Tag Archives: Angel A. Martí

Soap and water for creating 2D nanoflakes (hexagonal boron nitride [hBN] sheets)

Rice University (Texas, US) has a pretty image illustrating the process of making 2D nanoflakes,

Caption: The image displays the exfoliation of hexagonal boron nitride into atomically thin nanosheets aided by surfactants, a process refined by chemists at Rice University. Credit: Ella Maru Studio

A January 27, 2021 news item on Nanowerk announces the Rice University news,

Just a little soap helps clean up the challenging process of preparing two-dimensional hexagonal boron nitride (hBN).

Rice University chemists have found a way to get the maximum amount [number] of quality 2D hBN nanosheets from its natural bulk form by processing it with surfactant (aka soap) and water. The surfactant surrounds and stabilizes the microscopic flakes, preserving their properties.

Experiments by the lab of Rice chemist Angel Martí identified the “sweet spot” for making stable dispersions of hBN, which can be processed into very thin antibacterial films that handle temperatures up to 900 degrees Celsius (1,652 degrees Fahrenheit).

A brief grammatical moment: I can see where someone might view it as arguable (see second paragraph of the above excerpt) but for me ‘amount’ is for something like ‘flour’ for an ‘amount of flour’. ‘Number’ is for something like a ‘number of sheets’. The difference lies in your ability to count the items. Generally speaking, you can’t count the number of flour, therefore, it’s the amount of flour, but you can count the number of sheets. Can count these hexagonal boron nitride (hBN) sheets? If not, is what makes this arguable.

A January 27, 2021 Rice University news release (also on EurekAlert), which originated the news item, delves into details,

The work led by Martí, alumna Ashleigh Smith McWilliams and graduate student Cecilia Martínez-Jiménez is detailed in the American Chemical Society journal ACS Applied Nano Materials.

“Boron nitride materials are interesting, particularly because they are extremely resistant to heat,” Martí said. “They are as light as graphene and carbon nanotubes, but you can put hBN in a flame and nothing happens to it.”

He said bulk hBN is cheap and easy to obtain, but processing it into microscopic building blocks has been a challenge. “The first step is to be able to exfoliate and disperse them, but research on how to do that has been scattered,” Martí said. “When we decided to set a benchmark, we found the processes that have been extremely useful for graphene and nanotubes don’t work as well for boron nitride.”

Sonicating bulk hBN in water successfully exfoliated the material and made it soluble. “That surprised us, because nanotubes or graphene just float on top,” Martí said. “The hBN dispersed throughout, though they weren’t particularly stable.

“It turned out the borders of boron nitride crystals are made of amine and nitric oxide groups and boric acid, and all of these groups are polar (with positive or negative charge),” he said. “So when you exfoliate them, the edges are full of these functional groups that really like water. That never happens with graphene.”

Experiments with nine surfactants helped them find just the right type and amount to keep 2D hBN from clumping without cutting individual flakes too much during sonication. The researchers used 1% by weight of each surfactant in water, added 20 milligrams of bulk hBN, then stirred and sonicated the mix.

Spinning the resulting solutions at low and high rates showed the greatest yield came with the surfactant known as PF88 under 100-gravity centrifugation, but the highest-quality nanosheets came from all the ionic surfactants under 8,000 g centrifugation, with the greatest stability from common ionic surfactants SDS and CTAC.

DTAB — short for dodecyltrimethylammonium bromide — under high centrifugation proved best at balancing the yield and quality of 2D hBN. The researchers also produced a transparent film from hBN nanosheets dispersed in SDS and water to demonstrate how they can be processed into useful products.

“We describe the steps you need to do to produce high-quality hBN flakes,” Martí said. “All of the steps are important, and we were able to bring to light the consequences of each one.”

Understanding the Exfoliation and Dispersion of Hexagonal Boron Nitride Nanosheets by Surfactants: Implications for Antibacterial and Thermally Resistant Coatings by Ashleigh D. Smith McWilliams, Cecilia Martínez-Jiménez, Asia Matatyaho Ya’akobi, Cedric J. Ginestra, Yeshayahu Talmon, Matteo Pasquali, and Angel A. Martí. ACS Appl. Nano Mater. 2021, 4, 1, 142–151 DOI: https://doi.org/10.1021/acsanm.0c02437 Publication Date: January 7, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Boron nitride nanotubes

Most of the talk about nanotubes is focused on carbon nanotubes but there are other kinds as a May 21, 2018 Rice University news release (also received via email and on EurekAlert and in a May 21, 2018 news item on ScienceDaily), notes,

Boron nitride nanotubes are primed to become effective building blocks for next-generation composite and polymer materials based on a new discovery at Rice University – and a previous one.

Scientists at known-for-nano Rice have found a way to enhance a unique class of nanotubes using a chemical process pioneered at the university. The Rice lab of chemist Angel Martí took advantage of the Billups-Birch reaction process to enhance boron nitride nanotubes.

The work is described in the American Chemical Society journal ACS Applied Nano Materials.

Boron nitride nanotubes, like their carbon cousins, are rolled sheets of hexagonal arrays. Unlike carbon nanotubes, they’re electrically insulating hybrids made of alternating boron and nitrogen atoms.

Insulating nanotubes that can be functionalized will be a valuable building block for nanoengineering projects, Martí said. “Carbon nanotubes have outstanding properties, but you can only get them in semiconducting or metallic conducting types,” he said. “Boron nitride nanotubes are complementary materials that can fill that gap.”

Until now, these nanotubes have steadfastly resisted functionalization, the “decorating” of structures with chemical additives that allows them to be customized for applications. The very properties that give boron nitride nanotubes strength and stability, especially at high temperatures, also make them hard to modify for their use in the production of advanced materials.

But the Billups-Birch reaction developed by Rice Professor Emeritus of Chemistry Edward Billups, which frees electrons to bind with other atoms, allowed Martí and lead author Carlos de los Reyes to give the electrically inert boron nitride nanotubes a negative charge.

That, in turn, opened them up to functionalization with other small molecules, including aliphatic carbon chains.

“Functionalizing the nanotubes modifies or tunes their properties,” Martí said. “When they’re pristine they are dispersible in water, but once we attach these alkyl chains, they are extremely hydrophobic (water-avoiding). Then, if you put them in very hydrophobic solvents like those with long-chain hydrocarbons, they are more dispersible than their pristine form.

“This allows us to tune the properties of the nanotubes and will make it easier to take the next step toward composites,” he said. “For that, the materials need to be compatible.”

After he discovered the phenomenon, de los Reyes spent months trying to reproduce it reliably. “There was a period where I had to do a reaction every day to achieve reproducibility,” he said. But that turned out to be an advantage, as the process only required about a day from start to finish. “That’s the advantage over other processes to functionalize carbon nanotubes. There are some that are very effective, but they may take a few days.”

The process begins with adding pure ammonia gas to the nanotubes and cooling it to -70 degrees Celsius (-94 degrees Fahrenheit). “When it combines with sodium, lithium or potassium — we use lithium — it creates a sea of electrons,” Martí said. “When the lithium dissolves in the ammonia, it expels the electrons.”

The freed electrons quickly bind with the nanotubes and provide hooks for other molecules. De los Reyes enhanced Billups-Birch when he found that adding the alkyl chains slowly, rather than all at once, improved their ability to bind.

The researchers also discovered the process is reversible. Unlike carbon nanotubes that burn away, boron nitride nanotubes can stand the heat. Placing functionalized boron nitride tubes into a furnace at 600 degrees Celsius (1,112 degrees Fahrenheit) stripped them of the added molecules and returned them to their nearly pristine state.

“We call it defunctionalization,” Martí said. “You can functionalize them for an application and then remove the chemical groups to regain the pristine material. That’s something else the material brings that is a little different.”

The researchers have provided this pretty illustration of boron nitride nanotube,

Caption: Rice University researchers have discovered a way to ‘decorate’ electrically insulating boron nitride nanotubes with functional groups, making them more suitable for use with polymers and composite materials. Credit: Martí Research Group/Rice University

Here’s a link to and a citation for the paper,

Chemical Decoration of Boron Nitride Nanotubes Using the Billups-Birch Reaction: Toward Enhanced Thermostable Reinforced Polymer and Ceramic Nanocomposites by Carlos A. de los Reyes, Kendahl L. Walz Mitra, Ashleigh D. Smith, Sadegh Yazdi, Axel Loredo, Frank J. Frankovsky, Emilie Ringe, Matteo Pasquali, and Angel A. Martí. ACS Appl. Nano Mater., Article ASAP DOI: 10.1021/acsanm.8b00633 Publication Date (Web): May 16, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

A 244-atom submarine powered by light

James Tour lab researchers at Rice University announce in a Nov. 16, 2015 news item on Nanowerk,

Though they’re not quite ready for boarding a lá “Fantastic Voyage,” nanoscale submarines created at Rice University are proving themselves seaworthy.

Each of the single-molecule, 244-atom submersibles built in the Rice lab of chemist James Tour has a motor powered by ultraviolet light. With each full revolution, the motor’s tail-like propeller moves the sub forward 18 nanometers.
And with the motors running at more than a million RPM, that translates into speed. Though the sub’s top speed amounts to less than 1 inch per second, Tour said that’s a breakneck pace on the molecular scale.

“These are the fastest-moving molecules ever seen in solution,” he said.

Expressed in a different way, the researchers reported this month in the American Chemical Society journal Nano Letters that their light-driven nanosubmersibles show an “enhancement in diffusion” of 26 percent. That means the subs diffuse, or spread out, much faster than they already do due to Brownian motion, the random way particles spread in a solution.

While they can’t be steered yet, the study proves molecular motors are powerful enough to drive the sub-10-nanometer subs through solutions of moving molecules of about the same size.

“This is akin to a person walking across a basketball court with 1,000 people throwing basketballs at him,” Tour said.

A Nov. 16, 2015 Rice University news release (also on EurekAlert), which originated the news item, provides context and details about the research,

Tour’s group has extensive experience with molecular machines. A decade ago, his lab introduced the world to nanocars, single-molecule cars with four wheels, axles and independent suspensions that could be “driven” across a surface.

Tour said many scientists have created microscopic machines with motors over the years, but most have either used or generated toxic chemicals. He said a motor that was conceived in the last decade by a group in the Netherlands proved suitable for Rice’s submersibles, which were produced in a 20-step chemical synthesis.

“These motors are well-known and used for different things,” said lead author and Rice graduate student Victor García-López. “But we were the first ones to propose they can be used to propel nanocars and now submersibles.”

The motors, which operate more like a bacteria’s flagellum than a propeller, complete each revolution in four steps. When excited by light, the double bond that holds the rotor to the body becomes a single bond, allowing it to rotate a quarter step. As the motor seeks to return to a lower energy state, it jumps adjacent atoms for another quarter turn. The process repeats as long as the light is on.

For comparison tests, the lab also made submersibles with no motors, slow motors and motors that paddle back and forth. All versions of the submersibles have pontoons that fluoresce red when excited by a laser, according to the researchers. (Yellow, sadly, was not an option.)

“One of the challenges was arming the motors with the appropriate fluorophores for tracking without altering the fast rotation,” García-López said.

Once built, the team turned to Gufeng Wang at North Carolina State University to measure how well the nanosubs moved.

“We had used scanning tunneling microscopy and fluorescence microscopy to watch our cars drive, but that wouldn’t work for the submersibles,” Tour said. “They would drift out of focus pretty quickly.”

The North Carolina team sandwiched a drop of diluted acetonitrile liquid containing a few nanosubs between two slides and used a custom confocal fluorescence microscope to hit it from opposite sides with both ultraviolet light (for the motor) and a red laser (for the pontoons).

The microscope’s laser defined a column of light in the solution within which tracking occurred, García-López said. “That way, the NC State team could guarantee it was analyzing only one molecule at a time,” he said.

Rice’s researchers hope future nanosubs will be able to carry cargoes for medical and other purposes. “There’s a path forward,” García-López said. “This is the first step, and we’ve proven the concept. Now we need to explore opportunities and potential applications.”

Here’s a link to and a citation for the paper,

Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring by Víctor García-López, Pinn-Tsong Chiang, Fang Chen, Gedeng Ruan, Angel A. Martí, Anatoly B. Kolomeisky, Gufeng Wang, and James M. Tour. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.5b03764 Publication Date (Web): November 5, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

There is an illustration of the 244-atom submersible,

Rice University scientists have created light-driven, single-molecule submersibles that contain just 244 atoms. Illustration by Loïc Samuel

Rice University scientists have created light-driven, single-molecule submersibles that contain just 244 atoms. Illustration by Loïc Samuel

‘Ship in a bottle’ concept helps to create an artificial nose

I love the description of this latest artificial nose, ,as being based on a ‘ship in a bottle’ concept, from an Oct. 10, 2013 Rice University news release (also on EurekAlert),

Rice University scientists took a lesson from craftsmen of old to assemble microscopic compounds that warn of the presence of dangerous fumes from solvents.

The researchers combined a common mineral, zeolite, with a metallic compound based on rhenium to make an “artificial nose” that can sniff out solvent gases. They found that in the presence of the compound, each gas had a photoluminescent “fingerprint” with a specific intensity, lifetime and color.

The challenge for Martí and his team was to get their large metallic particles through the much smaller pores of a zeolite cage. The answer: Do it old-school. In their process, small chemical components enter the cage, find each other and self-assemble into rhenium complexes. Then they’re stuck — like a ship in a bottle.

The news release goes on to relate how the researchers created their ‘ship in a bottle’ or zeolite cage,

“We sequentially load the individual parts of the complex into the zeolite,” Martí said. “The parts are smaller than the pores, but when they self-assemble inside the zeolite, they’re trapped.” Once washed to eliminate complexes that form outside the zeolites, the compound is ready for use.

The relatively simple technique, which was initially developed and studied by two Rice alumni while they were undergraduate students in Martí’s lab, could provide a scalable, inexpensive platform to monitor toxic vapors from industrial solvents.

Solvents are liquid chemicals, often petroleum-based, that are widely used to dissolve solid materials. They are found in paints, thinners, aerosol sprays, dyes, marking pens, adhesives and many other products.

They also evaporate quickly. Solvent vapors, which are hazardous to inhale and can be highly flammable, are often denser than air and gather at floor level, where they can build to dangerous amounts unless detected.

Martí said platinum, gold, palladium and copper salts are often used to detect vapors, because they change color in the presence of solvents. The rhenium-based supramolecular complex was known to fluoresce in the presence of some solvents, but dealing with vapors is a different story.

“If the complexes are in a solid state, they are too close to each other and gases can’t interact with them,” he said. “So we started thinking of ways to create space between them.”

Enter zeolites. “These zeolites are cages with big cavities and small pores,” Martí said. “The pores are big enough — at about 7.4 angstroms — for most gas-phase molecules to enter. The question was how to trap the bigger rhenium complexes inside.”

Other groups have trapped ruthenium complexes in zeolites, but these complexes were not ideal to detect solvents. Then-undergraduates Ty Hanna and, later, Zack Panos developed the method to put rhenium complexes inside zeolites. The results were outstanding, Martí said.

Like canaries in a coalmine, the caged complexes strongly signal the presence of a vapor by the color and intensity of their photoluminescent glow in ultraviolet light.

Martí said nobody had studied the third key property — the amount of time the complex remains in an excited state. That ranges from less than 1,000 nanoseconds for water and ammonia to “a quite long” 4,000-plus nanoseconds for pyridine. It’s different for every type of vapor, he said.

“We concluded that every individual vapor has a set of photophysical properties that is unique for that solvent,” he said. “Each one has a unique fingerprint.”

With the ability to detect three distinct characteristics for each vapor, a team led by graduate student Avishek Saha built a three-dimensional plot to map the fingerprints of 17 types of solvents. They found categories of solvents — nonpolar, alcohols, protics (which include water) and aprotics — tended to gather in their own areas.

“That’s another interesting thing,” Martí said. “Different solvent groups occupy different areas in the map. So even if a solvent hasn’t been studied, our material will help people recognize the category it falls into.”

He said the group plans to test more solvents and suggested the material may also be useful for detecting the presence of other volatile species like explosives.

Here’s a link to and a citation for the research article,

Three-Dimensional Solvent-Vapor Map Generated by Supramolecular Metal-Complex Entrapment by Avishek Saha, Zack Panos, Ty Hanna, Kewei Huang, Mayra Hernández-Rivera, and Prof. Angel A. Martí.
Angewandte Chemie International Edition Article first published online: 2 OCT 2013 DOI: 10.1002/anie.201305762

Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

The article is behind a paywall.

The reference to a ‘ship in a bottle’ brought me back to my childhood. Our parents had a ‘ship in a bottle’ but neither my sister nor I were allowed to touch it. In fact, it was brought out for viewing purposes only on special occasions. I no longer remember what made it so precious but I do recall how magical it seemed. Luckily the internet has made satisfying one’s curiosity easy; I found a picture and instructions on how to make ‘a ship in a bottle’,

Credit: Goaly (?) [downloaded from http://www.instructables.com/id/Building-A-Ship-In-A-Bottle/]

Credit: Goaly (?) [downloaded from http://www.instructables.com/id/Building-A-Ship-In-A-Bottle/]

You can find instructions by Goaly for Building a Ship in a Bottle here.

Happy Thanksgiving Weekend!