Tag Archives: American Institute of Physics

Quantum guitar music

The sound quality the physicists at the US National Institute of Standards and Technology (NIST) have achieved is quite good compared to carbon nanotube radio. If you’re curious, the audio file is embedded in both the American Institute of Physics (AIP) June 18, 2019 news release (and in the copy on EurekAlert),

It sounds like an old-school vinyl record, but the distinctive crackle in the music streamed into Chris Holloway’s laboratory is atomic in origin. The group at the National Institute for Standards and Technology, Boulder, Colorado, spent a long six years finding a way to directly measure electric fields using atoms, so who can blame them for then having a little fun with their new technology?

“My vision is to cut a CD in the lab — our studio — at some point and have the first CD recorded with Rydberg atoms,” said Holloway. While he doesn’t expect the atomic-recording’s lower sound quality to replace digital music recordings, the team of research scientists is considering how this “entertaining” example of atomic sensing could be applied in communication devices of the future.

“Atom-based antennas might give us a better way of picking up audio data in the presence of noise, potentially even the very weak signals transmitted in deep space communications,” said Holloway, who describes his atomic receiver in AIP Advances, from AIP Publishing.

The atoms in question — Rydberg atoms — are atoms excited by lasers into a high energy state that responds in a measurable way to radio waves (an electric field). After figuring out how to measure electric field strength using the Rydberg atoms, Holloway said it was a relatively simple step to apply the same atoms to record and play back music — starting with Holloway’s own guitar improvisations in A minor.

They encoded the music onto radio waves in much the same way cellphone conversations are encoded onto radio waves for transmission. The atoms respond to these radio waves, and in turn, the laser beams shined through the Rydberg atoms are affected. These changes are picked up on a photodetector, which feeds an electric signal into the speaker or computer — and voila! The atomic radio was born

The team used their quantum system to pick up stereo — with one atomic species recording the instrumental and another the vocal at two different sets of laser frequencies. They selected a Queen track — “Under Pressure” — to test if their system could handle Freddie Mercury’s extensive vocal range.

“One of the reasons for cutting stereo was to show that this one receiver can pick up two channels simultaneously, which is difficult with conventional receivers,” said Holloway, who explained that although it is the early days for atomic communications, there is potential to use this to improve the security of communications.

For now, Holloway’s team are staying tuned into atomic radio as they try to determine how weak a signal the Rydberg atoms can detect, and what data transfer speeds can be achieved.

They are not forgetting the atomic record they want to produce, with which they hope to inspire the next generation of quantum scientists.

Here’s a link to and a citation for the paper,

A “real-time” guitar recording using Rydberg atoms and electromagnetically induced transparency: Quantum physics meets music by Christopher L. Holloway, Matthew T. Simons, Abdulaziz H. Haddab, Carl J. Williams, and Maxwell W. Holloway. AIP Advances volume 9 (6), 065110 (2019) DOI: 10.1063/1.5099036 https://doi.org/10.1063/1.5099036 Open Published Online: 18 June 2019

This paper is open access and, if you want to hear the guitar music, click on the AIP news release or EurekAlert links at the top of this posting.

Hydrogels and cartilage; repurposing vehicles in space; big bang has ‘fingerprints’

The American Institute of Physics (AIP) has made a selection of four articles freely available (h/t Mar. 9, 2015 news item on Azonano).

From a March 6, 2015 AIP news release,

WASHINGTON D.C., March 6, 2015 — The following articles are freely available online from Physics Today (www.physicstoday.org), the world’s most influential and closely followed magazine devoted to physics and the physical science community.

You are invited to read, share, blog about, link to, or otherwise enjoy:

1) STIFF AND SUPPLE CARTILAGE SUBSTITUTE

Physics Today‘s Ashley Smart reports on hydrogels that mimic the tricky nature of cartilage thanks to magnetically aligned nanosheets.

“In the realm of bioengineering, hydrogels are something of an all-purpose material. Made up of networks of interlinked, hydrophilic polymers, they tend to be soft, biocompatible, and highly absorbent…. The new material mimics the articular cartilage that lubricates our joints: It can support a heavy load along one direction while stretching and shearing with ease in the others.”

MORE: http://dx.doi.org/10.1063/PT.3.2707

2) GIVING SPACECRAFT A SECOND LEASE ON LIFE WHILE HURTLING THROUGH THE COSMOS

Physics Today‘s Toni Feder reports on the innovative processes undertaken to repurpose various spacecraft in flight, including Kepler, Voyager, Deep Impact, Spitzer, and the Hubble Space Telescope.

“A comeback like Kepler’s is ‘not unique, but it’s unusual,’ says Derek Buzasi of Florida Gulf Coast University, who reinvented the Wide-Field Infrared Explorer (WIRE) after it failed following its 1999 launch. ‘Spacecraft are built for a specialized purpose, so they are hard to repurpose. You have to come up with something they are capable of at the same time they are incapable of their original mission.’

Deep Impact’s original mission was to hurl a copper ball at a comet and watch the impact. In its continued form as EPOXI, the spacecraft went on to visit another comet and, on the way, served as an observatory for user- proposed targets.”

MORE: http://dx.doi.org/10.1063/PT.3.2713

3) CONGRESSMAN & FUSION RESEARCHER REFLECTS ON SCIENCE POLICY

Physics Today‘s David Kramer interviews Rush Holt, the New Jersey congressman who retired from office and this past December took the helm of the American Association for the Advancement of Science.

“PT: What do you consider to be your accomplishments in Congress?

HOLT: I focused a lot on science education. Our real problem is not that we’re failing to produce excellent scientists, because we are [producing them], but rather that we have failed to maintain an appreciation for and understanding of science in the general population. I was able to keep a spotlight on the need but wasn’t able to accomplish as much as I wanted. We got science included in the subjects emphasized by federal law. But we haven’t really improved teacher professional development and other things we need to do.”

MORE: http://dx.doi.org/10.1063/PT.3.2714

4) PARTICLE PHYSICS AND THE COSMIC MICROWAVE BACKGROUND

In this article, physics researchers John Carlstrom, Tom Crawford and Lloyd Knox discuss the fingerprints of the Big Bang and quantum fluctuations in the early universe, which may soon reveal physics at unprecedented energy scales.

“With its empirical successes, inflation is by consensus the best paradigm—notwithstanding some notable dissenting views—for the mechanism that generated the primordial density fluctuations that led to all structure in the universe. Its success has motivated physicists to search for the siblings of those fluctuations, the gravitational waves, via their signature in the polarization of the CMB. If discovered, that gravitational imprint would open up an observational window onto quantum gravitational effects, extremely early times, and extremely high energies.”

MORE: http://dx.doi.org/10.1063/PT.3.2718

I have checked; all of the links do lead to the articles.

Physicist-entrepreneurs are different says American Institute of Physics report

An April 24, 2014 news item on Nanowerk features a very interesting American Institute of Physics (AIP) report on physicists and entrepreneurship,

For much of the 20th century, many of the technological innovations that drove U.S. economic growth emerged from “idea factories” housed within large companies — research units like Bell Labs or Xerox PARC that developed everything from the transistor to the computer mouse.

In recent decades, however, many large high-tech companies have eliminated in-house research programs, turning instead to startup companies as their primary source of breakthrough innovations.

“Small startups have replaced corporate research centers as the drivers of American innovation,” said Orville Butler, a former historian at the American Institute of Physics (AIP) and coauthor of a new AIP report on physics startups.

An April 23, 2014 AIP news release, which originated the news item, reveals more about the report,

The report, titled Physics Entrepreneurship and Innovation, is based on extensive interviews with 140 PhD physicists and other professionals who co-founded and work at some 91 startup companies in 14 states that were established in the last few decades. These companies are engaged in making medical devices, manufacturing tools, nanotechnology, lasers and optical devices, renewable energy technologies and other products.

There is no one winning formula for a successful physics startup, said Joe Anderson, director of AIP’s Niels Bohr Library & Archives and co-author of the new report. Many physics startups can be found in the same Boston and Silicon Valley zip codes that are also hotspots for biotech and internet startups, but many are found far from the those twin poles. Instead they are clustered in regions scattered across the west coast, southern states and the Midwest — in places where venture capital funding may not be as robust or where the particular technology transfer processes in place at one nearby large state university may dominate the business climate. But that seems to work for many companies.

“One of the deliberate things people try to do in the United States and abroad is to create another Silicon Valley, but it doesn’t always work,” Anderson said. “This is a different kind of phenomenon.”

One of the major differences, the report found, is between the culture of the physics startup and the internet startup. While high-flying Silicon Valley execs are likely to see risk taking as something that defines them professionally if not personally, most of the physics entrepreneurs involved in the study see themselves as risk adverse — as far apart from their internet cousins as oxford shirts are from hoodie sweats.

And unlike biotech startups, which tend to seek emerging markets by developing new drugs and devices to sell, many physics startups differ. Some do seek to sell new technologies to emerging markets but others specialize in improving existing technologies and adapting them for new uses based on a perceived market for those goods — what the report terms “market pull” versus “technology push.”

One factor that remained consistent across the United States was the negative response that entrepreneurs had to current immigration policies and the U.S. International Traffic in Arms Regulations, which startup founders saw as hostile to American high-tech competitiveness. [emphasis mine]

Funding is one of the two most critical challenges that entrepreneurs face — the other being the technology itself. [emphases mine] According to one participant in the study, the funding question is always the one and only topic entrepreneurs ever discuss when they get together at meetings. Venture capitalists have become much more risk averse over the past decade, and research intensive startups typically depend, at least initially, on federal Small Business Innovation Research grants — something that is much less common among Silicon Valley tech startups.

A March 3, 2014 article by Fred Dyllia, Executive Director and CEO, references the HoPE (History of Physics Entrepreneurship) study, which culminated in the Physics Entrepreneurship and Innovation report, which helped clarify one point for me (the challenge from immigration policies and the US International Traffic in Arms Regulations but not the second critical challenge [the technology itself] that startups face),

The entrepreneurs interviewed also reported several other concerns that impact their operations, including immigration policies and International Traffic in Arms Regulations (ITARs) that often force US companies to develop technologies outside of the US, in order to stay globally competitive. [emphasis mine]

Dylla’s commentary is worth reading for the perspective he offers on the history behind this report and the details he offers.

You can find the108 pp. PDF of Physics Entrepreneurship and Innovation here. where you may discover for yourself why the technology itself is a critical challenge to entrepreneurs. I’m guessing it has to do with acceptance of new technologies and/or the speed of change.

One final observation, while specifics such as immigration policies do not apply to the Canadian scene, I think it’s safe to say there are many, many similarities between the US and Canada vis à vis science entrepreneurship.

Unique ‘printing’ process boosts supercapacitor performance

In addition to creating energy, we also need to store some of it for future use as a July 29, 2013 news release from the University of Central Florida notes,

Researchers at the University of Central Florida have developed a technique to increase the energy storage capabilities of supercapacitors, essential devices for powering high-speed trains, electric cars, and the emergency doors of the Airbus A380.

The finding, which offers a solution to a problem that has plagued the growing multi-billion dollar industry, utilizes a unique three-step process to “print” large – area nanostructured electrodes, structures necessary to improve electrical conductivity and boost performance of the supercapacitor.

Jayan Thomas, an assistant professor in UCF’s NanoScience Technology Center, led the project which is featured in the June edition of Advanced Materials, one of the leading peer-reviewed scientific journals covering materials science in the world. Thomas’ research appears on the journal’s highly-coveted frontispiece, the illustration page of the journal that precedes the title page.

The news release goes on to describe the supercapacitor issue the researchers were addressing,

Supercapacitors have been around since the 1960’s. Similar to batteries, they store energy. The difference is that supercapacitors can provide higher amounts of power for shorter periods of time, making them very useful for heavy machinery and other applications that require large amounts of energy to start.  However, due to their innate low energy density; supercapacitors are limited in the amount of energy that they can store.

“We had been looking at techniques to print nanostructures,” said Thomas. “Using a simple spin-on nanoprinting (SNAP) technique, we can print highly-ordered nanopillars without the need for complicated development processes. By eliminating these processes, it allows multiple imprints to be made on the same substrate in close proximity.“

This simplified fabrication method devised by Thomas and his team is very attractive for the next-generation of energy storage systems. “What we’ve found is by adding the printed ordered nanostructures to supercapacitor electrodes, we can increase their surface area many times,” added Thomas. “We discovered that supercapacitors made using the SNAP technique can store much more energy than ones made without.”

Here’s a link to and a citation for the research paper abut this new technique for supercapacitors,

Energy Storage: Highly Ordered MnO2 Nanopillars for Enhanced Supercapacitor Performance (Adv. Mater. 24/2013) by Zenan Yu, Binh Duong, Danielle Abbitt, and Jayan Thomas. Article first published online: 20 JUN 2013 DOI: 10.1002/adma.201370160 Advanced Materials Volume 25, Issue 24, page 3301, June 25, 2013.

Lead researcher Thomas was recently featured in a video for his work on creating plasmonic nanocrystals from gold nanoparticles (from the news release),

Thomas, who is also affiliated with the College of Optics and Photonics (CREOL), and the College of Engineering, was recently featured on American Institute of Physics’ Inside Science TV for his collaborative research to develop a new material using nanotechnology that could potentially help keep pilots safe by diffusing harmful laser light.

Here’s the video,

You can find videos, news, and blogs featuring other research at Inside Science and you can find out more about Dr. Jayan Thomas here.

New ways to sense landmines

Scottish researchers have recently published a study about an ultra-portable explosives sensor giving hope for a more reliable way to sense landmines. From the August 16, 2011 news item on Nanowerk,

Decades after the bullets have stopped flying, wars can leave behind a lingering danger: landmines that maim civilians and render land unusable for agriculture. Minefields are a humanitarian disaster throughout the world, and now researchers in Scotland have designed a new device that could more reliably sense explosives, helping workers to identify and deactivate unexploded mines.

Other devices have used the change in a fluorescent polymer’s light-emitting power to detect explosive vapors, but the Scottish team’s prototype, described in the AIP’s new journal AIP Advances (“Ultra-portable explosives sensor based on a CMOS florescence lifetime analysis micro-system”), is the first to use a compact silicon-based micro-system to measure the change in the length of time an electron stays in the ‘excited’ higher energy state.

This measurement is less affected by environmental factors, such as stray light, which should make the device more reliable.

The sensor itself is 20 × 13 × 7 cm3,

A photo of the customized sensing box. Consisting of two ports for gas flow, two wires for connection to an external DC power supply and a USB connection, with the CMOS system sitting inside (Downloaded from http://aipadvances.aip.org/resource/1/aaidbi/v1/i3/p032115_s1?view=fulltext&bypassSSO=1).

(There is open access to the article which is being distributed under a Creative Commons licence in the American Institute of Physics’ AIP Advances journal.)

According to the news item on Nanowerk, the prototype is not yet ready for commercialization but the researchers (Yue Wang, Bruce R. Rae, Robert K. Henderson, Zheng Gong, Jonathan Mckendry, Erdan Gu, Martin D. Dawson, Graham A. Turnbull, and Ifor D. W. Samuel) are hopeful that it will be possible soon.