Tag Archives: AMBER Centre

2D printed transistors in Ireland

2D transistors seem to be a hot area for research these days. In Ireland, the AMBER Centre has announced a transistor consisting entirely of 2D nanomaterials in an April 6, 2017 news item on Nanowerk,

Researchers in AMBER, the Science Foundation Ireland-funded materials science research centre hosted in Trinity College Dublin, have fabricated printed transistors consisting entirely of 2-dimensional nanomaterials for the first time. These 2D materials combine exciting electronic properties with the potential for low-cost production.

This breakthrough could unlock the potential for applications such as food packaging that displays a digital countdown to warn you of spoiling, wine labels that alert you when your white wine is at its optimum temperature, or even a window pane that shows the day’s forecast. …

An April 7, 2017 AMBER Centre press release (also on EurekAlert), which originated the news item, expands on the theme,

Prof Jonathan Coleman, who is an investigator in AMBER and Trinity’s School of Physics, said, “In the future, printed devices will be incorporated into even the most mundane objects such as labels, posters and packaging.

Printed electronic circuitry (constructed from the devices we have created) will allow consumer products to gather, process, display and transmit information: for example, milk cartons could send messages to your phone warning that the milk is about to go out-of-date.

We believe that 2D nanomaterials can compete with the materials currently used for printed electronics. Compared to other materials employed in this field, our 2D nanomaterials have the capability to yield more cost effective and higher performance printed devices. However, while the last decade has underlined the potential of 2D materials for a range of electronic applications, only the first steps have been taken to demonstrate their worth in printed electronics. This publication is important because it shows that conducting, semiconducting and insulating 2D nanomaterials can be combined together in complex devices. We felt that it was critically important to focus on printing transistors as they are the electric switches at the heart of modern computing. We believe this work opens the way to print a whole host of devices solely from 2D nanosheets.”

Led by Prof Coleman, in collaboration with the groups of Prof Georg Duesberg (AMBER) and Prof. Laurens Siebbeles (TU Delft,Netherlands), the team used standard printing techniques to combine graphene nanosheets as the electrodes with two other nanomaterials, tungsten diselenide and boron nitride as the channel and separator (two important parts of a transistor) to form an all-printed, all-nanosheet, working transistor.

Printable electronics have developed over the last thirty years based mainly on printable carbon-based molecules. While these molecules can easily be turned into printable inks, such materials are somewhat unstable and have well-known performance limitations. There have been many attempts to surpass these obstacles using alternative materials, such as carbon nanotubes or inorganic nanoparticles, but these materials have also shown limitations in either performance or in manufacturability. While the performance of printed 2D devices cannot yet compare with advanced transistors, the team believe there is a wide scope to improve performance beyond the current state-of-the-art for printed transistors.

The ability to print 2D nanomaterials is based on Prof. Coleman’s scalable method of producing 2D nanomaterials, including graphene, boron nitride, and tungsten diselenide nanosheets, in liquids, a method he has licensed to Samsung and Thomas Swan. These nanosheets are flat nanoparticles that are a few nanometres thick but hundreds of nanometres wide. Critically, nanosheets made from different materials have electronic properties that can be conducting, insulating or semiconducting and so include all the building blocks of electronics. Liquid processing is especially advantageous in that it yields large quantities of high quality 2D materials in a form that is easy to process into inks. Prof. Coleman’s publication provides the potential to print circuitry at extremely low cost which will facilitate a range of applications from animated posters to smart labels.

Prof Coleman is a partner in Graphene flagship, a €1 billion EU initiative to boost new technologies and innovation during the next 10 years.

Here’s a link to and a citation for the paper,

All-printed thin-film transistors from networks of liquid-exfoliated nanosheets by Adam G. Kelly, Toby Hallam, Claudia Backes, Andrew Harvey, Amir Sajad Esmaeily, Ian Godwin, João Coelho, Valeria Nicolosi, Jannika Lauth, Aditya Kulkarni, Sachin Kinge, Laurens D. A. Siebbeles, Georg S. Duesberg, Jonathan N. Coleman. Science  07 Apr 2017: Vol. 356, Issue 6333, pp. 69-73 DOI: 10.1126/science.aal4062

This paper is behind a paywall.

Irish teach nanoscience, nanotechnology and new materials to 5th & 6th classes (grades)

Ireland’s CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices) located in Trinity College Dublin seems to be hosting both the AMBER (Advanced Materials and BioEngineering Research) Centre and the NanoWOW education initiative. A Nov. 12, 2013 news item on Nanowerk describes NanoWOW and AMBER in more detail,

Ireland’s new materials science research centre has announced the launch of their new NanoWOW lesson plans. Designed for 5th and 6th class pupils the plans will introduce Irish Primary students to the world of nanoscience, nanotechnology and materials science.

Linked to the existing Primary science and maths syllabus while also including environment, history and art, the new lessons will enable school children to understand how the properties of materials can change on the nanoscale and provide opportunities for them to work like scientists through discussion, investigations and activities.

The Nov. 12, 2013 AMBER/CRANN news release, which originated the news item, gives more details about how NanoWOW is being launched during Ireland’s Science Week,

To celebrate the launch of NanoWOW, St Patrick’s College, Drumcondra are using this year’s Science Week theme, “Exploring the XTRA-Ordinary” to find out more about nanoscience and materials science amongst their students and staff. They have organised a number of CPD workshops to introduce primary school teachers to the NanoWOW lessons and will have guest speakers from AMBER visiting during the week.

Dr Cliona Murphy, Lecturer in Science Education, St Patrick’s College said “I think this is a wonderful initiative and we are very pleased to collaborate with AMBER on further developing the educational resources and bringing them to primary schools throughout Ireland.  The NanoWow investigations provide children with ample opportunities to work like scientists and to develop their scientific skills and knowledge.  Through engaging with the NanoWow activities the children are also provided with numerous opportunities to develop their language and thinking skills and to use a range of mathematical skills.  The NanoWow educational programme  provides children with first hand experience of the  ground breaking scientific research that is currently being conducted in Ireland and gives them an insight into careers that are potentially achievable for them.”

Prof. Stefano Sanvito, AMBER said, “The new NanoWOW lesson plans are designed to engage school children in a creative way that fosters their curiosity in nanoscience. We also want to develop their interest and understanding so they are aware of nanoscience as part of their everyday lives and the potential future career options that would be open to them.”

Prof. Sanvito went on to comment, “Ireland is currently ranked 6th worldwide for nanoscience research and 1st in the EU for European Research Council starting grants. With Nanoscience linked to €15 billion or 10% of Irish exports and 250,000 jobs in sectors like technology, biomedicine, pharmaceuticals, energy and more, the importance of making nanoscience relevant amongst school pupils is obvious for future development”.

The launch of the new NanoWOW lesson plans builds on the success of the “Nano in My Life” lesson plans for secondary schools which were launched by CRANN during Science Week 2011. Targeted at Transition Year students, the resource provides teachers with nanaoscience lesson plans free of charge. With nanonscience due to feature as part of the new Leaving Certificate, the NanoWOW lesson plans aim to build on this success and bring the subject to a wider audience.

Ireland’s Science Week is being held from Nov. 10 – 17, 2013, according to the 2013 Science Week theme webpage (on Ireland’s Science Week website),

Science Week 2013 – Exploring the XTRA-Ordinary

Every day we encounter XTRA-Ordinary processes that are behind the ordinary! From the water that comes out of our taps, to the grass that grows in our fields, to our body’s ability to heal itself and play sports – there are XTRA-Ordinary processes happening all around us. Science Week 2013 is calling on you to come and explore the XTRA-Ordinary too!

The objective of Science Week each year is to promote the relevance of science, technology, engineering and maths (STEM) in our everyday lives and to demonstrate their importance to the future of Irish society and to the economy.

This year we want to show everyone in Ireland that there are scientific processes behind everything around us, most of which are taken for granted every day. Exploring the XTRA-Ordinary invites you to stop, take note and explore the processes that are happening around you every day.

Co-ordinated by Science Foundation Ireland, Science Week 2013 runs from 10 to 17 November 2013 and is a collaboration of events run by colleges, schools, libraries, teachers, community groups, researchers and students throughout Ireland.

For anyone wanting to know more about the NanoWow initiative and the lessons on offer, go here. As for AMBER, that was launched in October 2013 according to an Oct. 24, 2013 CRANN news release,

Minister Bruton launches new €58 Million SFI Research Centre- AMBER

Advanced Materials and BioEngineering Research (AMBER) Centre positions Ireland as a global leader in the areas of materials and medical device development for industry.

More than 45% of multinational jobs wins are connected to SFI research.
Directly supporting 99 highly skilled jobs.
Investment of €23 million from 18 industry partners across diverse sectors.
Industry partners include Intel, DePuy, Medtronic, Merck Millipore and SAB Miller.
Research programme will translate science into new discoveries and devices for a range of sectors such as the development of the next generation computer chips and new medical implants and pharmaceuticals that will improve patirnt care.

The Minister for Jobs, Enterprise and Innovation, Richard Bruton TD, together with the Minister for Research & Innovation, Sean Sherlock TD, today (Thursday) launched the Advanced Materials and Bio-Engineering Research Centre (AMBER).

The Centre is funded by the Department of Jobs, Enterprise and Innovation through Science Foundation Ireland (SFI) in the amount of €35million. This funding is leveraged with an additional €23million from 18 industry partners.

AMBER will work to translate science into new discoveries and devices for a range of sectors, particularly ICT, medical devices and industrial technologies.

It’s very exciting to see what they’re doing in Ireland. And, until now, I’d completely forgotten about Canada’s annual Science and Technology week. This year’s was held from Oct. 18, – 27, 2013. While this celebration seems to have been winding down for a number of years,, perhaps 2013 marks a revitalized event,

Thousands of Canadians across the country joined together on Friday, October 18th [2013] to establish a World Record for the largest science lesson. [emphasis mine] Thank you to all of the organizers and all of the participants who made this inspiring event possible.

Over the next few weeks we’ll be collecting all the required evidence and forwarding it to Guinness for the final number to be calculated and an announcement to be made. As soon as the process is finished we will announce the results on Science.gc.ca.

Of course, Guinness World Records traces its roots back to Ireland, From the History webpage of the Guinness World Records website,

10 November 1951

Sir Hugh Beaver, Chairman of the Guinness Brewery, is out hunting game birds by the River Slaney in County Wexford, Ireland, when he misses a shot at a golden plover. Sir Hugh wonders if the plover is the fastest game bird in Europe but can’t find a reference book that answers the question.

I’m sure the Irish could rival Canadians for the size of the science lessons they might wish to hold. Perhaps Canadians should offer a friendly challenge?