, published in Psychological Science, also looked at what might motivate girls and boys to choose to study STEM subjects, including overall ability, interest or enjoyment in the subject and whether science subjects were a personal academic strength.

Using data on 475,000 adolescents across 67 countries or regions, the researchers found that while boys’ and girls’ achievement in STEM subjects was broadly similar, science was more likely to be boys’ best subject.

Girls, even when their ability in science equalled or excelled that of boys, were often likely to be better overall in reading comprehension, which relates to higher ability in non-STEM subjects.

Girls also tended to register a lower interest in science subjects. These differences were near-universal across all the countries and regions studied.

This could explain some of the gender disparity in STEM participation, according to Leeds Beckett Professor in Psychology Gijsbert Stoet.

“The further you get in secondary and then higher education, the more subjects you need to drop until you end with just one.

“We are inclined to choose what we are best at and also enjoy. This makes sense and matches common school advice.

“So, even though girls can match boys in terms of how well they do at science and mathematics in school, if those aren’t their best subjects and they are less interested in them, then they’re likely to choose to study something else.”

The researchers also looked at how many girls might be expected to choose further study in STEM based on these criteria.

They took the number of girls in each country who had the necessary ability in STEM and for whom it was also their best subject and compared this to the number of women graduating in STEM.

They found there was a disparity in all countries, but with the gap once again larger in more gender equal countries.

In the UK, 29 per cent of STEM graduates are female, whereas 48 per cent of UK girls might be expected to take those subjects based on science ability alone. This drops to 39 per cent when both science ability and interest in the subject are taken into account.

Countries with higher gender equality tend also to be welfare states, providing a high level of social security for their citizens.

Professor Stoet said: “STEM careers are generally secure and well-paid but the risks of not following such a path can vary.

“In more affluent countries where any choice of career feels relatively safe, women may feel able to make choices based on non-economic factors.

“Conversely, in countries with fewer economic opportunities, or where employment might be precarious, a well-paid and relatively secure STEM career can be more attractive to women.”

Despite extensive efforts to increase participation of women in STEM, levels have remained broadly stable for decades, but these findings could help target interventions to make them more effective, say the researchers.

“It’s important to take into account that girls are choosing not to study STEM for what they feel are valid reasons, so campaigns that target all girls may be a waste of energy and resources,” said Professor Stoet.

“If governments want to increase women’s participation in STEM, a more effective strategy might be to target the girls who are clearly being ‘lost’ from the STEM pathway: those for whom science and maths are their best subjects and who enjoy it but still don’t choose it.

“If we can understand their motivations, then interventions can be designed to help them change their minds.”

Then, there’s the February 14, 2018 University of Missouri news release, some of which will be repetitive,

The underrepresentation of girls and women in science, technology, engineering and mathematics (STEM) fields occurs globally. Although women currently are well represented in life sciences, they continue to be underrepresented in inorganic sciences, such as computer science and physics. Now, researchers from the University of Missouri and Leeds Beckett University in the United Kingdom have found that as societies become wealthier and more gender equal, women are less likely to obtain degrees in STEM. The researchers call this a “gender-equality paradox.” Researchers also discovered a near-universal sex difference in academic strengths and weaknesses that contributes to the STEM gap. Findings from the study could help refine education efforts and policies geared toward encouraging girls and women with strengths in science or math to participate in STEM fields.

The researchers found that, throughout the world, boys’ academic strengths tend to be in science or mathematics, while girls’ strengths are in reading. Students who have personal strengths in science or math are more likely to enter STEM fields, whereas students with reading as a personal strength are more likely to enter non-STEM fields, according to David Geary, Curators Professor of Psychological Sciences in the MU College of Arts and Science. These sex differences in academic strengths, as well as interest in science, may explain why the sex differences in STEM fields has been stable for decades, and why current approaches to address them have failed.

“We analyzed data on 475,000 adolescents across 67 countries or regions and found that while boys’ and girls’ achievements in STEM subjects were broadly similar in all countries, science was more likely to be boys’ best subject,” Geary said. “Girls, even when their abilities in science equaled or excelled that of boys, often were likely to be better overall in reading comprehension, which relates to higher ability in non-STEM subjects. As a result, these girls tended to seek out other professions unrelated to STEM fields.”

Surprisingly, this trend was larger for girls and women living in countries with greater gender equality. The authors call this a “gender-equality paradox,” because countries lauded for their high levels of gender equality, such as Finland, Norway or Sweden, have relatively few women among their STEM graduates. In contrast, more socially conservative countries such as Turkey or Algeria have a much larger percentage of women among their STEM graduates.

“In countries with greater gender equality, women are actively encouraged to participate in STEM; yet, they lose more girls because of personal academic strengths,” Geary said. “In more liberal and wealthy countries, personal preferences are more strongly expressed. One consequence is that sex differences in academic strengths and interests become larger and have a stronger influence college and career choices than in more conservative and less wealthy countries, creating the gender-equality paradox.”

The combination of personal academic strengths in reading, lower interest in science, and broader financial security explains why so few women choose a STEM career in highly developed nations.

“STEM careers are generally secure and well-paid but the risks of not following such a path can vary,” said Gijsbert Stoet, Professor in Psychology at Leeds Beckett University. “In more affluent countries where any choice of career feels relatively safe, women may feel able to make choices based on non-economic factors. Conversely, in countries with fewer economic opportunities, or where employment might be precarious, a well-paid and relatively secure STEM career can be more attractive to women.”

Findings from this study could help target interventions to make them more effective, say the researchers. Policymakers should reconsider failing national policies focusing on decreasing the gender imbalance in STEM, the researchers add.

The University of Missouri also produced a brief video featuring Professor David Geary discussing the work,

Here’s a link to and a citation for the paper,

The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education by Gijsbert Stoet, David C. Geary. Psychological Studies https://doi.org/10.1177/0956797617741719 First Published February 14, 2018 Research Article

This paper is behind a paywall.

Gender equality and STEM: a deeper dive

Olga Khazan in a February 18, 2018 article for The Atlantic provides additional insight (Note: Links have been removed),

Though their numbers are growing, only 27 percent of all students taking the AP Computer Science exam in the United States are female. The gender gap only grows worse from there: Just 18 percent of American computer-science college degrees go to women. This is in the United States, where many college men proudly describe themselves as “male feminists” and girls are taught they can be anything they want to be.

Meanwhile, in Algeria, 41 percent of college graduates in the fields of science, technology, engineering, and math—or “STEM,” as its known—are female. There, employment discrimination against women is rife and women are often pressured to make amends with their abusive husbands.

According to a report I covered a few years ago, Jordan, Qatar, and the United Arab Emirates were the only three countries in which boys are significantly less likely to feel comfortable working on math problems than girls are. In all of the other nations surveyed, girls were more likely to say they feel “helpless while performing a math problem.”

… this line of research, if it’s replicated, might hold useful takeaways for people who do want to see more Western women entering STEM fields. In this study, the percentage of girls who did excel in science or math was still larger than the number of women who were graduating with STEM degrees. That means there’s something in even the most liberal societies that’s nudging women away from math and science, even when those are their best subjects. The women-in-STEM advocates could, for starters, focus their efforts on those would-be STEM stars.

Final thoughts

This work upends notions (mine anyway) about equality and STEM with regard to women’s participation in countries usually described as ‘developed’ as opposed to ‘developing’. I am thankful to have my ideas shaken up and being forced to review my assumptions about STEM participation and equality of opportunity.

John Timmer in a February 19, 2018 posting on the Ars Technica blog offers a critique of the research and its conclusions,

… The countries where the science-degree gender gap is smaller tend to be less socially secure. The researchers suggest that the economic security provided by fields like engineering may have a stronger draw in these countries, pulling more women into the field.

They attempt to use a statistical pathway analysis to see if the data is consistent with this being the case, but the results are inconclusive. It may be right, but there would be at least one other strong factor that they have not identified involved.

Timmer’s piece is well worth reading.

For some reason the discussion about a lack of social safety nets and precarious conditions leading women to greater STEM participation reminds me of a truism about the arts. Constraints can force you into greater creativity. Although balance is necessary as you don’t want to destroy what you’re trying to encourage. In this case, it seems that comfortable lifestyles can lead women to pursue that which comes more easily whereas women trying to make a better life in difficult circumstance will pursue a more challenging path.

Nanotechnology and Pakistan

I don’t often get information about nanotechnology in Pakistan so this March 6, 2017 news article by Mrya Imran on the TheNews.com website provides some welcome insight,

Pakistan has the right level of expert human resource and scientific activity in the field of nanotechnology. A focused national strategy and sustainable funding can make Pakistan one of the leaders in this sector.

These views were expressed by Professor of Physics in University of Illinois and Founder and President of NanoSi Advanced Technology, Inc. Dr Munir H. Nayfeh.  Dr Nayfeh, along with Executive Director, Centre for Nanoscale Science and Technology, and Research Faculty, Department of Agricultural and Biological Engineering, University of Illinois, Dr. Irfan Ahmad and Associate Professor and Director of Medical Physics Programme, Pritzker School of Medicine, University of Chicago, Dr. Bulent Aydogan were invited by COMSATS Institute of Information Technology (CIIT) to deliver lectures on nanotechnology research and entrepreneurship with special focus on cancer nanomedicine.

The objective of the visit was to motivate and mentor faculty and students at COMSATS and also to provide feedback to campus administration and the Federal Ministry of Science and Technology on strategic initiatives to help develop the next generation of science and engineering workforce in Pakistan.

A story of success for the Muslim youth from areas affected by conflict and war, Dr Nayfeh, a Palestinian by origin, was brought up in a conflict area by a mother who did not know how to read and write. For him, the environment was actually a motivator to work hard and study. “My mother was uneducated but she always wanted her children to get the highest degree possible and both my parents supported us in whatever way possible to achieve our dreams,” he recalled.

Comparing Pakistan with other developing countries in scientific research enterprise, he said that despite lack of resources, he has observed some decent amount of research outcome from the existing setups. About their visits to different labs, he said that they found faculty members and researchers in need of for more and more funds. “I don’t blame them as I am also looking for more and more fund even in America. This is a positive sign which shows that these set ups are alive and want to do more.”

Dr. Nayfeh is greatly impressed with the number of women researchers and students in Pakistan. “In Tunisia and Algeria, there were decent number of women in this field but Pakistan has the most and there are more publications coming out of Pakistan as compared to other developing countries.”

If you have the time, I suggest you read the article in its entirety.

Spanning north to south and French to English on the African continent with nanotechnology

A Sept. 27, 2015 news item on the Algérie Presse Service (rough translation: Algerian Press Agency) describes plans for a new nanotechnology centre shared by Algeria and South Africa,

Un projet de réalisation d’un centre de recherche algéro-sud-africain dédié à la synthèse et la caractérisation des nanomatériaux (structures à l’échelle de l’atome) pour différentes applications, a été annoncé dimanche à Alger lors d’un workshop sur les nanotechnologies.

Le lieu d’implantation du centre et le programme qui lui sera dédié seront décidés par le ministre de l’Enseignement supérieur et de la Recherche scientifique et son homologue sud-africain lors d’une réunion prévue en octobre prochain en Afrique du Sud, a indiqué Pr. Hafid Aourag, DG de la Recherche scientifique et du développement technologique qui présidait ce workshop entre experts algériens et sud africains sur les nanotechnologies.

The announcement about the new centre was made during a nanotechnology workshop being held in Algiers this last weekend (Sept. 26-27, 2015). The proposed nanotechnology center’s location and other details will be decided by the Algerian Minister of Higher Education and Scientific Research and his South African counterpart during an October 2015 meeting in South Africa according to Hafid Aourag, professor and Director General of Scientific Research and Technological Development in Algeria.

Aourag noted that Algeria and South Africa have a long and successful history of science collaboration,

“La coopération de l’Algérie avec l’Afrique du Sud a atteint un stade très avancé”, a-t-il estimé, révélant l’existence de “beaucoup de projets entre les laboratoires de recherche des deux pays”.

Pr. Aourag a rappelé que les deux pays avaient déjà “cofinancé plus de 25 projets” ayant donné des résultats concrets comme la publication de 35 travaux dans des revues et la réalisation de produits innovants issus des nanotechnologies.

“Il s’agit essentiellement de produits issus des nanomatériaux dans les domaines de l’agriculture et du traitement de l’eau”, a-t-il précisé.

There have been some 25 joint nanotechnology projects ranging from agricultural applications to water treatment.

Aourag added,

Il a relevé que la première centrale technologique en Algérie, dédiée à la fabrication des semi-conducteurs et spécialisée en nanotechnologie, “est déjà fonctionnelle et sera inaugurée, en octobre prochain”.

If I understand this rightly, Aourag is saying that Algeria has focussed on the semiconductor industry and the fabrication of parts at the nanoscale and this will be inaugurated October 2015.

It’s not clear to me  if this business about the semiconductors is part of the nanotechnology centre initiative or if it’s an incidental, related announcement.

As I found this north-south collaboration intriguing, I ran a search and found this on the University of South Africa website in a Sept. 10, 2013 news release,

Professor Malik Maaza, incumbent of the UNESCO-Unisa Africa Chair in Nanoscience and Nanotechnology, continues to represent the continent on the global nano stage. He was recently elected as the only African member of the advisory board of the Royal Society of Chemistry’s Journal of Materials Chemistry A, a prestigious materials journal.

With about 20 years of experience in nanosciences, Algerian born and an adoptive South African [emphasis mine] Professor Malik Maaza is an ideal incumbent for the UNESCO-Unisa Africa Chair in Nanoscience and Nanotechnology. He has undergraduate degrees in Solid State Physics and Photonics from the University of Oran, Algeria, and University of Paris VI, France. His PhD in Neutron Optics was obtained from the University of Paris VI.

He is a man passionate about voicing Africa’s nanoscience and nanotechnology knowledge production progress and contributions. Parallel to the initiation of the South African Nanotechnology Initiative (SANi) launched in 2006, which Maaza instigated with Dr Philemon Mjwara, current Director General of the national department of science and technology, in 2005, in Trieste-Italy, under the patronage of [The World Academy of Sciences] TWAS, [Abdus Salam International Centre for Theoretical Physics] ICTP and [United Nations Industrial Development Organization] UNIDO, he initiated the Nanosciences African Network (NANOAFNET), which has its headquarters at the iThemba LABS-NRF in Cape Town.

That’s all I’ve got on Algeria-South Africa science-themed relations and connections.

Should anyone have a better translation than I’ve been able to offer or more details about any aspect of this initiative, please do leave a comment.