Tag Archives: American University

Spinach could help power fuel cells.

By Source (WP:NFCC#4), Fair use, https://en.wikipedia.org/w/index.php?curid=65303730

I was surprised to see a reference to the cartoon character, Popeye, in the headline (although it’s not carried forward into the text) for this October 5, 2020 news item on ScienceDaily about research into making fuel cells more efficient,

Spinach: Good for Popeye and the planet

“Eat your spinach,” is a common refrain from many people’s childhoods. Spinach, the hearty, green vegetable chock full of nutrients, doesn’t just provide energy in humans. It also has potential to help power fuel cells, according to a new paper by researchers in AU’s Department of Chemistry. Spinach, when converted from its leafy, edible form into carbon nanosheets, acts as a catalyst for an oxygen reduction reaction in fuel cells and metal-air batteries.

An October 5, 2020 American University news release (also on EurekAlert) by Rebecca Basu, which originated the news item, provides more detail about the research,

An oxygen reduction reaction is one of two reactions in fuel cells and metal-air batteries and is usually the slower one that limits the energy output of these devices. Researchers have long known that certain carbon materials can catalyze the reaction. But those carbon-based catalysts don’t always perform as good or better than the traditional platinum-based catalysts. The AU researchers wanted to find an inexpensive and less toxic preparation method for an efficient catalyst by using readily available natural resources. They tackled this challenge by using spinach.

“This work suggests that sustainable catalysts can be made for an oxygen reduction reaction from natural resources,” said Prof. Shouzhong Zou, chemistry professor at AU and the paper’s lead author. “The method we tested can produce highly active, carbon-based catalysts from spinach, which is a renewable biomass. In fact, we believe it outperforms commercial platinum catalysts in both activity and stability. The catalysts are potentially applicable in hydrogen fuel cells and metal-air batteries.” Zou’s former post-doctoral students Xiaojun Liu and Wenyue Li and undergraduate student Casey Culhane are the paper’s co-authors.

Catalysts accelerate an oxygen reduction reaction to produce sufficient current and create energy. Among the practical applications for the research are fuel cells and metal-air batteries, which power electric vehicles and types of military gear. Researchers are making progress in the lab and in prototypes with catalysts derived from plants or plant products such as cattail grass or rice. Zou’s work is the first demonstration using spinach as a material for preparing oxygen reduction reaction-catalysts. Spinach is a good candidate for this work because it survives in low temperatures, is abundant and easy to grow, and is rich in iron and nitrogen that are essential for this type of catalyst.

Zou and his students created and tested the catalysts, which are spinach-derived carbon nanosheets. Carbon nanosheets are like a piece of paper with the thickness on a nanometer scale, a thousand times thinner than a piece of human hair. To create the nanosheets, the researchers put the spinach through a multi-step process that included both low- and high-tech methods, including washing, juicing and freeze-drying the spinach, manually grinding it into a fine powder with a mortar and pestle, and “doping” the resulting carbon nanosheet with extra nitrogen to improve its performance. The measurements showed that the spinach-derived catalysts performed better than platinum-based catalysts that can be expensive and lose their potency over time.

The next step for the researchers is to put the catalysts from the lab simulation into prototype devices, such as hydrogen fuel cells, to see how they perform and to develop catalysts from other plants. Zou would like to also improve sustainability by reducing the energy consumption needed for the process.

Here’s a link to and a citation for the paper,

Spinach-Derived Porous Carbon Nanosheets as High-Performance Catalysts for Oxygen Reduction Reaction by Xiaojun Liu, Casey Culhane, Wenyue Li, and Shouzhong Zou. ACS Omega 2020, 5, 38, 24367–24378 DOI: https://doi.org/10.1021/acsomega.0c02673 Publication Date:September 15, 2020 Copyright © 2020 American Chemical Society

This paper appears to be open access.

Hopes for nanocellulose in the fields of medicine and green manufacturing

Initially this seemed like an essay extolling the possibilities for nanocellulose but it is also a research announcement. From a Nov. 7, 2016 news item on Nanowerk,

What if you could take one of the most abundant natural materials on earth and harness its strength to lighten the heaviest of objects, to replace synthetic materials, or use it in scaffolding to grow bone, in a fast-growing area of science in oral health care?

This all might be possible with cellulose nanocrystals, the molecular matter of all plant life. As industrial filler material, they can be blended with plastics and other synthetics. They are as strong as steel, tough as glass, lightweight, and green.

“Plastics are currently reinforced with fillers made of steel, carbon, Kevlar, or glass. There is an increasing demand in manufacturing for sustainable materials that are lightweight and strong to replace these fillers,” said Douglas M. Fox, associate professor of chemistry at American University.
“Cellulose nanocrystals are an environmentally friendly filler. If there comes a time that they’re used widely in manufacturing, cellulose nanocrystals will lessen the weight of materials, which will reduce energy.”

A Nov. 7, 2016 American University news release on EurekAlert, which originated the news item, continues into the research,

Fox has submitted a patent for his work with cellulose nanocrystals, which involves a simple, scalable method to improve their performance. Published results of his method can be found in the chemistry journal ACS Applied Materials and Interfaces. Fox’s method could be used as a biomaterial and for applications in transportation, infrastructure and wind turbines.

The power of cellulose

Cellulose gives stems, leaves and other organic material in the natural world their strength. That strength already has been harnessed for use in many commercial materials. At the nano-level, cellulose fibers can be broken down into tiny crystals, particles smaller than ten millionths of a meter. Deriving cellulose from natural sources such as wood, tunicate (ocean-dwelling sea cucumbers) and certain kinds of bacteria, researchers prepare crystals of different sizes and strengths.

For all of the industry potential, hurdles abound. As nanocellulose disperses within plastic, scientists must find the sweet spot: the right amount of nanoparticle-matrix interaction that yields the strongest, lightest property. Fox overcame four main barriers by altering the surface chemistry of nanocrystals with a simple process of ion exchange. Ion exchange reduces water absorption (cellulose composites lose their strength if they absorb water); increases the temperature at which the nanocrystals decompose (needed to blend with plastics); reduces clumping; and improves re-dispersal after the crystals dry.

Cell growth

Cellulose nanocrystals as a biomaterial is yet another commercial prospect. In dental regenerative medicine, restoring sufficient bone volume is needed to support a patient’s teeth or dental implants. Researchers at the National Institute of Standards and Technology [NIST], through an agreement with the National Institute of Dental and Craniofacial Research of the National Institutes of Health, are looking for an improved clinical approach that would regrow a patient’s bone. When researchers experimented with Fox’s modified nanocrystals, they were able to disperse the nanocrystals in scaffolds for dental regenerative medicine purposes.

“When we cultivated cells on the cellulose nanocrystal-based scaffolds, preliminary results showed remarkable potential of the scaffolds for both their mechanical properties and the biological response. This suggests that scaffolds with appropriate cellulose nanocrystal concentrations are a promising approach for bone regeneration,” said Martin Chiang, team leader for NIST’s Biomaterials for Oral Health Project.

Another collaboration Fox has is with Georgia Institute of Technology and Owens Corning, a company specializing in fiberglass insulation and composites, to research the benefits to replace glass-reinforced plastic used in airplanes, cars and wind turbines. He also is working with Vireo Advisors and NIST to characterize the health and safety of cellulose nanocrystals and nanofibers.

“As we continue to show these nanomaterials are safe, and make it easier to disperse them into a variety of materials, we get closer to utilizing nature’s chemically resistant, strong, and most abundant polymer in everyday products,” Fox said.

Here’s a link to and a citation for the paper,

Simultaneously Tailoring Surface Energies and Thermal Stabilities of Cellulose Nanocrystals Using Ion Exchange: Effects on Polymer Composite Properties for Transportation, Infrastructure, and Renewable Energy Applications by Douglas M. Fox, Rebeca S. Rodriguez, Mackenzie N. Devilbiss, Jeremiah Woodcock, Chelsea S. Davis, Robert Sinko, Sinan Keten, and Jeffrey W. Gilman. ACS Appl. Mater. Interfaces, 2016, 8 (40), pp 27270–27281 DOI: 10.1021/acsami.6b06083 Publication Date (Web): September 14, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.