Tag Archives: amines

Removing more than 99% of crude oil from ‘produced’ water (well water)

Should you have an oil well nearby (see The Urban Oil Fields of Los Angeles in an August 28, 2014 photo essay by Alan Taylor for The Atlantic for examples of oil wells in various municipalities and cities associated with LS) , this news from Texas may interest you.

From an August 15, 2018 news item on Nanowerk,

Oil and water tend to separate, but they mix well enough to form stable oil-in-water emulsions in produced water from oil reservoirs to become a problem. Rice University scientists have developed a nanoparticle-based solution that reliably removes more than 99 percent of the emulsified oil that remains after other processing is done.
The Rice lab of chemical engineer Sibani Lisa Biswal made a magnetic nanoparticle compound that efficiently separates crude oil droplets from produced water that have proven difficult to remove with current methods.

An August 15, 2018 Rice University news release (also on EurekAlert), which originated the news item, describes the work in more detail,

Produced water [emphasis mine] comes from production wells along with oil. It often includes chemicals and surfactants pumped into a reservoir to push oil to the surface from tiny pores or cracks, either natural or fractured, deep underground. Under pressure and the presence of soapy surfactants, some of the oil and water form stable emulsions that cling together all the way back to the surface.

While methods exist to separate most of the oil from the production flow, engineers at Shell Global Solutions, which sponsored the project, told Biswal and her team that the last 5 percent of oil tends to remain stubbornly emulsified with little chance to be recovered.

“Injected chemicals and natural surfactants in crude oil can oftentimes chemically stabilize the oil-water interface, leading to small droplets of oil in water which are challenging to break up,” said Biswal, an associate professor of chemical and biomolecular engineering and of materials science and nanoengineering.

The Rice lab’s experience with magnetic particles and expertise in amines, courtesy of former postdoctoral researcher and lead author Qing Wang, led it to combine techniques. The researchers added amines to magnetic iron nanoparticles. Amines carry a positive charge that helps the nanoparticles find negatively charged oil droplets. Once they do, the nanoparticles bind the oil. Magnets are then able to pull the droplets and nanoparticles out of the solution.

“It’s often hard to design nanoparticles that don’t simply aggregate in the high salinities that are typically found in reservoir fluids, but these are quite stable in the produced water,” Biswal said.

The enhanced nanoparticles were tested on emulsions made in the lab with model oil as well as crude oil.

In both cases, researchers inserted nanoparticles into the emulsions, which they simply shook by hand and machine to break the oil-water bonds and create oil-nanoparticle bonds within minutes. Some of the oil floated to the top, while placing the test tube on a magnet pulled the infused nanotubes to the bottom, leaving clear water in between.

Best of all, Biswal said, the nanoparticles can be washed with a solvent and reused while the oil can be recovered. The researchers detailed six successful charge-discharge cycles of their compound and suspect it will remain effective for many more.

She said her lab is designing a flow-through reactor to process produced water in bulk and automatically recycle the nanoparticles. That would be valuable for industry and for sites like offshore oil rigs, where treated water could be returned to the ocean.

It seems to me that ‘produced water’ is another term for polluted water.I guess it’s the reverse to Shakespeare’s “a rose by any other name would smell as sweet” with polluted water by any other name seeming more palatable.

Here’s a link to and a citation for the paper,

Recyclable amine-functionalized magnetic nanoparticles for efficient demulsification of crude oil-in-water emulsions by Qing Wang, Maura C. Puerto, Sumedh Warudkar, Jack Buehler, and Sibani L. Biswal. Environ. Sci.: Water Res. Technol., 2018, Advance Article DOI: 10.1039/C8EW00188J First published on 15 Aug 2018

This paper is behind a paywall.

Rice has included this image amongst others in their news release,

Rice University engineers have developed magnetic nanoparticles that separate the last droplets of oil from produced water at wells. The particles draw in the bulk of the oil and are then attracted to the magnet, as demonstrated here. Photo by Jeff Fitlow

There’s also this video, which, in my book, borders on magical,

Carbon capture with asphalt

I wish I could turn back the clock a few years, so I could mention this research from Rice University (Texas, US) on using asphalt for carbon capture (more on why at the end of this post). From a Sept. 13, 2016 news item on Nanowerk (Note: A link has been removed),

Rice University laboratory has improved its method to turn plain asphalt into a porous material that can capture greenhouse gases from natural gas.

In research detailed this month in Advanced Energy Materials (“Ultra-High Surface Area Activated Porous Asphalt for CO2 Capture through Competitive Adsorption at High Pressures”), Rice researchers showed that a new form of the material can sequester 154 percent of its weight in carbon dioxide at high pressures that are common at gas wellheads.

A Sept. 12, 2016 Rice University news release, which originated the news item, further describes the work (Note: Links have been removed),

Raw natural gas typically contains between 2 and 10 percent carbon dioxide and other impurities, which must be removed before the gas can be sold. The cleanup process is complicated and expensive and most often involves flowing the gas through fluids called amines that can soak up and remove about 15 percent of their own weight in carbon dioxide. The amine process also requires a great deal of energy to recycle the fluids for further use.

“It’s a big energy sink,” said Rice chemist James Tour, whose lab developed a technique last year to turn asphalt into a tough, sponge-like substance that could be used in place of amines to remove carbon dioxide from natural gas as it was pumped from ocean wellheads.

Initial field tests in 2015 found that pressure at the wellhead made it possible for that asphalt material to adsorb, or soak up, 114 percent of its weight in carbon at ambient temperatures.

Tour said the new, improved asphalt sorbent is made in two steps from a less expensive form of asphalt, which makes it more practical for industry.

“This shows we can take the least expensive form of asphalt and make it into this very high surface area material to capture carbon dioxide,” Tour said. “Before, we could only use a very expensive form of asphalt that was not readily available.”

The lab heated a common type asphalt known as Gilsonite at ambient pressure to eliminate unneeded organic molecules, and then heated it again in the presence of potassium hydroxide for about 20 minutes to synthesize oxygen-enhanced porous carbon with a surface area of 4,200 square meters per gram, much higher than that of the previous material.

The Rice lab’s initial asphalt-based porous carbon collected carbon dioxide from gas streams under pressure at the wellhead and released it when the pressure was released. The carbon dioxide could then be repurposed or pumped back underground while the porous carbon could be reused immediately.

In the latest tests with its new material, Tours group showed its new sorbent could remove carbon dioxide at 54 bar pressure. One bar is roughly equal to atmospheric pressure at sea level, and the 54 bar measure in the latest experiments is characteristic of the pressure levels typically found at natural gas wellheads, Tour said.

Here’s a link to and a citation for the paper,

Ultra-High Surface Area Activated Porous Asphalt for CO2 Capture through Competitive Adsorption at High Pressures by Almaz S. Jalilov, Yilun Li, Jian Tian, James M. Tour.  Advanced Energy Materials DOI: 10.1002/aenm.201600693  First published [online]: 8 September 2016

This paper is behind a paywall.

Finishing the story I started at the beginning of this post, I was at an early morning political breakfast a few years back when someone seated at our table asked me if there were any nanotechnology applications for carbon sequestration/capture. At the time, I could not bring any such applications to mind. (Sigh) Now I have an answer.