Tag Archives: antibacterial properties

Antiviral, antibacterial surface for reducing spread of infectious diseases

In the past several years, scientists have created antibacterial surfaces by fabricating materials with specific types of nanostructures. According to a May 27, 2020 news item on Nanowerk, scientists have now been able to add antiviral properties (Note: A link has been removed),

The novel coronavirus pandemic has caused an increased demand for antimicrobial treatments that can keep surfaces clean, particularly in health care settings. Although some surfaces have been developed that can combat bacteria, what’s been lacking is a surface that can also kill off viruses.

Now, researchers have found a way to impart durable antiviral and antibacterial properties to an aluminum alloy used in hospitals, according to a report in ACS Biomaterials Science & Engineering (“Antiviral and Antibacterial Nanostructured Surfaces with Excellent Mechanical Properties for Hospital Applications”).

A May 27, 2020 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, describes the problem and the proposed solution,

Among other mechanisms, viruses and bacteria can spread when a person touches a site where germs have settled, such as a doorframe, handrail or medical device. A healthy person can often fight off these bugs, but hospital patients can be more vulnerable to infection. The number of hospital-acquired infections has been on the decline in the U.S., but they still cause tens of thousands of deaths every year, according to the U.S. Department of Health and Human Services. Chemical disinfectants or coatings containing hydrophobic compounds, silver ions or copper can reduce infectious contaminants on surfaces, but these treatments don’t last. However, nature has developed its own solutions for battling microorganisms, including microscopic structural features that render some insect wings lethal to bacteria. Scientists have replicated this effect by forming surfaces covered with minute pillars and other shapes that distort and kill bacterial cells. But Prasad Yarlagadda and colleagues wanted to inactivate viruses as well as bacteria, so they set out to generate a novel nanoscale topography on long-lasting, industrially relevant materials.

The team experimented with disks of aluminum 6063, which is used in doorframes, window panels, and hospital and medical equipment. Etching the disks with sodium hydroxide for up to 3 hours changed the initially smooth, hydrophobic surface into a ridged, hydrophilic surface. Bacteria or viruses were then applied to the etched disks. Most of the Pseudomonas aeruginosa and Staphylococcus aureus bacteria were inactivated after 3 hours on the surface, while viability of common respiratory viruses dropped within 2 hours; both results were better than with plastic or smooth aluminum surfaces. The disks retained their effectiveness even after tests designed to mimic hospital wear and tear. The researchers note this is the first report to show combined antibacterial and antiviral properties of a durable, nanostructured surface that has the potential to stop the spread of infections arising from physical surfaces in hospitals. This strategy could be extended to surfaces in other public areas, such as cruise ships, planes and airports, they say. The team is now studying the effects of their nano-textured aluminum surfaces on the novel coronavirus.

This approach reminds me of Sharklet, a company fabricating a material designed to mimic a shark’s skin which is naturally antibacterial due to the nanostructures on its skin (see my September 18, 2014 posting).

More about Sharklet later. First, here’s a link to and a citation for the paper about this latest work,

Antiviral and Antibacterial Nanostructured Surfaces with Excellent Mechanical Properties for Hospital Applications by Jafar Hasan, Yanan Xu, Tejasri Yarlagadda, Michael Schuetz, Kirsten Spann, and Prasad KDV Yarlagadda. ACS Biomater. Sci. Eng. 2020, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acsbiomaterials.0c00348 Publication Date:May 7, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Business and science: a Sharklet update

You can find the Sharklet website here. I wasn’t able to find any news about recent business deals other than the company’s acquisition by Peaceful Union in May 2017. From a May 17, 2017 Sharklet news release on Business Wire (and on the company website here),

Sharklet Technologies, Inc., a biotechnology company lauded for the creation and commercialization of Sharklet®, the world’s first micro-texture that inhibits bacterial growth on surfaces, has announced that it has completed a financing event led by Peaceful Union, an equity medical device firm in Hangzhou, China. Terms of the transaction were not disclosed.

The acquisition of the company will enable Sharklet Technologies to accelerate the development of Sharklet for medical devices where chemical-free bacterial inhibition is desired as well as high-touch surfaces prone to bacterial contamination. The company also will accelerate development of a newly enhanced wound dressing technology to encourage healing.

Joe Bagan and Mark Spiecker led the transaction structure. “This is an important day for the company and investors,” said Joe Bagan, former board chair, and Mark Spiecker, former CEO. “Our investors will realize a significant transaction while enabling the company to accelerate growth.”

In concert with the investment, Sharklet Technologies founding member, chief technology officer, and Sharklet inventor Dr. Anthony Brennan, will become chairman of the board assuming duties from chairman Joe Bagan and CEO Mark Spiecker.

Interestingly, Bagan and Spiecker are Chief Executive Officer (CEO) and President, respectively at STAQ Pharma. I wonder if there are plans to sell this company too.

Getting back to Sharklet, I found two items of recent origin about business but I cannot speak to the accuracy or trustworthiness of either item. That said, you will find they provide some detail about Sharklet’s new business directions and new business ties.

While Sharklet’s current business associations have a sketchy quality, it seems that’s not unusual in business, especially where new technologies are concerned. For example, the introduction of electricity into homes and businesses was a tumultuous affair as the 2008 book, ‘Power Struggles; Scientific Authority and the Creation of Practical Electricity Before Edison’ by Michael Brian Schiffer makes clear, from the MIT [Massachusetts Institute of Technology] Press ‘Power Struggles’ webpage,

In 1882, Thomas Edison and his Edison Electric Light Company unveiled the first large-scale electrical system in the world to light a stretch of offices in a city. … After laying out a unified theoretical framework for understanding technological change, Schiffer presents a series of fascinating case studies of pre-Edison electrical technologies, including Volta’s electrochemical battery, the blacksmith’s electric motor, the first mechanical generators, Morse’s telegraph, the Atlantic cable, and the lighting of the Capitol dome. Schiffer discusses claims of “practicality” and “impracticality” (sometimes hotly contested) made for these technologies, and examines the central role of the scientific authority—in particular, the activities of Joseph Henry, mid-nineteenth-century America’s foremost scientist—in determining the fate of particular technologies. These emerging electrical technologies formed the foundation of the modern industrial world. Schiffer shows how and why they became commercial products in the context of an evolving corporate capitalism in which conflicting judgments of practicality sometimes turned into power struggles. [emphases mine]

Even given that the book’s focus is pre-Edison electricity, how do you mention Edison himself without even casually mentioning Nikola Tesla and George Westinghouse in the book’s overview? Getting back to my point, emerging technologies do not emerge easily.

Panning for silver nanoparticles in your clothes washer

A March 20, 2018 news item on phys.org describes a new approach to treating wastewater (Note: Links have been removed),

Humans have known since ancient times that silver kills or stops the growth of many microorganisms. Hippocrates, the father of medicine, is said to have used silver preparations for treating ulcers and healing wounds. Until the introduction of antibiotics in the 1940s, colloidal silver (tiny particles suspended in a liquid) was a mainstay for treating burns, infected wounds and ulcers. Silver is still used today in wound dressings, in creams and as a coating on medical devices.

Since the 1990s, manufacturers have added silver nanoparticles to numerous consumer products to enhance their antibacterial and anti-odor properties. Examples include clothes, towels, undergarments, socks, toothpaste and soft toys. Nanoparticles are ultra-small particles, ranging from 1 to 100 nanometers in diameter – too small to see even with a microscope. According to a widely cited database, about one-fourth of nanomaterial-based consumer products currently marketed in the United States contain nanosilver.

Multiple studies have reported that nanosilver leaches out of textiles when they are laundered. Research also reveals that nanosilver may be toxic to humans and aquatic and marine organisms. Although it is widely used, little is understood about its fate or long-term toxic effects in the environment.

We are developing ways to convert this potential ecological crisis into an opportunity by recovering pure silver nanoparticles, which have many industrial applications, from laundry wastewater. In a recently published study, we describe a technique for silver recovery and discuss the key technical challenges. Our approach tackles this problem at the source – in this case, individual washing machines. We believe that this strategy has great promise for getting newly identified contaminants out of wastewater.

A March 20, 2018 essay by Sukalyan Sengupta, Professor of Wastewater Treatment, and Tabish Nawaz. Doctoral Student, both at University of Massachusetts at Dartmouth on The Conversation website, which originated the news item, expands on the theme (Note: Links have been removed),

Use of nanosilver in consumer products has steadily risen in the past decade. The market share of silver-based textiles rose from 9 percent in 2004 to 25 percent in 2011.

Several investigators have measured the silver content of textiles and found values ranging from 0.009 to 21,600 milligrams of silver per kilogram of textile. Studies show that the amount of silver leached in the wash solution depends on many factors, including interactions between detergent and other chemicals and how silver is attached to the textiles.

In humans, exposure to silver can harm liver cells, skin and lungs. Prolonged exposure or exposure to a large dose can cause a condition called Argyria, in which the victim’s skin turns permanently bluish-gray.

Once silver goes down the drain and ends up at wastewater treatment plants, it can potentially harm bacterial treatment processes, making them less efficient, and foul treatment equipment. More than 90 percent of silver nanoparticles released in wastewater end up in nutrient-rich biosolids left over at the end of sewage treatment, which often are used on land as agricultural fertilizers.

Silver is toxic in aquatic environments, a concern that’s becoming more serious with the increased use of silver nanoparticles and awareness that oceans, rivers, and lakes are dangerously stressed.

Sengupta and Nawaz go on to describe their proposed solution (Note: Links have been removed),

Our research shows that the most efficient way to remove silver from wastewater is by treating it in the washing machine. At this point silver concentrations are relatively high, and silver is initially released from treated clothing in a chemical form that is feasible to recover.

A bit of chemistry is helpful here. Our recovery method employs a widely used chemistry process called ion exchange. Ions are atoms or molecules that have an electrical charge. In ion exchange, a solid and a liquid are brought together and exchange ions with each other.

For example, household soaps do not lather well in “hard” water, which contains high levels of ions such as magnesium and calcium. Many home water filters use ion exchange to “soften” the water, replacing those materials with other ions that do not affect its properties in the same way.

For this process to work, the ions that switch places must both be either positively or negatively charged. Nanosilver is initially released from textiles as silver ion, which is a cation – an ion with a positive charge (hence the plus sign in its chemical symbol, Ag+).

Even at the source, removing silver from washwater is challenging. Silver concentrations in the wash solution are relatively low compared to other cations, such as calcium, that could interfere with the removal process. Detergent chemistry complicates the picture further because some detergent components can potentially interact with silver.

To recover silver without picking up other chemicals, the recovery process must use materials that have a chemical affinity for silver. In a previous study, we described a potential solution: Using ion-exchange materials embedded with sulfur-based chemicals, which bind preferentially with silver.

In our new study, we passed washwater through an ion-exchange resin column and analyzed how each major detergent ingredient interacted with silver in the water and affected the resin’s ability to remove silver from the water. By manipulating process conditions such as pH, temperature and concentration of nonsilver cations, we were able to identify conditions that maximized silver recovery.

We found that pH and the levels of calcium ions (Ca2+) were critical factors. Higher levels of hydrogen or calcium ions bind up detergent ingredients and prevent them from interacting with silver ions, so the ion-exchange resin can remove the silver from the solution. We also found that some detergent ingredients – particularly bleaching and water-softening agents – made the ion-exchange resin work less efficiently. Depending on these conditions, we recovered between 20 percent and 99 percent of the silver in the washwater.

The researchers go on to propose a new approach to treating wastewater (Note: A link has been removed),

Today wastewater is collected from multiple sources, such as homes and businesses, and piped over long distances to centralized wastewater treatment plants. But increasing evidence shows that these facilities are ill-equipped to keep newly identified contaminants out of the environment, since they use one common treatment scheme for many different waste streams.

We believe the future is in decentralized systems that can treat different types of wastewater with specific technologies designed specifically for the materials they contain. If wastewater from laundromats contains different contaminants than wastewater from restaurants, why treat them the same way?

Interesting, non? In any event, here’s a link to and a citation for what I believe is the researchers’ latest paper on this subject,

Silver Recovery from Laundry Washwater: The Role of Detergent Chemistry by Tabish Nawaz and Sukalyan Sengupta. ACS Sustainable Chem. Eng., 2018, 6 (1), pp 600–608 DOI: 10.1021/acssuschemeng.7b02933 Publication Date (Web): November 21, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall. For anyone who can’t get access, Karla Lant provides a bit more technical detail about the work in her February 2, 2018 article for fondriest.com.

Korean researchers extend food shelf *life* with nanomicrobial coating

These Korean scientists have applied their new coating to food and to shoe insoles as they test various uses for their technology. From an Aug. 11, 2017 news item on Nanowerk,

The edible coating on produce has drawn a great deal of attention in the food and agricultural industry. It could not only prolong postharvest shelf life of produce against external changes in the environment but also provide additional nutrients to be useful for human health. However, most versions of the coating have had intrinsic limitations in their practical application.

First, highly specific interactions between coating materials and target surfaces are required for a stable and durable coating. Even further, the coating of bulk substrates, such as fruits, is time consuming or is not achievable in the conventional solution-based coating. In this respect, material-independent and rapid coating strategies are highly demanded.

The research team led by Professor Insung Choi of the Department of Chemistry developed a sprayable nanocoating technique using plant-derived polyphenol that can be applied to any surface.

An Aug. 10, 2017 KAIST (Korea Advanced Institute of Science and Technology) press release, which originated the news item, expands on the theme,

Polyphenols, a metabolite of photosynthesis, possess several hydroxyl groups and are found in a large number of plants showing excellent antioxidant properties. They have been widely used as a nontoxic food additive and are known to exhibit antibacterial, as well as potential anti-carcinogenic capabilities. Polyphenols can also be used with iron ions, which are naturally found in the body, to form an adhesive complex, which has been used in leather tanning, ink, etc.

The research team combined these chemical properties of polyphenol-iron complexes with spray techniques to develop their nanocoating technology. Compared to conventional immersion coating methods, which dip substrates in specialized coating solutions, this spray technique can coat the select areas more quickly. The spray also prevents cross contamination, which is a big concern for immersion methods. The research team has showcased the spray’s ability to coat a variety of different materials, including metals, plastics, glass, as well as textile fabrics. The polyphenol complex has been used to form antifogging films on corrective lenses, as well as antifungal treatments for shoe soles, demonstrating the versatility of their technique.

Furthermore, the spray has been used to coat produce with a naturally antibacterial, edible film. The coatings significantly improved the shelf life of tangerines and strawberries, preserving freshness beyond 28 days and 58 hours, respectively. (Uncoated fruit decomposed and became moldy under the same conditions). See the image below.

 

a –I, II: Uncoated and coated tangerines incubated for 14 and 28 days in daily-life settings

b –I: Uncoated and coated strawberries incubated for 58 hours in daily-life settings

b –II: Statistical investigation of the resulting edibility.

Professor Choi said, “Nanocoating technologies are still in their infancy, but they have untapped potential for exciting applications. As we have shown, nanocoatings can be easily adapted for several different uses, and the creative combination of existing nanomaterials and coating methods can synergize to unlock this potential.”

Here’s a link to and a citation for the paper,

Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits by Ji Park, Sohee Choi, Hee Moon, Hyelin Seo, Ji Kim, Seok-Pyo Hong, Bong Lee, Eunhye Kang, Jinho Lee, Dong Ryu, & Insung S. Choi. Scientific Reports 7, Article number: 6980 (2017) doi:10.1038/s41598-017-07257-x Published online: 01 August 2017

This paper is open access.

*’life’ added to correct headline on Sept. 4, 2017.

Sharklet’s sharkskin-like material

It’s one of my favourite technologies but there hasn’t been much talk about Sharklet for the last few years. My Feb. 10, 2011 posting about it had this,

They used sharkskin as an example for making a ‘smarter’ material. Scientists have observed that nanoscale structures on a shark’s skin have antibacterial properties. This is especially important when we have a growing problem with bacteria that are antibiotic resistant. David Pogue’s (the program host) interviewed scientists at Sharklet and highlighted their work producing a plastic with nanostructures similar to those found on sharkskin for use in hospitals, restaurants, etc.  I found this on the Sharklet website (from a rotating graphic on the home page),

The World Health Organization calls antibiotic resistance a leading threat to human health.

Sharkjet provides a non-toxic approach to bacterial control and doesn’t create resistance.

The reason that the material does not create resistance is that it doesn’t kill the bacteria (antibiotics kill most bacteria but cannot kill all of them with the consequence that only the resistant survive and reproduce). Excerpted from Sharklet’s technology page,

While the Sharklet pattern holds great promise to improve the way humans co-exist with microorganisms, the pattern was developed far outside of a laboratory. In fact, Sharklet was discovered via a seemingly unrelated problem: how to keep algae from coating the hulls of submarines and ships. In 2002, Dr. Anthony Brennan, a materials science and engineering professor at the University of Florida, was visiting the U.S. naval base at Pearl Harbor in Oahu as part of Navy-sponsored research. The U.S. Office of Naval Research solicited Dr. Brennan to find new antifouling strategies to reduce use of toxic antifouling paints and trim costs associated with dry dock and drag.

The most recent news from Sharklet comes in a Sept. 16, 2014 news release on EurekAlert which refines the definition for Sharklet and provides research about the latest research on this material,

Transmission of bacterial infections, including MRSA and MSSA could be curbed by coating hospital surfaces with microscopic bumps that mimic the scaly surface of shark skin, according to research published in the open access journal Antimicrobial Resistance and Infection Control.

The study modelled how well different materials prevented the spread of human disease bacteria through touching, sneezes or spillages. The micropattern, named Sharklet™, is an arrangement of ridges formulated to resemble shark skin. The study showed that Sharklet harboured 94% less MRSA bacteria than a smooth surface, and fared better than copper, a leading antimicrobial material. The bacteria were less able to attach to Sharklet’s imperceptibly textured surface, suggesting it could reduce the spread of superbugs in hospital settings.

The surfaces in hospitals and healthcare settings are often rife with bacteria and patients are vulnerable to bacterial infection. Scientists are investigating the ability of different materials to prevent the spread of bacteria. Copper alloys are a popular option, as they are toxic to bacterial cells, interfering with their cellular processes and killing them. The Sharklet micropattern works differently – the size and composition of its microscopic features prevent bacteria from attaching to it. It mimics the unique qualities of shark skin, which, unlike other underwater surfaces, inhibits bacteria, because it is covered with a natural micropattern of tooth-like structures, called denticles.

Dr Ethan Mann, a research scientist at Sharklet Technologies, the manufacturer of the micropattern, says: “The Sharklet texture is designed to be manufactured directly into the surfaces of plastic products that surround patients in hospital, including environmental surfaces as well as medical devices. Sharklet does not introduce new materials or coatings – it simply alters the shape and texture of existing materials to create surface properties that are unfavorable for bacterial contamination.”

The researchers from Sharklet Technologies compared how well two types of infection-causing bacteria, methicillin-resistant or susceptible Staphylococcus aureus (MRSA and MSSA), fared at contaminating three surfaces – the Sharklet micropattern, a copper alloy, and a smooth control surface. They created experimental procedures to mimic common ways bacteria infect surfaces. Sneezing was mimicked by using a paint sprayer to spread the bacterial solution on 10 samples of each surface. To mimic infected patients touching the surfaces, velveteen cloth was put in contact with bacteria for 10s, and then placed on another set of each test surface for 10s. A third set of each surface was immersed in bacterial solution for an hour, then rinsed and dried, to mimic spills.

Surfaces were sampled for remaining contaminations either immediately following exposure to MSSA and MRSA or 90 minutes after being exposed. The Sharklet micropattern reduced transmission of MSSA by 97% compared to the smooth control, while copper was no better than the control. The micropattern also harboured 94% less MRSA bacteria than the control surface, while the copper had 80% less.

Dr Mann says: “Shark skin itself is not an antimicrobial surface, rather it seems highly adapted to resist attachment of living organisms such as algae and barnacles. Shark skin has a specific roughness and certain properties that deter marine organisms from attaching to the skin surface. We have learned much from nature in building this material texture for the future.”

Here’s an illustration the researchers have provided,

Caption: This is an image of the Sharklet micropattern, which mimics the denticles of shark skin. Credit: Mann et al.

Caption: This is an image of the Sharklet micropattern, which mimics the denticles of shark skin.
Credit: Mann et al.

Here’s a link to and a citation for the paper,

Surface micropattern limits bacterial contamination by Ethan E Mann, Dipankar Manna, Michael R Mettetal, Rhea M May, Elisa M Dannemiller, Kenneth K Chung, Anthony B Brennan, and Shravanthi T Reddy. Antimicrobial Resistance and Infection Control 2014, 3:28  doi:10.1186/2047-2994-3-28

This is an open access paper.