Tag Archives: Anand Giridharadas

Not a pretty picture: Canada and a patent rights waiver for COVID-19 vaccines

At about 7:15 am PT this morning , May 13, 2021, I saw Dr. Mona Nemer’s (Canada’s Chief Science Advisor) tweet (Note: I’m sorry the formatting isn’t better,

Maryse de la Giroday@frogheart Does this mean Canada will support a waiver on patent rights for COVID-19 vaccines?

7:18 AM · May 13, 2021

Dr. Mona Nemer@ChiefSciCanThe global health crisis of the past year has underscored the critical importance of openly sharing scientific information. We are one step closer to making #openscience a reality around the world. So pleased that my office was part of these discussions. http://webcast.unesco.org/events/2021-05-OS-IGM/ Quote Tweet

Canada at UNESCO@Canada2UNESCO · May 6@Canada2UNESCO is partaking in negotiations today on the draft recommendation on #OpenScience The benefits of #science and #technology to health, the #economy and #development should be available to all.6:40 AM · May 13, 2021·Twitter Web App

No reply. No surprise

Brief summary of Canada’s COVID-19 patent rights nonwaiver

You’ll find more about the UNESCO meeting on open science in last week’s May 7, 2021 posting (Listen in on a UNESCO (United Nations Educational, Scientific and Cultural Organization) meeting [about Open Science]).

At the time, I noted a disparity in Canada’s policies centering on open science and patents; scroll down to the “Comments on open science and intellectual property in Canada” subsection for a more nuanced analysis. For those who don’t have the patience and/or the time, it boils down to this:

  1. Canada is happily participating in a UNESCO meeting on open science,
  2. the 2021 Canadian federal budget just dedicated a big chunk of money to augmenting Canada’s national patent strategy, and
  3. Canada is “willing to discuss” a waiver at the World Trade Organization (WTO) meetings.

I predicted UNESCO would see our representative’s enthusiastic participation while our representative at the WTO meeting would dance around the topic without committing. to anything. Sadly, it’s starting to look like I was right.

Leigh Beadon in a May 12, 2021 posting on Techdirt reveals the situation is worse than I thought (Note: Links have been removed),

Few things illustrate the broken state of our global intellectual property system better than the fact that, well over a year into this devastating pandemic and in the face of a strong IP waiver push by some of the hardest hit countries, patents are still holding back the production of life-saving vaccines. And of all the countries opposing a waiver at the WTO (or withholding support for it, which is functionally the same thing), Canada might be the most frustrating [emphasis mine].

Canada is the biggest hoarder [emphasis mine] of vaccine pre-orders, having secured enough to vaccinate the population five times over. Despite this, it has constantly run into supply problems and lagged behind comparable countries when it comes to administering the vaccines on a per capita basis. In response to criticism of its hoarding, the government continues to focus on its plans to donate all surplus doses to the COVAX vaccine sharing program — but these promises were somewhat more convincing before Canada became the only G7 country to withdraw doses from COVAX. Despite all this, and despite pressure from experts who explain how vaccine hoarding will prolong the pandemic for everyone, the country has continually refused to voice its support for a TRIPS patent waiver at the WTO.

Momentum for changing Canada’s position on a COVID-19 vaccine patent right waivers?

Maclean’s magazine has a May 10, 2021 open letter to Prime Minister Justin Trudeau,

Dear Prime Minister Trudeau,

The only way to combat this pandemic successfully is through a massive global vaccination campaign on a scale and timeline never before undertaken. This requires the production of effective tools and technologies to fight COVID-19 at scale and coordinated global distribution efforts.

The Trade-Related Aspect of Intellectual Property Rights (TRIPS) agreement at the World Trade Organization (WTO) is leading to the opposite outcome. Vaccine production is hindered by granting pharmaceutical companies monopoly power through protection of intellectual property rights, industrial designs and trade secrets. Pharmaceutical companies’ refusal to engage in health technology knowledge transfer makes large-scale, global vaccine production in (and for) low- and middle-income countries all but impossible. The current distribution of vaccines globally speaks to these obstacles.

Hundreds of civil society groups, the World Health Organization (WHO), and the elected governments of over 100 countries, including India, Afghanistan, Bangladesh, Nepal, Pakistan and Sri Lanka have come together and stated that current intellectual property protections reduce the availability of vaccines for protecting their people. On May 5, 2021 the United States also announced its intention to support a temporary waiver for vaccines at the WTO.

We are writing to ask our Canadian government to demonstrate its commitment to an equitable global pandemic response by supporting a temporary waiver of the TRIPS agreement. But clearly that is a necessary but not a sufficient first step. We recognize that scaling up vaccine production requires more than just a waiver of intellectual property rights, so we further request that our government support the WHO’s COVID-19 Technology Access Pool (C-TAP) to facilitate knowledge sharing and work with the WTO to address the supply chain and export constraints currently impeding vaccine production. Finally, because vaccines must be rolled out as part of an integrated strategy to end the acute phase of the epidemic, we request that Canada support the full scope of the TRIPS waiver, which extends to all essential COVID-19 products and technologies, including vaccines, diagnostics and therapeutics.

The status quo is clearly not working fast enough to end the acute phase of the pandemic globally. This waiver respects global intellectual property frameworks and takes advantage of existing provisions for exceptions during emergencies, as enshrined in the TRIPS agreement. Empowering countries to take measures to protect their own people is fundamental to bringing this pandemic to an end.

Anand Giridharadas (author of the 2018 book, Winners Take All: The Elite Charade of Changing the World) also makes the case for a patent rights waiver in his May 11, 2021 posting on The Ink, Note: A link has been removed,

Patents are temporary monopolies granted to inventors, to reward invention and thus encourage more of it. But what happens when you invent a drug that people around the world require to stay alive? What happens when, furthermore, that drug was built in part on technology the public paid for? Are there limits to intellectual property?

For years, activists have pressured the United States government to break or suspend patents in particular cases, as with HIV/Aids. They have had little luck. Indeed, the United States has often fought developing countries when they try to break patents to do right by their citizens, choosing American drug companies over dying people.

So it was a dramatic swerve when, last week, the Biden administration announced that it supported a waiver of the patents for Covid vaccines.

Not long afterward, I reached out to several leading activists for vaccine access to understand the significance of the announcement and where we go from here.

in all this talk about patents and social justice and, whether it’s directly referenced or not, money, the only numbers of I’ve seen,until recently, have been numbers of doses and aggregate costs.

How much does a single vaccine dose cost?

A Sunday, April 11, 2021 article by Krassen Nikolov for EURACTIV provides an answer about the cost in one region, the European Union,

“Pfizer cost €12, then €15.50. The Commission now signs contracts for €19,50”, Bulgarian Prime Minister Boyko Borissov revealed on Sunday [April 11, 2021].

The European Commission is in talks with Pfizer for the supply of COVID-19 vaccines in 2022 and 2023. Borissov said the contracts provide for €19.50 per dose.

Under an agreement with the vaccine producing companies, the European Commission has so far refused to reveal the price of vaccines. However, last December Belgian Secretary of State Eva De Bleeker shared on Twitter the vaccine prices negotiated by the Commission, as well as the number of doses purchased by her government. Then, it became known that the AstraZeneca jab costs €1.78 compared to €12 for Pfizer-BioNTech.

€12 to €19,50, that’s an increase of over 50%. I wonder how Pfizer is justifying such a hefty increase?

According to a March 16, 2021 article by Swikar Oli for the National Post (a Canadian newspaper), these prices are a cheap pandemic special prices,

A top Pfizer executive told shareholders the company is looking at a “significant opportunity” to raise the price of its Pfizer-BioNTech COVID-19 vaccine.

While addressing investors at the virtual Barclays Global Healthcare Conference last week, Pfizer CFO Frank D’Amelio noted they could raise prices when the virus becomes endemic, meaning it’s regularly found in clusters around the globe, according to a transcript of the conference posted on Pfizer’s website.

Current vaccine pricing models are pandemic-related, D’Amelio explained. After the pandemic is defeated and “normal market conditions” arrive, he noted the window would open for a “significant opportunity…from a pricing perspective.”

“So the one price that we published is the price with the U.S. of $19.50 per dose. Obviously, that’s not a normal price like we typically get for a vaccine, $150, $175 [emphasis mine] per dose,” he said, “So pandemic pricing.”

If I remember it rightly, as you increase production, you lower costs per unit. In other words, it’s cheaper to produce one dozen than one, which is why your bakery charges you less money per bun or cake if you purchase by the dozen.

During this pandemic, Pfizer has been producing huge amounts of vaccine, which they would not expect to do should the disease become endemic. As Pfizer has increased production, I would think the price should be dropping but according to the Bulgarian prime minister, it’s not.

They don’t seem to be changing the vaccine as new variants arrive. So, raising the prices doesn’t seem to be linked to research issues and as for the new production facilities, surely those didn’t cost billions.

Canada and COVID-19 money

Talking about money, Canada has a COVDI-19 billionaire according to a December 23, 2020 article (Meet The 50 Doctors, Scientists And Healthcare Entrepreneurs Who Became Pandemic Billionaires In 2020) by Giacomo Tognini for Forbes.

I have a bit more about Carl Hansen (COVID-19 billionaire) and his company, AbCellera, in my December 30, 2020 posting.

I wonder how much the Canadian life sciences community has to do with Canada’s hesitancy over a COVID-19 vaccine patent rights waiver.

Neural and technological inequalities

I’m always happy to see discussions about the social implications of new and emerging technologies. In this case, the discussion was held at the Fast Company (magazine) European Innovation Festival. KC Ifeanyi wrote a July 10, 2019 article for Fast Company highlighting a session between two scientists focusing on what I’ve termed ‘machine/flesh’ or is, sometimes, called a cyborg but not with these two scientists (Note: A link has been removed),

At the Fast Company European Innovation Festival today, scientists Moran Cerf and Riccardo Sabatini had a wide-ranging discussion on the implications of technology that can hack humanity. From ethical questions to looking toward human biology for solutions, here are some of the highlights:

The ethics of ‘neural inequality’

There are already chips that can be implanted in the brain to help recover bodily functions after a stroke or brain injury. However, what happens if (more likely when) a chip in your brain can be hacked or even gain internet access, essentially making it possible for some people (more likely wealthy people) to process information much more quickly than others?

“It’s what some call neural inequality,” says Cerf, a neuroscientist and business professor at the Kellogg School of Management and at the neuroscience program at Northwestern University. …

Opening new pathways to thought through bionics

Cerf mentioned a colleague who was born without his left hand. He engineered a bionic one that he can control with an app and that has the functionality of doing things no human hand can do, like rotating 360 degrees. As fun of a party trick as that is, Cerf brings up a good point in that his colleague’s brain is processing something we can’t, thereby possibly opening new pathways of thought.

“The interesting thing, and this is up to us to investigate, is his brain can think thoughts that you cannot think [emphasis mine] because he has a function you don’t have,” Cerf says. …

The innovation of your human body

As people look to advanced bionics to amplify their senses or abilities, Sabatini, chief data scientist at Orionis Biosciences, makes the argument that our biological bodies are far more advanced than we give them credit for. …

Democratizing tech’s edges

Early innovation so often comes with a high price tag. The cost of experimenting with nascent technology or running clinical trials can be exorbitant. And Sabatini believes democratizing that part of the process is where the true innovation will be. …

Earlier technology that changed our thinking and thoughts

This isn’t the first time that technology has altered our thinking and the kinds of thoughts we have as per ” brain can think thoughts that you cannot think.” According to Walter J. Ong’s 1982 book, ‘Orality and Literacy’,that’s what writing did to us; it changed our thinking and the kinds of thoughts we have.

It took me quite a while to understand ‘writing’ as a technology, largely due to how much I took it for granted. Once I made that leap, it changed how I understood the word technology. Then, the idea that ‘writing’ could change your brain didn’t require as dramatic a leap although it fundamentally altered my concept of the relationship between technology and humans. Up to that time, I had viewed technology as an instrument that allowed me to accomplish goals (e.g., driving a car from point a to point b) but it had very little impact on me as a person.

You can find out more about Walter J. Ong and his work in his Wikipedia entry. Pay special attention to the section about, Orality and Literacy.

Who’s talking about technology and our thinking?

The article about the scientists (Cerf and Sabatini) at the Fast Company European Innovation Festival (held July 9 -10, 2019 in Milan, Italy) never mentions cyborgs. Presumably, neither did Sabatini or Cerf. It seems odd. Two thinkers were discussing ‘neural inequality’ and there was no mention of a cyborg (human and machine joined together).

Interestingly, the lead sponsor for this innovation festival was Gucci. That company would not have been my first guess or any other guess for that matter as having an interest in neural inequality.

So, Gucci sponsored a festival that is not not cheap. A two-day pass was $1600. (early birds got a discount of $457) and a ‘super’ pass was $2,229 (with an early bird discount of $629). So, you didn’t get into the room unless you had a fair chunk of change and time.

The tension, talking about inequality at a festival or other venue that most people can’t afford to attend, is discussed at more length in Anand Giridharadas’s 2018 book, ‘Winners Take All; The Elite Charade of Changing the World’.

It’s not just who gets to discuss ‘neural inequality’, it’s when you get to discuss it, which affects how the discussion is framed.

There aren’t an easy answers to these questions but I find the easy assumption that the wealthy and the science and technology communities get first dibs at the discussion a little disconcerting while being perfectly predictable.

On the plus side, there are artists and others who have jumped in and started the discussion by turning themselves into cyborgs. This August 14, 2015 article (Body-hackers: the people who turn themselves into cyborgs) by Oliver Wainwright for the Guardian is very informative and not for the faint of heart.

For the curious, I’ve been covering these kinds of stories here since 2009. The category ‘human enhancement’ and the search term ‘machine/flesh’ should provide you with an assortment of stories on the topic.

Detecting off-target effects of CRISPR gene-editing

In amidst all the hyperbole about CRISPR (clustered regularly interspaced short palindromic repeats), the gene editing technology, you will sometimes find a mild cautionary note. It seems that CRISPR is not as precise as you might think.

Some months ago there was a story about research into detecting possible unanticipated (off target) effects from using CRISPR, from an April 19, 2019 news item on ScienceDaily,

Since the CRISPR genome editing technology was invented in 2012, it has shown great promise to treat a number of intractable diseases. However, scientists have struggled to identify potential off-target effects in therapeutically relevant cell types, which remains the main barrier to moving therapies to the clinic. Now, a group of scientists at the Gladstone Institutes and the Innovative Genomics Institute (IGI), with collaborators at AstraZeneca, have developed a reliable method to do just that.

An April 19, 2019 Gladstone Institutes press release by Julie Langelier, which originated the press release, provides details,

CRISPR edits a person’s genome by cutting the DNA at a specific location. The challenge is to ensure the tool doesn’t also make cuts elsewhere along the DNA—damage referred to as “off-target effects,” which could have unforeseen consequences.

In a study published in the journal Science, the two first authors, Beeke Wienert and Stacia Wyman, found a new way to approach the problem.

“When CRISPR makes a cut, the DNA is broken,” says Wienert, PhD, who began the work in Jacob E. Corn’s IGI laboratory and who is now a postdoctoral scholar in Bruce R. Conklin’s laboratory at Gladstone. “So, in order to survive, the cell recruits many different DNA repair factors to that particular site in the genome to fix the break and join the cut ends back together. We thought that if we could find the locations of these DNA repair factors, we could identify the sites that have been cut by CRISPR.”

To test their idea, the researchers studied a panel of different DNA repair factors. They found that one of them, called MRE11, is one of the first responders to the site of the cut. Using MRE11, the scientists developed a new technique, named DISCOVER-Seq, that can identify the exact sites in the genome where a cut has been made by CRISPR.

“The human genome is extremely large—if you printed the entire DNA sequence, you would end up with a novel as tall as a 16-story building,” explains Conklin, MD, senior investigator at Gladstone and deputy director at IGI. “When we want to cut DNA with CRISPR, it’s like we’re trying to remove one specific word on a particular page in that novel.”

“You can think of the DNA repair factors as different types of bookmarks added to the book,” Conklin adds. “While some may bookmark an entire chapter, MRE11 is a bookmark that drills down to the exact letter than has been changed.”

Different methods currently exist to detect CRISPR off-target effects. However, they come with limitations that range from producing false-positive results to killing the cells they’re examining. In addition, the most common method used to date is currently limited to cultured cells in the laboratory, excluding its use in patient-derived stem cells or animal tissue.

“Because our method relies on the cell’s natural repair process to identify cuts, it has proven to be much less invasive and much more reliable,” says Corn, PhD, who now runs a laboratory at ETH Zurich. “We were able to test our new DISCOVER-Seq method in induced pluripotent stem cells, patient cells, and mice, and our findings indicate that this method could potentially be used in any system, rather than just in the lab.”

The DISCOVER-Seq method, by being applied to new cell types and systems, has also revealed new insights into the mechanisms used by CRISPR to edit the genome, which will lead to a better understanding of the biology of how this tool works.

“The new method greatly simplifies the process of identifying off-target effects while also increasing the accuracy of the results,” says Conklin, who is also a professor of medical genetics and molecular pharmacology at UC San Francisco (UCSF). “This could allow us to better predict how genome editing would work in a clinical setting. As a result, it represents an essential step in improving pre-clinical studies and bringing CRISPR-based therapies closer to the patients in need.”

###

About the Study

The paper “Unbiased detection of CRISPR off-targets in vivo 1 using DISCOVER-Seq” was published by the journal Science on April 19, 2019. Gladstone’s Hannah L. Watry and Luke M. Judge (who is also at UCSF) contributed to this study. Other authors also include Christopher D. Richardson, Jonathan T. Vu, and Katelynn R. Kazane from IGI, Charles D. Yeh from ETH Zurich, as well as Pinar Akcakaya, Michelle J. Porritt, and Michaela Morlock from AstraZeneca.

The work was supported by Gladstone, the National Institutes of Health (grants EY028249 and HL13535801), the Li Ka Shing Foundation, the Heritage Medical Research Institute, the Fanconi Anemia Research Foundation, a Sir Keith Murdoch Fellowship from the American Australian Association, and an Early Career Fellowship from the National Health and Medical Research Council.

About the Gladstone Institute

To ensure our work does the greatest good, the Gladstone Institutes focuses on conditions with profound medical, economic, and social impact—unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with the University of California, San Francisco.

Before getting to the link and citation that I usually offer you might find this July 17, 2018 posting, The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle of interest. I wonder if this latest news affected the CRISPR market as the did the news in 2018.

In addition to the link in the press release, I am including a link and a citation for the study,

Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq by Beeke Wienert, Stacia K. Wyman, Christopher D. Richardson, Charles D. Yeh, Pinar Akcakaya, Michelle J. Porritt, Michaela Morlock, Jonathan T. Vu, Katelynn R. Kazane, Hannah L. Watry, Luke M. Judge, Bruce R. Conklin, Marcello Maresca, Jacob E. Corn. Science 19 Apr 2019: Vol. 364, Issue 6437, pp. 286-289 DOI: 10.1126/science.aav9023

This paper is behind a paywall.

Money

Over the last 10 or more years, I have, on occasion made a point, of finding out about the funding for various non-profit agencies and projects. I find that sort of thing interesting and have hoped that my readers might feel the same way.

It seems that my readers and I might not be the only ones to care about the source of funding. Joi Ito who held appointments with Harvard University and the Massachusetts Institute of Technology (MIT) resigned from his various appointments on Sept. 7, 2019 after news of major donations from Jeffrey Epstein (a disgraced financier and sex offender) to MIT were revealed. From the Joi Ito’s entry on Wikipedia (Note: Links have been removed),

Joichi “Joi” Ito (伊藤 穰一 Itō Jōichi, born June 19, 1966) is a Japanese activist, entrepreneur and venture capitalist. He is the former director of the MIT Media Lab, and a former professor of the practice of media arts and sciences at MIT. He is a former visiting professor of practice at the Harvard Law School.[1][2]

Ito has received recognition for his role as an entrepreneur focused on Internet and technology companies and has founded, among other companies, PSINet Japan, Digital Garage and Infoseek Japan. Ito is a strategic advisor to Sony Corporation[3] and general partner of Neoteny Labs.[4] Ito writes a monthly column in the Ideas section of Wired.[5]

Ito resigned from his roles at MIT, Harvard, the John D. and Catherine T. MacArthur Foundation, the Knight Foundation, PureTech Health and The New York Times Company on September 7, 2019, following allegations of financial ties to sex offender and financier Jeffrey Epstein.[2][6][7]

Many, many institutions have accepted funds from sketchy characters and orgnaizations. It’s not new to academia, the sciences, or the arts. For a contemporary view of how some of this works, take a look at Anand Giridharadas’s 2018 book, Winners Take All. From the webepage for the book,

WINNERS TAKE ALL
The Elite Charade of Changing the World
 
An insider’s groundbreaking investigation of how the global elite’s efforts to “change the world” preserve the status quo and obscure their role in causing the problems they later seek to solve.

Former New York Times columnist Anand Giridharadas takes us into the inner sanctums of a new gilded age, where the rich and powerful fight for equality and justice any way they can–except ways that threaten the social order and their position atop it. We see how they rebrand themselves as saviors of the poor; how they lavishly reward “thought leaders” who redefine “change” in winner-friendly ways; and how they constantly seek to do more good, but never less harm. We hear the limousine confessions of a celebrated foundation boss; witness an American president hem and haw about his plutocratic benefactors; and attend a cruise-ship conference where entrepreneurs celebrate their own self-interested magnanimity.

I don’t recall any mention of Epstein in Giridharadas’s book but he did have this to say on Twitter about Epstein,

Anand Giridharadas‏Verified account @AnandWrites



Everything that made Epstein’s life possible remains in place after his arrest: the Caribbean tax havens, the hidden real-estate deals, the buying of politicians, the nonprofits that sell reputational glow, the editors who cover for people of their class.

7:34 PM – 8 Jul 2019

it can’t be easy to withstand the temptation to take the money and hope that the misdoings have been exaggerated or that they have stopped. I imagine Ito and others are under constant pressure to get funds.

AstraZeneca

One of the partners in this research about CRISPR, AstraZeneca, is a pharmaceutical company. In fact, it’s one of the largest in the world (from the AstraZeneca Wikipedia entry; Note: Links have been removed),

AstraZeneca plc[4] is a British-Swedish multinational pharmaceutical and biopharmaceutical company. In 2013, it moved its headquarters to Cambridge, UK, and concentrated its R&D in three sites: Cambridge; Gaithersburg, Maryland, USA (location of MedImmune) for work on biopharmaceuticals; and Mölndal (near Gothenburg) in Sweden, for research on traditional chemical drugs.[5] AstraZeneca has a portfolio of products for major disease areas including cancer, cardiovascular, gastrointestinal, infection, neuroscience, respiratory and inflammation.[6]

The company was founded in 1999 through the merger of the Swedish Astra AB and the British Zeneca Group[7][8] (itself formed by the demerger of the pharmaceutical operations of Imperial Chemical Industries in 1993). Since the merger it has been among the world’s largest pharmaceutical companies and has made numerous corporate acquisitions, including Cambridge Antibody Technology (in 2006), MedImmune (in 2007), Spirogen (in 2013) and Definiens (by MedImmune in 2014).

Controversies

Seroquel
In April 2010 AstraZeneca settled a qui tam lawsuit brought by Stefan P. Kruszewski for $520 million to settle allegations that the company defrauded Medicare, Medicaid, and other government-funded health care programs in connection with its marketing and promotional practices for the blockbuster atypical antipsychotic, Seroquel.[76]
In March 2011, AstraZeneca settled a lawsuit in the United States totalling $68.5 million to be divided up to 38 states.[77]
Nexium
The company’s most commercially successful medication is esomeprazole (Nexium). The primary uses are treatment of gastroesophageal reflux disease, treatment and maintenance of erosive esophagitis, treatment of duodenal ulcers caused by Helicobacter pylori, prevention of gastric ulcers in those on chronic NSAID therapy, and treatment of gastrointestinal ulcers associated with Crohn’s disease. When it is manufactured the result is a mixture of two mirror-imaged molecules, R and S. Two years before the omeprazole patent expired, AstraZeneca patented S-omeprazole in pure form, pointing out that since some people metabolise R-omeprazole slowly, pure S-omeprazole treatment would give higher dose efficiency and less variation between individuals.[78] In March 2001, the company began to market Nexium, as it would a brand new drug.[79]

In 2007, Marcia Angell, former editor-in-chief of the New England Journal of Medicine and a lecturer in social medicine at the Harvard Medical School, said in Stern, a German-language weekly newsmagazine, that AstraZeneca’s scientists had misrepresented their research on the drug’s efficiency, saying “Instead of using presumably comparable doses [of each drug], the company’s scientists used Nexium in higher dosages. They compared 20 and 40 mg Nexium with 20 mg Prilosec. With the cards having been marked in that way, Nexium looked like an improvement – which however was only small and shown in only two of the three studies.”[83]
Bildman fraud, and faithless servant clawback

Study
In 2004, University of Minnesota research participant Dan Markingson committed suicide while enrolled in an industry-sponsored pharmaceutical trial comparing three FDA-approved atypical antipsychotics: Seroquel (quetiapine), Zyprexa (olanzapine), and Risperdal (risperidone). University of Minnesota Professor of Bioethics Carl Elliott noted that Markingson was enrolled in the study against the wishes of his mother, Mary Weiss, and that he was forced to choose between enrolling in the study or being involuntarily committed to a state mental institution.[89] Further investigation revealed financial ties to AstraZeneca by Markingson’s psychiatrist, Stephen C. Olson, oversights and biases in AstraZeneca’s trial design, and the inadequacy of university Institutional Review Board (IRB) protections for research subjects.[90][unreliable source?] A 2005 FDA investigation cleared the university. Nonetheless, controversy around the case has continued. A Mother Jones article[89] resulted in a group of university faculty members sending a public letter to the university Board of Regents urging an external investigation into Markingson’s death.[91]

Is it ok to take money and/or other goods and services from them?

Innovative Genomics Institute (IGI)

Also mentioned as a partner in the research, is the Innovative Genomics Institute (IGI). Here’s more from the company’s Overview webpage (Note: Links have been removed),,

The IGI began in 2014 through the Li Ka Shing Center for Genetic Engineering, which was created thanks to a generous donation from the Li Ka Shing Foundation. [emphasis mine] The Innovative Genomics Initiative formed as a partnership between the University of California, Berkeley and the University of California, San Francisco. Combining the fundamental research expertise and the biomedical talent at UCB and UCSF, the Innovative Genomics Initiative focused on unraveling the mechanisms underlying CRISPR-based genome editing and applying this technology to improve human health. Early achievements include improving the efficiency of gene replacement and foundational work toward a treatment for sickle cell disease.

In late 2015, generous philanthropic donations enabled a bolder vision and broader mission for the IGI. With this expansion came a significant enhancement of the organization, and in January 2017, the IGI officially re-launched as the Innovative Genomics Institute.

As it turns out, there is a Li Ka-shing and he has a bit of a history with Vancouver (Canada). First, here’s more about him from the Li Ka-shing Wikipedia entry,(Note: Links have been removed),

Sir Li Ka-shing GBM KBE JP[4] (born 13 June 1928)[5][6] is a Hong Kong business magnate, investor, and philanthropist. As of June 2019, Li is the 30th richest person in the world, with an estimated net wealth of US$29.4 billion.[3] He is the senior advisor for CK Hutchison Holdings,[7] after he retired from the Chairman of the Board in May 2018;[8] through it, he is the world’s leading port investor, developer, and operator of the largest health and beauty retailer in Asia and Europe.[9]

Besides business through his flagship companies Cheung Kong Property Holdings and CK Hutchison Holdings Limited, Li Ka-shing has also personally invested extensively in real estate in Singapore and Canada. He was the single largest shareholder of Canadian Imperial Bank of Commerce (CIBC), the fifth largest bank in Canada, until the sale of his share in 2005 (with all proceedings donated, see below). He is also the majority shareholder of a major energy company, Husky Energy, based in Alberta, Canada.[48]

In January 2005, Li announced plans to sell his $1.2 billion CAD stake in the Canadian Imperial Bank of Commerce, with all proceeds going to private charitable foundations established by Li, including the Li Ka Shing Foundation in Hong Kong and the Li Ka Shing (Canada) Foundation based in Toronto, Ontario.[49]

His son Victor Li was kidnapped in 1996 on his way home after work by gangster “Big Spender” Cheung Tze-keung. Li Ka-shing paid a ransom of HK$1 billion, directly to Cheung who had come to his house.[53] A report was never filed with Hong Kong police. Instead the case was pursued by Mainland authorities, leading to Cheung’s execution in 1998, an outcome not possible under Hong Kong law. Rumours circulated of a deal between Li and the Mainland.[53] In interviews, when this rumor was brought up, Li brushed it off and dismissed it completely.

Li Ka-shing was well known here in Vancouver due to his purchase of a significant chunk of land in the city. This January 9, 2015 article by Glen Korstrum for Business in Vancouver notes some rather interesting news and contextualizes with Li’s Vancouver history,

Hong Kong billionaire Li Ka-shing is restructuring his empire and shifting his base to the Cayman Islands and away from the Chinese special administrative region.

His January 9 [2015] announcement came the same day that Forbes ranked him as Hong Kong’s richest man for the 17th consecutive year, with a total wealth of US$33.5 billion.

Li is best known in Vancouver for buying an 82.5-hectare parcel of land around False Creek for $328 million in 1988 along with partners, who included fellow Hong Kong tycoons, Lee Shau Kee and Cheng Yu Tung.

The group formed Concord Pacific, which redeveloped the site that had been home to Vancouver’s 1986 world’s fair, Expo ’86.

Li cashed out of Concord Pacific in the late 1990s and, in 2007, invested in Deltaport through his Hutchison Port Holdings.

Li’s biggest Canadian holding is his controlling stake in Husky Energy. …

Intriguing, yes? It also makes the prospect of deciding whose money you’re going to accept a bit more complicated than it might seem.

Gladstone Institutes

In what seems to be a decided contrast to the previous two partners, here’s more from the Gladstone Institutes, About Us, History webpage,

Born in London in 1910, J. David Gladstone was orphaned as a boy and came to North America at age 10. He began a career in real estate in Southern California at age 28, eventually making his fortune as the first developer to create the region’s enclosed shopping malls (such as the Northridge Fashion Center mall). His accidental death in 1971 left an estate valued at about $8 million to support medical students interested in research.

It soon became clear to the three trustees administering Mr. Gladstone’s trust that his legacy could support a far more substantial philanthropic enterprise. In 1979, they launched The J. David Gladstone Institutes under the leadership of Robert W. Mahley, MD, PhD, a leading cardiovascular scientist who at the time was working at the National Institutes of Health.

In 2010, after three decades of leading Gladstone, Dr. Mahley stepped down in order to return to more active research. That same year, R. Sanders “Sandy” Williams, MD, left Duke University, where he had been Dean of the School of Medicine—as well as Senior Vice Chancellor and Senior Advisor for International Strategy—to become Gladstone’s new president. The following year, the S.D. Bechtel, Jr. Foundation [emphasis mine] helped launch the Center for Comprehensive Alzheimer’s Disease Research with a generous $6M lead gift, while the Roddenberry Foundation [emphasis mine] gave $5 million to launch the Roddenberry Center for Stem Cell Biology and Medicine. Also in 2011, the independent and philanthropic Gladstone Foundation formed with the mission of expanding the financial resources available to drive’s Gladstone’s mission.

The S. D. Bechtel jr. mentioned is associated with Bechtel, an international engineering firm. I did not find any scandals or controversies in the Bechtel Wikipedia entry. That seemed improbable so I did a little digging and found a January 30, 2015 (?) article by Matthew Brunwasser for foreignpolicy.com (Note: A link has been removed),

Steamrolled; A special investigation into the diplomacy of doing business abroad.

One of Europe’s poorest countries wanted a road, so U.S. mega-contractor Bechtel sold it a $1.3 billion highway, with the backing of a powerful American ambassador. Funny thing is, the highway is barely being used—and the ambassador is now working for Bechtel.

Bechtel, the largest contractor by revenue in the United States and the third-largest internationally, according to an annual list compiled by the Engineering News-Record, has in recent years constructed expensive highways in Kosovo, Croatia, Romania, and Albania. A six-month investigation by the Investigative Reporting Program at the University of California at Berkeley Graduate School of Journalism has found that these highways were boondoggles for the countries in which they were constructed, and that members of governments and international institutions often saw problems coming before Bechtel (along with its Turkish joint venture partner, Enka) even began work on the roads.

My other source is a May 8, 1988 article by Walter Russell Mead for the Los Angeles Time,s

From San Francisco to Saudi Arabia, the Bechtel Group Inc. has left its mark around the world. Yet the privately owned Bechtel Group is one of the country’s most mysterious operations–or was, until the publication of Laton McCartney’s critical and controversial “Friends in High Places.”

Those who believe that “Dynasty” and “Falcon Crest” describe life at the top of America’s corporate pyramids will find a picture here that makes the most far-fetched TV plots look dull. One Bechtel executive was torn to pieces by an angry mob; another, kidnaped, survived two days in the trunk of a Mercedes that had been driven over the edge of a cliff but caught on an obstacle half way down. Wheeling and dealing from Beirut to the Bohemian Grove, Bechtel executives fought off Arab and Jewish nationalists, angry senators, bitter business rivals, and furious consumer groups to build the world’s largest construction and engineering firm.

Poor Bechtel sometimes seems damned if it does and damned if it doesn’t. No major corporation could undertake foreign operations on Bechtel’s scale without some cooperation from the U.S. government–and few companies could refuse a government request that, in return, they provide cover for intelligence agents. Given the enormous scope of Bechtel’s operations in global trouble spots–a $20-billion industrial development in Saudi Arabia, for example–it could only proceed with assurances that its relations with both Saudi and American governments were good. Where, exactly, is the line between right and wrong? [emphasis mine]

… The white elephants Bechtel scattered across the American landscape–particularly the nuclear power plants that threaten to bankrupt some of the country’s largest utility systems–are monuments to wasted talent and misdirected resources.

Finally, I get to the Roddenberry Foundation, which was founded by Gene Roddenberry’s (Star Trek) son. Here’s more from the About Us, Origin webpage,

Gene Roddenberry, creator of the Star Trek series, brought to his audiences meaningful and thought-provoking science fiction to “think, question, and challenge the status quo” with the intention of creating “a brighter future”. His work has touched countless lives and continues to entertain and inspire audiences worldwide. In 2010, Gene’s son Rod established the Roddenberry Foundation to build on his father’s legacy and philosophy of inclusion, diversity, and respect for life to drive social change and meaningfully improve the lives of people around the world.

While there are many criticisms of Mr. Roddenberry, there doesn’t seem to be anything that would be considered a serious scandal on the order of a Jeffrey Epstein or the whisper of scandal on the order of Sir Li Ka-shing or Bechtel.

Final comments

It’s a good thing when research is funded and being able to detect off-target effects from CRISPR is very good, assuming the research holds up to closer scrutiny.

As for vetting your donors, that’s tricky. Of course, Epstein was already a convicted sex offender when Ito accepted his funding for MIT but I cannot emphasize enough the amount of pressure these folks are under. Academia is always hungry for money. Hopefully this incident will introduce checks and balances in the donor process.